Title
Heavy ion beams for inertial confinement fusion

Permalink
https://escholarship.org/uc/item/85x9d0pv

Author
Lee, Edward P.

Publication Date
1999-11-01
Heavy Ion Beams for Inertial Confinement Fusion

Presented at UCSD
November 8, 1999
Plasma Physics Seminar
Edward P. Lee
Heavy Ion Beams For Inertial Confinement Fusion

Edward Lee

Lawrence Berkeley National Laboratory

UCSD Plasma Physics Seminar
Nov. 8th, 1999

Fusion Context & Parameters

Beam Currents & Accelerator

Beam Transport: Analogy with Photons

Quadrupole Magnet Transport

Role of Space Charge

Breathing Mode Instability
Power Plant

\[\text{3 Plant Efficiency} \times \text{1000 MW Electric} \times \text{10 Hz Rep Rate} = \text{3000 MW Fusion Energy} \]

\[\text{100 mTons x Gain of 75 = 75 mTons} \]

Typical High \(\geq \) Case

Ion Source

Stepper

X-Ray

Theoretical

PP and Pellet Fusion
Heavy Ions Have Short Range
In The Stopper at High Energy

\[T = 4.0 \text{ GeV} \quad C^+ \]
\[\rightarrow \text{Range} = 0.1 \text{ gm/}cm^2 \]

\[\text{Total Ion} = \frac{4.0 \text{ MJ}}{4.0 \text{ GeV}} = 10^{-3} \text{ C} \]

\[\text{Charge} \]

\[\text{Ions into target in} \quad 10^{-8} \]
\[\rightarrow 4 \times 10^{-4} \text{ Watts beam power} \]
\[100,000 \text{ Amperes beam current} \]

Relativistic Factor
\[\beta^2 = \sqrt{\left(\frac{I}{mc^2}\right)^2 + 2\left(\frac{I}{mc^2}\right)} \]
\[= 0.256 \]

- Only Slightly Relativistic -
Currents

100,000 Amperes is divided among many beams to reduce space charge effects

Say $N_{beam} = 50$

$\Rightarrow I_{beam} = \frac{100,000}{50} = 2000$ Amperes

At Source:
- $T = 1.6$ MeV
- $I_{beam} \approx 0.5$ Ampere

Accelerate to 4000 MeV

$\Rightarrow I$ increases by $\times \sqrt[1.6]{4000^2} = 50$

Compress during Acceleration by $\times 4$

End of Accelerator $I_{beam} = 4 \times 50 \times 0.5 = 100$ Amp

Compress another $\times 20$ from Accelerator to Target $\Rightarrow 2000$ Amp
Induction Linear Accelerator

N Beams in Acceleration Gap

Magnets to Transport Beams

Insulator

Ferro magnetic Torus

Switch + HV Supply
52 Beam (efficient) Bundle In Magnet

- cryostat

- structural support

- thermal insulation

- vacuum

- beam
Ions Are Transported by a Periodic System of Magnetic Lenses

Analogous With Photons

Focus Lens

\[f = \text{focal length} \]

Defocus Lens

Periodic System Case of \(\frac{1}{2\pi} = L \)

Photon displacement \(x(\alpha) \)

Periodic Orbit

\[x(\alpha) \sim \cos\left(2\pi \frac{\alpha}{6L}\right) \]
Case of $f = \lambda$ cont.

Define $\phi_0 = \text{phase advance} = \frac{2\pi}{\lambda} = 60^\circ$

Per lattice period.

Try $f = 4/\lambda$:

Orbit period $= 4\lambda \rightarrow \phi_0 = 90^\circ$

Try $f = 4/\lambda$:

Orbit period $= 2\lambda \rightarrow \phi_0 = 180^\circ$

General Formula:

\[
\cos(\phi_0) = 1 - \frac{4f}{\lambda}
\]

<table>
<thead>
<tr>
<th>$\frac{4f}{\lambda}$</th>
<th>ϕ_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0°</td>
</tr>
<tr>
<td>1</td>
<td>60°</td>
</tr>
<tr>
<td>2</td>
<td>90°</td>
</tr>
<tr>
<td>4</td>
<td>180°</td>
</tr>
</tbody>
</table>
Photon Analogy - Cont.

Problem: Show \(\cos(\alpha_0) = 1 - \frac{1}{2}\eta \)

Use
\[
\begin{pmatrix}
X(t) \\
X'(t)
\end{pmatrix} = M
\begin{pmatrix}
X(0) \\
X'(0)
\end{pmatrix}
\]

Find Eigenvalues of \(M \), etc...

What about \(\frac{1}{4} > \eta \rightarrow \cos(\alpha_0) < -1 \)

→ Unstable Orbit →

Return to \(\frac{5}{\Phi} = 4 \)

A different Orbit from Case on p. 5

Lens locations
\[\frac{L}{r} = 4 \text{ cont.} \]

This orbit shows linear growth on the average!

\[\rightarrow \text{We are at a half integer resonance} \]

\# of oscillations = \(\frac{1}{2} \# \) of lattice periods

\[\rightarrow \text{We are at edge of step point} \]

For \(\sigma < 15^\circ \), stable oscillations but large local variations deviations from \(\cos \left(\frac{6\sigma}{L} \right) \) As \(\sigma \rightarrow 15^\circ \)

\[\frac{d^2x}{dt^2} = -\left(\frac{\sigma_0}{L} \right)^2 x \]
We can also alternate focus & defocus lenses and still transport photons.

Case of $f = L$:

- Orbit
- Period = $12L$

Phase advance = 360° in $12L$

But lattice period = $2L$ New

$\therefore \sigma_0 = \frac{360^\circ}{6} = 60^\circ$

General Formula:

$$\cos(\sigma_0) = 1 - \frac{L^2}{2f^2}$$

<table>
<thead>
<tr>
<th>$\frac{L}{f}$</th>
<th>σ_0</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>60$^\circ$</td>
</tr>
<tr>
<td>$\sqrt{2}$</td>
<td>90$^\circ$</td>
</tr>
<tr>
<td>2</td>
<td>180$^\circ$</td>
</tr>
<tr>
<td>>2</td>
<td>unstable</td>
</tr>
</tbody>
</table>
For Charge Particles

In principle lenses can be short solenoids.

\[\frac{1}{l_s} = l_s \left(\frac{B_s}{2BR} \right)^2 \]

- \(l_s \) = solenoid length
- \(B_s \) = \(u \) field
- \([BR] = \frac{momentum}{charge} = "Rigidity" \)

 \[[BR] = 3.107 \times 10^7 \frac{A}{Z} \]

\(A = \) mass in amu
\(Z = \) charge state
Consider 4.0 GeV C5+ \(A = 133 \) \(Z = 1 \)

\[
[BR] = 3.107 \times 0.256 \times 133 = 106 \ T \cdot m
\]

Say \(B_1 = 5.0 \ T \)

\[\Rightarrow \text{Radius of Curvature} \quad R = \frac{106}{5} = 21 \ m \]

Generally \(R \gg \text{Magnet Lens Size} \)

- Opposite of Magnetic Confinement of Plasmas

Say \(S = 1.0 \ m \)

\[[BR] = 106 \ T \cdot m \quad B_5 = 10 \ T \]

\[\Rightarrow \frac{1}{\gamma} = 1.0 \times \left(\frac{10}{2 \times 106} \right)^2 = \frac{1}{450} \ m \]

- Not very useful here

Good for Electrons!
Big Idea: Use Magnetic Quadrupoles

The solenoid is weak because B is nearly parallel to beam.

For quadrupole B, it is normal.

$B_x = G y$

$B_y = G x$

$D_+ \cdot B_+ = 0$

$D_- \times B_- = 0$

$G = \text{Quadrupole Gradient}$

$$\frac{dP_x}{dt} = -2e \frac{\sqrt{2}}{2} B_y$$

$$\frac{dP_y}{dt} = +2e \frac{\sqrt{2}}{2} B_x$$

cont
Quadrupole - Cont.

\[\frac{d^2 X}{d z^2} = - \frac{G}{[CBR]} \times \]

\[\frac{d^2 y}{d z^2} = + \frac{G}{[CBR]} \quad y \]

\[\Rightarrow \quad \frac{1}{r} = \frac{G \cdot \text{quad}}{[CBR]} \]

Focus in One Plane + Defocus In The Other \rightarrow Alternate Polarity To Get Transport In Both Planes (Recall Photons)

Say \(G = 50 \text{ T/m} \)

\[\text{quad} = 0.5 \text{ m} \]

\[[CBR] = 106 \text{ T-m} \]

\[\Rightarrow \quad \frac{1}{r} = \frac{50 \times 0.5}{106} = \frac{1}{4.25} \text{ m} \]

\(\Rightarrow \quad r \approx 0.23 \text{ m} \)
Summary So Far

1. Use Alternating Quad Polarities
 \[\frac{d^2 X}{dt^2} = -\left(\frac{\sigma_0}{2l}\right)^2 X \quad \text{same for } y \]

2. \[\cos \sigma_0 = 1 - \frac{2L^2}{\pi^2} \quad \text{Thin long} \]

3. Keep \(\sigma_0 \) < 180°

4. \[\frac{1}{T} = \frac{G \text{ quad}}{CBR} \]

5. \(\text{quad} \ll L = \text{spacing of lattice (half period)} \)

6. \[G \leq \frac{3 \text{ Tesla}}{\text{Beam Radius}} \quad \text{Gradient} \]

7. \[[BR] = 3.107 \geq A/\rho \quad \text{Rigidity} \]

* \(\sigma_0 \) To be reduced later
Why Hold The Beam Together?

1. Transverse Thermal Pressure
 - Small -

2. Transverse Space Charge Force
 - Large -

Slug of charge moving at \(v_x \approx \beta c \)

Roughly

\[
\frac{1}{r} \, \sin^{-1} E_r = \frac{r}{\varepsilon c}
\]

Assume uniform \(s \) \(\alpha < r < a = \varepsilon dy c \)

\[
E_r \approx \frac{E r}{\varepsilon c} \quad s = \frac{A}{\pi a^2}
\]

\[
\frac{dP_x}{dt} = ze \left(E_x - \frac{v_x}{\beta c} B_y \right)
\]

\[= \frac{ze}{r} E_r \times \frac{L}{r^2} \times \text{From} \frac{v_x}{\beta c} B_y
\]

\[= \frac{ze}{\varepsilon c} \frac{L}{r^2} \times \frac{ze A}{2 \pi c a^2 y^2}
\]

\[= \left(\frac{ze A}{2 \pi c a^2 y^2} \right) \times \]
Recall \(I = \frac{1}{\beta c} \), \(P_x = \frac{\gamma m \frac{dx}{dt}}{dt} \)

\[
\frac{d^2 x}{d\tau^2} = \frac{g}{a^2} x
\]

\[
G = \frac{2 \pi e I}{(3\gamma)^3 \frac{e^2}{4\pi \varepsilon_0} M c^5} = \text{"Dimensionless Pervance"}
\]

\[
G = \frac{2 \tau (I / 31,07 \times 10^6)}{(3\gamma)^3 A}
\]

Say\(I = 100 \) Amperes

\[
\begin{align*}
\beta \gamma &= 0.256 \\
A &= 15.3 \\
\tau &= 1
\end{align*}
\]

\[
G = 2.88 \times 10^{-6}
\]

Looks small but it is important

With no quadrupoles

\[
Z_{\text{blow up}} \approx \frac{u}{10} \approx 18 \text{ m}
\]

\[
\alpha = 2.9 \times 10^{-6}
\]
Combine Equations of Motion

\[\frac{d^2 x}{d \tau^2} = -\left(\frac{\alpha}{2L}\right)^2 x + \frac{a}{a^2} x \]

Quad Space Charge

For \(\alpha = \text{constant} = \alpha_0 \)

\[x = \cos\left(\frac{\alpha}{2L} \right) \]

where \(\left(\frac{\alpha}{2L}\right)^2 = \left(\frac{\alpha_0}{2L}\right)^2 - \frac{G}{\alpha_0^2} \)

\(\sigma = "\text{Depressed Tune}" \)

Typical Fusion \(\alpha_0 \gtrsim 7 \sigma_0 \)

\(\sigma \) by \(7 \sigma_0 \)

\(\sigma \ll \sigma_0 \) Because Thermal Pressure Is Low

But Thermal Pressure Becomes Important When Beam is Focused onto the Fusion Target.
Transport Limit

\[
\sigma \to 0 \quad (\text{Cold Beam})
\]

\[
\Rightarrow \mathcal{G} \sim \left(\frac{\sigma_0}{2L} \right)^2 \alpha \theta_0
\]

Recall \(\mathcal{G} \sim \frac{Z}{(\beta \gamma)^3 A} \)

\[
\Rightarrow \quad I_{\text{max}} \sim \sigma_0^2 \left(\frac{\alpha}{L} \right)^2 (\beta \gamma)^3 \frac{A}{Z} \]

Application of this formula to cost optimization is not obvious.

\[
I_{\text{max}} \approx (1465 \text{ Amps}) \left(\frac{3}{.256 \text{ rad}} \right) \left(\frac{2}{1.5 \text{ rad}} \right) \frac{A}{15.3} \]

At low energy \(\beta \gamma \approx 0.005 \) (1.6 MeV)

\[
\alpha / L \approx 0.07 \text{ Typical}
\]

\[
\Rightarrow \quad I_{\text{max}} \approx 0.53 \text{ Amps} \quad C_0^+ \]

But \(I_{\text{max}} \) rises rapidly with \(\beta \gamma \).
Breathing Mode Instability

Recall \(\frac{d^2 x}{d^2 t} = -\left(\frac{\sigma_0}{2L}\right)^2 x + \frac{Q}{a^2} x \)

For cold Beam \((\sigma \to 0)\) An Ion
At The Beam Edge Stays There

\(x \to a \)

Let \(a = a(t) \)

\(\Rightarrow \frac{d^2 a}{d^2 t} = -\left(\frac{\sigma_0}{2L}\right)^2 a + \frac{Q}{a} \)

Equilibrium \(a = a_0 \)

\(\Rightarrow \frac{\sigma}{a} = -\left(\frac{\sigma_0}{2L}\right)^2 a_0 + \frac{Q}{a_0} \) \(\{ \text{Previous Result} \} \)

Perturb \(a = a_0 + sa(t) \)

\(\frac{d^2 sa}{d^2 t} = -\left(\frac{\sigma_0}{2L}\right)^2 sa - \frac{Q}{a_0^2} sa \)

\(= -2 \left(\frac{\sigma_0}{2L}\right)^2 sa \)
Breathing Mode - Cont

\[
\sigma = e^{-i \Omega z} \]

\[\rightarrow \sigma^2 = z \left(\frac{\sigma_0}{zL} \right)^2 \]

Phase Advance of Breathing

\[\sigma_{\text{breath}} = \sqrt{2} \sigma_0 \]

Per Lattice Period (2L)

- I have cheated -

The equilibrium and perturbed equations have modulations of period 2L from quadrupoles

\[\Rightarrow \text{Half-Integer Resonance and Stop Band At} \]

\[\sigma_{\text{breath}} \geq 15^\circ \]

\[\Rightarrow \text{Need } \sigma_0 \leq \frac{15^\circ}{\sqrt{2}} = 17.7^\circ \]

Experiments and PIC Simulations Show Trouble For \(\sigma_0 \geq 8.5^\circ \)

- Unresolved Mystery -