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ABSTRACT
Recent trends in hardware have dramatically dropped the
price of RAM and shifted focus from systems operating on
disk-resident data to in-memory solutions. In this environ-
ment high memory access latency, also known as memory
wall, becomes the biggest data processing bottleneck. Tra-
ditional CPU-based architectures solved this problem by in-
troducing large cache hierarchies. However algorithms which
experience poor locality can limit the benefits of caching. In
turn, hardware multithreading provides a generic solution
that does not rely on algorithm-specific locality properties.

In this paper we present an FPGA-accelerated implemen-
tation of in-memory group-by hash aggregation. Our de-
sign relies on hardware multithreading to efficiently mask
long memory access latency by implementing a custom op-
eration datapath on FPGA. We propose using CAMs (Con-
tent Addressable Memories) as a mechanism of synchroniza-
tion and local pre-aggregation. To the best of our knowl-
edge this is the first work, which uses CAMs as a synchro-
nizing cache. We evaluate aggregation throughput against
the state-of-the-art multithreaded software implementations
and demonstrate that the FPGA-accelerated approach sig-
nificantly outperforms them on large grouping key cardinal-
ities and yields speedup up to 10x.

Keywords
FPGA; Hash Aggregation; Main Memory; Hardware Accel-
eration

1. INTRODUCTION
The rapidly decreasing cost of RAM has created a niche

for in-memory analytics solutions. Fairly large datasets can
now be stored and processed entirely in memory. One of
the crucial operators in any OLAP query is the group-by
aggregation, since its run-time makes up a large portion of
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the total query evaluation time. Thus, an efficient opti-
mized implementation of group-by aggregation could signif-
icantly boost overall performance of analytical workloads.
Among two possible implementations of aggregation algo-
rithms, hash-based and sort-based, the former is generally
preferred because it avoids the high penalty of sorting the
input relation. Hence, in this paper we concentrate on an
in-memory hash-based implementation for group-by aggre-
gation.

While memory capacity continues to increase, the past
decade has seen a stagnation of processor clock speeds caused
by the end of the Dennard scaling. This leaves parallelism
as the only option to allow fast processing for the grow-
ing amounts of memory-resident data. The computer archi-
tecture community considered two approaches to leverage
parallelism, namely (i) off-the-shelf multi-core architectures,
including CPUs and GPUs, [2, 10] or (ii) customizable archi-
tectures such as CPUs with FPGAs [14, 18, 13, 16, 21, 20].
While multi-cores typically have much higher clock speeds,
specialized hardware (e.g., FPGA) has both the advantages
of customization (the hardware design is optimized for a
specific application) and parallelism. In custom architec-
tures parallelism is usually achieved by replicating compute
circuits, which could be accomplished giving very large size
of modern FPGAs.

The major issue limiting performance of in-memory al-
gorithms is the growing gap between the memory band-
width and the speed of the processing unit (the so-called
memory wall), which is even more important for multi-cores
given their higher clock speeds. The multi-core approach
addressed this problem by introducing large cache hierar-
chies, relying on the data locality (spatial and/or temporal)
to mitigate memory latency. This solution does not come
for free: cache hierarchies can take up to 80% of the chip
area thus are becoming a limiting factor on the number of
cores that can be accommodated on a single chip. Because of
leakage current they also become a primary consumer of en-
ergy on the chip. Besides that, the extensive use of hashing
renders multi-core implementations of group-by aggregation
inefficient, since they do not exhibit any form of locality.

Rather than relying on a cache hierarchy, hardware multi-
threading aims to completely mask memory latency. In this
execution model a running thread relinquishes execution to
a ready thread, as soon as it performs a long-latency op-
eration. The executing thread is then suspended until the
long-latency operation completes and eventually returns to



a ready state again. This approach has been used in multi-
cores (UltraSparc [10]). However these architectures support
a relatively small number of threads because the CPU has
to provision a full hardware context for each ready/waiting
thread, thereby limiting the amount of parallelism.

In a custom architecture (e.g., FPGA) where the datap-
ath is designed for a small number of predefined operations,
the required context for each thread is much smaller than in
a general-purpose CPU and hence more threads can be sup-
ported. In this multithreaded model the parallelism is lim-
ited only by the number of active threads (ready, executing
or waiting). We have recently applied this multithreading
approach to implement an in-memory hash join algorithm
[12]. Our results demonstrated up to 10x higher throughput
over the best multi-core software alternatives with compa-
rable memory bandwidth.

In this paper we extend this idea to implement multi-
threaded in-memory hash-based group-by aggregation. De-
spite the seeming similarity, the two operators are using the
hash table in a very different manner: the hash join has a
clear delineation between the build phase, when the hash
table is modified, and the probe phase during which the ta-
ble is only read. In the group-by aggregation the read- and
write-requests are instead mixed in a single phase. Moreover
during the build phase of the hash join, a key will always
create a new node in the appropriate bucket list (assuming
the classical implementation, where each hash table bucket
is associated with a linked list). For the aggregation, a key is
first searched within the appropriate bucket list and then it
either updates an entry value (if this key has been found) or
inserts a new entry into bucket list. All these dissimilarities
become especially important in the multithreaded environ-
ment, when explicit synchronization is needed to guarantee
correctness, leading to different optimization strategies for
the two hash-based operators.

In the previous work [12] we achieved synchronization dur-
ing the join build phase by using atomic operations, which
acquire special locks on individual memory locations, a unique
property of the Convey-MX architecture [8]. Apart from
being vendor-specific, this design has a high synchroniza-
tion overhead when it is applied to the problem of group-by
aggregation. Instead we consider a generic solution based
on Content Addressable Memories (CAMs). We show that
a CAM-based implementation allows not only to correctly
synchronize contending requests, but also to do pre-aggregation,
thus effectively serving as a synchronizing cache.

The following summarizes the contributions of the paper:

• We apply hardware multithreading to implement an
in-memory hash-based group-by aggregation algorithm.

• We propose CAMs as a synchronizing cache mecha-
nism and demonstrate its efficiency for the hash ag-
gregation operator.

• We evaluate the throughput of our hardware multi-
threaded implementation against known existing soft-
ware algorithms and demonstrate speedup up to 10x
for a wide range of workloads.

We proceed with related work described in Section 2. The
CAM mechanism is introduced in Section 3 while the hard-
ware implementation of the group-by aggregation is detailed
in Section 4. Experimental results appear in Section 5 and
conclusions in Section 6.

2. RELATED WORK
The large amount of relatively cheap DRAM memory in

modern commodity servers has reignited interest in memory-
optimized algorithms both in industry [19] and academia [4,
2]. In multi-core CPU architectures two main alternatives
have been considered. The hardware-conscious algorithms
are tightly tailored to the underlying hardware and perform
preliminary data partitioning to reduce cache misses. In-
stead, the hardware-oblivious solutions try to mask latency
by relying on hardware-provided multithreading. These con-
trasting approaches were extensively studied in the context
of in-memory hash joins [4, 2] as well as sort-merge joins [1,
15].

Hardware-oblivious implementations of the group-by ag-
gregation were explored by Cieslewicz et al. [6], who showed
that performance largely depends on input characteristics
(key cardinality). Follow up work [7] explored the parti-
tioning step of hash aggregation and concluded that the
thread coordination is a key component influencing the per-
formance of this step. Finally, Ye et al. [23] proposed hybrid
algorithms and showed that they outperform pure hardware-
conscious and -oblivious implementations.

An FPGA-accelerated implementation of group-by aggre-
gation was first considered by Mueller et al. [17]. This work
also utilized CAMs in the implementation of the aggregation
operator, but in a very narrow scope, i.e. using CAMs to
match an incoming tuple with the appropriate group. Hence
the work continued long tradition of using CAMs to answer-
ing set-membership queries (previously explored in applica-
tions like click-fraud, online intrusion detection [3]). Our
design also uses CAMs, but is different from previous ap-
proaches in two ways: (i) in addition to the key we store
and update the aggregate value locally in the CAM, and
(ii) we use CAMs as a synchronization primitive to resolve
conflicts during updates.

It was shown that implementing fully-associative match-
ing logic for CAMs on both Altera and Xilinx FPGAs in-
troduces a 60x overhead compared to regular BRAMs [24].
This drawback makes implementing large CAMs on reconfig-
urable fabrics notoriously hard. Dhawan et al. [9] explored
various designs of CAMs and introduced a trade-off between
CAM size and update time.

3. USING CAMS ON FPGAS
A CAM (also known as an associative memory), is an

array that can perform efficient entry-matching (i.e. an-
swer membership queries). Its operation is the inverse of
a Random Access Memory (RAM): when presented with a
search word the CAM returns all the locations whose con-
tent matches that word. Each CAM bit consists of a flip-flop
with a comparator matching it to the corresponding bit in
the search word. The outputs of all the bit positions in a
word are ANDed to generate the (mis)match for that word.
The CAM’s ability to perform a search in unit time comes
at a high cost of area, energy and long clock cycle time (due
to the long wires for the bit-wise AND and propagating the
search word to all the entries)

As the number of entries in the CAM increases, the achiev-
able clock frequency of the circuit drops. This limitation
either restricts the size of the CAM or increases the number
of cycles it takes to perform an update operation. Nonethe-
less, CAMs have proven to be very useful in domains such



as networking (e.g. implementing an IP table in a network
router). Recently we explored how CAMs can be used to
accelerate the breadth first search algorithm [22]. These ap-
plications can usually tolerate long update latencies because
update operations are infrequent.

In a streaming environment CAMs can maintain a cache
of recently seen unique items and allow quick access to them
without stalling the pipeline. This fast cache look-up mech-
anism can also be used as a fine-grained address-based syn-
chronization primitive, which avoids long latency trips to
main memory and does not require special hardware.

Consider the case when a CAM is assigned to guard a par-
ticular memory partition. It can be configured to hold the
addresses of the values that need synchronized access. If all
memory requests within a partition are first submitted to
the CAM, before being routed to the memory, the accesses
to identical addresses are serialized locally in the CAM. In
this case a CAM entry serves as an exclusive lock, which
gets released (flushed from the CAM) after the request(s)
completion. In Section 4.1 we discuss how to use this ap-
proach for synchronization in the multithreading group-by
aggregation algorithm.

To the best of our knowledge all previous FPGA imple-
mentations relied on specialized platform features to provide
synchronization primitives. In our previous work [12] we
have used atomic operations which were implemented using
locks on individual memory locations, provided by the now
discontinued Convey MX architecture [8]. Leveraging CAMs
for synchronization of FPGA algorithms increases the porta-
bility of our design. Locking using generic CAMs means
that all synchronization operations are now internal to the
FPGA, and can be done on any architecture, where an with
a sufficient area FPGA has direct access to the memory. In
addition this design provides more selective fine-grained syn-
chronization primitives in comparison to the Convey-MX,
which places a lock on all FPGA-memory communication
channels.

4. GROUP-BY AGGREGATION ON FPGA
In the rest we assume that the input relation fits in main

memory but is too large to fit locally on the FPGA’s mem-
ory. To fully utilize the memory bandwidth available to the
FPGA we employ a hardware multithreaded model, which
allows the FPGA to process ready jobs while idle jobs wait
on (long) memory accesses. In this model the FPGA main-
tains a queue of ready threads that can be accessed in a sin-
gle clock cycle. Whenever a thread issues a memory request
the FPGA saves the thread state into local memory and
picks up the next ready job. Once a memory request is ful-
filled the thread state is updated, and queued back into the
ready threads FIFO. If the FPGA can maintain more thread
states than the memory latency then full latency masking is
achieved, thus the bandwidth is fully utilized.

The mixed read-write nature of aggregation in conjunc-
tion with multiple outstanding requests requires us to use
explicit synchronization to ensure correctness. Using atomic
operations is one option, but this approach severely impacts
the performance. Moreover, unlike the join operator, aggre-
gated tuples exhibit temporal locality. We propose a novel
multithreaded aggregation implementation based on CAMs.
The design leverages explicit synchronization combined with
the cache-like properties of the CAM. This fits perfectly in
the context of group-by aggregation: firstly, the latency of

a single aggregation job is hundreds of cycles, which means
many interleaved jobs can have identical keys. With a CAM
we can merge these jobs pre-aggregating the result locally
on the FPGA and reduce the number of outstanding mem-
ory requests. This merging is achieved by leveraging cache
properties of the CAM (allowing us to hold the aggregate
value for a particular key). It also allows up to alleviate
skewed data distributions, where a subset of values appears
as duplicate more often than the rest. Secondly, CAMs allow
the FPGA to enforce locking on specific memory channels,
therefore decrease granularity of the locks and boost the
performance.

4.1 Aggregation Engine Workflow
Our design of an aggregation operation uses a custom

hardware datapath called aggregation engine. Initially each
tuple from the relation is streamed from memory, gets as-
signed to a separate FPGA thread (job) and starts its pipelined
execution. Figure 1 shows the state diagram for a single
thread inside the aggregation engine. The Filter CAM is
used to merge jobs with identical keys, hence reduces the
memory request contention and minimizes the synchroniza-
tion overhead. However due to hash collisions the synchro-
nization cannot be avoided completely; thus the Lock CAM
is used to acquire locks on hash table bucket

Table 1 shows an example of events and contents of Filter
CAM, Lock CAM and main memory HashTable, while the
input stream consists of 5 tuples with the following keys:
A, C, A, B, A. The design assumes the COUNT aggrega-
tion function, thus the Filter CAM maintains an occurrence
count of duplicate keys. However, other functions could
be potentially applied. Note that operations updating the
CAMs are performed immediately, whereas main memory
HashTable accesses (e.g., search, entry update, entry insert)
take several cycles to finish. For example, Job 1 sends a
request to search value A in a hash table and gets response
only at Cycle4. Lock CAM maintains the locks for all buck-
ets which are currently being searched or modified. In par-
ticular, after the job obtains a lock, it starts the bucket list
search process and subsequently either updates an aggre-
gate value or inserts a new entry into the bucket list for a
certain key. Once a job completes, it invalidates the record
in both CAMs, therefore frees up resources for other jobs.
Jobs, waiting for a place in a CAM, will continually cycle
through a FIFO until the resource is available. Whenever
there is a hit in the Lock CAM the job waits until the lock is
released, e.g. Job 2 resumes its work only at Cycle5. Job 3
provides an example of early termination, because its value
was locally aggregated in Filter CAM.

4.2 FPGA Design Optimizations & Tradeoffs
The main bottleneck of our design is memory bandwidth.

In this paper we use a Convey-HC-2ex machine, but our
designs are platform independent. In the Convey the com-
munication between the FPGA and main memory relies on
the abstraction called channel. Each channel supports inde-
pendent and concurrent read/write accesses to memory. The
initial design of our aggregation engine requires 4 memory
channels: one for streaming the input tuples, one for ac-
cessing the in-memory hash table, and finally two channels
for the bucket lists read/write operations. Since the Convey-
HC-2ex has 16 memory channels, we replicate 4 engines ( 16

4
)

on a single FPGA thus leveraging inter-engine parallelism.



Figure 1: A state diagram for jobs in the aggregation engine.

Cycle Key Filter CAM Lock CAM HashTable Comments
1 A Miss, Insert (A,1) Miss, Insert hash(A) {} Buckethash(A) is locked

{(A,1)} {hash(A)} Request to search key A in HT is sent
2 C Miss, Insert (C,1) Hit, since hash(A)=hash(C) {} Job 2 waits for the lock

{(A,1), (C,1)} {hash(A)}
3 A Hit, Update (A,2) {hash(A)} {} Job 3 is discarded

{(A,2), (C,1)}
4 Job 1 removes entry for key A Job 1 releases lock on hash(A) {(A,2)} Key A was not found in HT

{(C,1)} {} Create new entry (A,2) in HT
5 {(C,1)} Job 2 obtains lock on hash(C) {(A,2)} Buckethash(C) is locked

{hash(C)} Request to search key C in HT is sent
6 B Miss, Insert (B,1) Miss, Insert hash(B) {(A,2)} Buckethash(B) is locked

{(B,1), (C,1)} {hash(C), hash(B)} Request to search key B in HT is sent
7 Job 2 removes entry for key C Job 2 releases lock on hash(C) {(C,1), (A,2)} Key A was not found in HT

{(B,1)} {hash(B)} Create new entry (C,1) in HT
8 A Miss, Insert (A,1) Miss, Insert hash(A) {(C,1), (A,2)} Buckethash(A) is locked

{(B,1), (A,1)} {hash(A), hash(B)} Request to search key A in HT is sent
9 Job 6 removes entry for key B Job 6 releases lock on hash(B) {(B,1), (C,1), Key B was not found in HT

{(A,1)} {hash(B)} (A,2)} Create new entry (B,1) in HT
10 Job 8 removes entry for key A Job 8 releases lock on hash(A) {(A,3), (B,1), Key A was found in HT

{} {} (C,1)} Update entry for the key A in HT to (A,3)

Table 1: Contents of the Filter CAM, Lock CAM and HashTable (HT) and modifications altering all of them,
while relation with the following keys is processed: A, C, A, B, A. Assume hash(A)=hash(C). Initially both
CAMs are empty. Filter CAM maintains the occurrence of duplicate keys, while Lock CAM locks the hash
bucket, holding the bucket list’s head pointer

Figure 2(a) demonstrates the design and channel assignment
of the replicated engine approach. Each replicated engine
uses its own CAM for synchronization. As a result, val-
ues are aggregated in separate hash tables. However, this
requires an extra merging phase at the end of the computa-
tion, an overhead which grows as we increase the number of
engines per FPGA.

In addition to inter-engine parallelism we also improve
intra-engine channel usage. Our initial experiments showed
that some memory channels were idle for almost 70% of the

total execution time. Since the channels within an engine
are statically assigned to perform different functions of the
pipeline, back pressure from some components (e.g. job re-
cycling through CAM synchronization) introduces stalls and
decreases the effective throughput.

In order to increase memory utilization we have multi-
plexed a pair of engines on a same set of memory channels,
thus allowing the same channel to be used by two different
engines. This means that the following engine operations
(e.g. send and receive tuple request and response, read and



(a) Replicated engine design (b) Multiplexed engine design

Figure 2: Alternative engine placement strategies
on a single FPGA with 16 memory channels.

write respective values to the hash table, read and write
entries into respective bucket list) can run concurrently on
two different engines. The multiplexed design increases the
number of CAMs that could be placed on the FPGA, leading
to further improvement in throughput. Unlike the previous
design, the new multiplexed engine uses 5 memory channels
(adding an extra channel for accessing the in-memory hash
table). This allows us to place 6 engines (2∗� 16

5
�) on a single

FPGA. Figure 2(b) shows how engines are multiplexed on a
single FPGA and depicts channel allocation in this design.

5. EXPERIMENTAL RESULTS
We chose the Convey HC-2ex as our target FPGA plat-

form because of its high bandwidth memory access. In par-
ticular, the memory system that interfaces to the FPGA
allows up to 16 concurrent memory requests per cycle per
FPGA. The FPGA aggregation implementation is compared
in terms of overall throughput against the best multi-core
approaches [6, 23] running on a single processor with 4 paral-
lel threads. We proceed with a short description of the Con-
vey HC-2ex, followed by a summary of the various software
aggregation algorithms as well a description of the datasets
used in the experiments.

5.1 Convey HC-2ex Platform
The Convey HC-2ex is a heterogeneous platform that of-

fers a shared global memory space between the CPU and
FPGA regions. As shown in Figure 3a the memory is di-
vided into regions connected through PCIe with portions
closer to the CPU, and portions closer to the FPGAs. The
software region has 2 Intel Xeon E5-2643 processors running
at 3.3 GHz with a 10 MB L3 cache. In total the software
region has 128 GB of 1600 MHz DDR3 memory. Each pro-
cessor has a peak memory bandwidth of 51.2 GB/s.

The hardware region has 4 Xilinx Virtex6-760 FPGAs
connected to the global memory through a full crossbar.
Each FPGA has 8 64-bit memory controllers running at
300MHz (Figure 3b). The FPGA logic cells run in a separate
150 MHz clock domain to ease timing and are connected to
the memory controllers through 16 channels. The hardware
region has 64 GB of 1600 MHz DDR3 RAM. Each FPGA
has a peak memory bandwidth of 19.2 GB/s.

To approach a fair comparison, we run our experiments on
2 FPGAs to match memory bandwidth as close as possible
(38.4 GB/s for the FPGA vs 51.2 GB/s for the CPU).

5.2 Software Implementations
In order to evaluate our FPGA-based solution we have im-

plemented the following state-of-the-art multithreaded soft-
ware aggregation algorithms: (i) Independent Tables[6], (ii)

Shared Table [6], (iii) Hybrid Aggregation [6], (iv) Parti-
tion with Local Aggregation Table [23] and (v) Partition &
Aggregate [23]. Here, (i) and (ii) are considered as non-
partitioned approaches, while (iii) and (iv) are hybrid, and
(v) is a partitioned approach.

• Independent Tables [6] is the approach most sim-
ilar to our hardware implementation. The tuples are
evenly split among separate software threads (without
partitioning), and each thread aggregates result into
its own hash table. Once the aggregation is complete
all tables are merged together, which requites write
synchronization.

• Shared Table (with locking or atomic synchro-
nization) [6] splits the tuples evenly between threads,
but all threads aggregate their results into a single
hash table, hence no extra merge step is required. The
algorithm could use different synchronization primi-
tives: either pthread mutex implementation or Intel-
specific hardware atomic instructions. Preliminary ex-
periments showed that atomic primitives are signifi-
cantly better on low key cardinalities, and don’t have
any difference from mutexes on medium and large car-
dinalities, so we choose atomics as a default synchro-
nization primitive in all further experiments.

• Hybrid Aggregation [6] is a combination of two pre-
vious approaches. This algorithm allocates a small
hash table for each thread. The size of the table is
calculated based on the processor’s L2 size to avoid
cache misses. If the local table has enough space for
a new value, or the value already exists in the table,
that tuple is locally aggregated. Once the local table
is filled and the next tuple requires a new slot, the old-
est entry in the cached table will be spilled into larger
shared table, residing in main memory, thus maintain-
ing only “hot” data in L2 cache. Once aggregation is
complete all small cached tables are merged into the
large shared table. Merge step is synchronized as in
Independent Tables case.

• Partition & Aggregate [23] (also known as count-
then-move [7]) uses individual tables per thread, but
before aggregation is performed the tuples are parti-
tioned, in contrast to all aforementioned approaches.
Separate partitioning step makes sure that all threads
will work on non-overlapping values, hence aggrega-
tion could be done without any synchronization and
the final tables are simply concatenated, rather than
merged. As with the partitioned join implementations
radix clustering algorithm is a backbone of this pre-
liminary step.

• PLAT (Partitioning with Local Aggregation Ta-
ble) [23] is a combination of two previous techniques.
The algorithm takes advantage of the fact that we are
performing an additional data scan, while doing a pre-
processing step. While partitioning tuples into groups
with mutually exclusive keys, each thread tries to ag-
gregate values into its own small L2-resident table, as
in Hybrid Aggregation approach. Values that do not
fit into the small table are partitioned using radix clus-
tering algorithm. Once preprocessing is done standard
lock-free aggregation is applied. In the end all tables,



(a) The Convey HC-2ex software and hardware regions (b) Convey HC-2ex FPGA AE Wrapper

Figure 3: The Convey HC-2ex architecture is divided into software and hardware regions as shown in (a).
Each FPGA has 8 memory controllers, which are split into 16 channels for the FPGA’s logic cells as shown
in (b)

which were produced during aggregation, are concate-
nated together, while local aggregation tables are syn-
chronously merged in.

5.3 Dataset description
We use five datasets with various s key distributions, namely:

Uniform, Heavy Hitter, Moving Cluster [6], Self Similar and
Zipf 0.5.

• In the Uniform dataset all key values are picked from
uint64 key range with uniform probability. After that
generated key/value pairs are randomly shuffled.

• A half of the tuples in the Heavy Hitter dataset [6]
share the same a key value. The remaining key values
are picked uniformly and evenly distributed through-
out the the entire relation.

• In the Moving Cluster dataset [6] tuples are grouped
into clusters depending on their key values. Lower key
values are more likely to appear at the beginning of
the relation, whereas tuples with higher key values are
tend to appear at the end of the relation.

• Self Similar uses Pareto rule to model key distribu-
tion in a dataset: a single key value is shared by 20%
of the tuples. Of the remaining 80% of tuples 20% of
those share another key value. This process is repeated
recursively to generate the relation. Tuples are ran-
domly shuffled. The generation algorithm is described
by Gray et al. [11].

• In the Zipf dataset key values follow the Zipf distri-
bution with a skew coefficient of 0.5. The generation
algorithm appears in aforementioned work[11].

Each dataset consists of several benchmarks with cardi-
nalities ranging from 210 to 222 unique keys. The relation
size in all of the experiments was 256 million tuples (in line
with previous research [23]). Each dataset used the same 8-
byte wide tuple format, which is commonly used for perfor-
mance evaluation of in-memory query processing algorithms
[1, 5, 4] and represents a popular column-wise storage for-
mat. The first 4 bytes of the tuple hold the unique primary
key, while the rest is reserved for the grouping key. Since

we are only interested in counting records with the same
grouping keys, our tuples do not store any other informa-
tion. However, none of the design choices prevent the use of
“wide” tuples (i.e. containing fields other than primary and
grouping keys). This could be easily supported by adding
a key extraction component into the FPGA design. More-
over experimenting with such “skinny” tuple format yields
the best performance for software implementations, since it
minimizes the cache capacity misses, which would decrease
caching effectiveness otherwise.

5.4 Throughput Evaluation
Figure 4 displays the throughput of the group-by aggre-

gation as the key cardinality is increased, obtained for vari-
ous datasets. Throughput was measured across two FPGA
engine designs (regular and multiplexed), and five software
(two non-partitioned, two hybrid and one partitioned) im-
plementations. Throughput for skewed Heavy Hitter dataset
Figure 4(d) resembles the results for Self Similar dataset Fig-
ure 4(b), while the throughput for moderately skewed data
Zipf 0.5 4(e) is similar to the results obtained for Uniform
dataset Figure 4(a). Software implementations demonstrate
the best performance on Moving cluster dataset Figure 4(c)
due to the property of the data distribution: similar group-
ing keys appear in the input stream clustered together, in-
creasing CPU-cache hit rates.

Despite all the differences in data distribution CPU aggre-
gation performance mainly depends on the dataset’s key car-
dinality. While the number of unique keys is low, hash tables
can fit into the CPU cache entirely. However, as the cardi-
nality increases, cache misses start to hamper the through-
put due to high latency memory round-trips. Software per-
formance severely deteriorates at cardinalities higher than
218 on all datasets for all algorithms. Another trend, which
appears in all experiments, is that the Independent Tables
approach yields the best result across all software algorithms.
Nevertheless, that algorithm exhibits poor scalability, since
the amount of memory needed for aggregation processing
grows linearly with the number of parallel threads and the
key cardinality. As the number of parallel threads increases,
the amount of available memory could quickly become a bot-
tleneck. We could also see that hybrid algorithms (PLAT
and Hybrid Aggregation) outperform traditional partitioned
(Partition & Aggregate) and non-partitioned (Shared Table)
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Figure 4: Aggregation throughput of hardware and
software approaches for datasets with 256M tuples.

Figure 5: Ratio of average effective memory band-
width to peak theoretical bandwidth achieved by
the Independent Tables software algorithm and the
Multiplexed FPGA design for varying dataset sizes
and key cardinalities.

approaches by amortizing the cache miss cost and sustain a
throughput around 400 MTuples/sec. This trend continues
for cardinalities up to 216, which marks the end of L3-cache
residency. After that point the performance advantage of hy-
brid algorithms vanishes and drops below 100 MTuples/sec.

The FPGA performance also drops as the key cardinality
increases, however this effect is much less profound. Unlike
the software throughput, this result is explained by the over-
head, introduced by the post-processing merge step. How-
ever the overall performance is still up to 10x higher than the
software throughput. The results also clearly show the bene-
fits of the multiplexed engine design. Typically the through-
put of the multiplexed FPGA engine is up to 30% more than
the initial design. It should be also noted that the FPGA
throughput does not deteriorate on heavily skewed data (Self
Similar), as it was the case with the hash join [12].

Discussion: It should be noted that the performance
benefits of the FPGA-based approaches come not from archi-
tecture-specific features, but from multithreading, which al-
lows to utilize the available memory much better than any
of the software implementations. Figure 5 depicts the ratio
of effective average memory bandwidth to peak theoretical
memory bandwidth for the best software (Independent Ta-
bles) and FPGA (multiplexed) implementations while vary-
ing dataset sizes and key cardinalities. Hardware mutithread-
ing approach allows our FPGA implementation to keep the
ratio almost constant, irrespectively of dataset size or key
cardinality. On the contrary, the ratio for the software ap-
proach varies greatly. The effective memory bandwidth of
the CPU implementation tends to grow as the size of the
relation increases (from 8M to 128M), whereas the FPGA-
based approach is less susceptible to data size variations.
For low cardinality the aggregated relation and hash table
are cached and there are almost no memory accesses, hence
the ratio approaches 0. The software ratio peaks at around
0.3 for cardinality 218, but drops significantly for higher key
cardinalities. For very large cardinalities the FPGA imple-
mentation ratio is almost 5 times higher.

5.5 Effects of the Merge Operation
The Figure 6 shows aggregation throughput while the size

of the datasets having Uniform key distribution is increased.
The parallel FPGA aggregation step has almost constant



Figure 6: Effect of varying relation sizes on the
FPGA aggregation throughput for datasets with
Uniform key distribution. Solid lines represent
throughput of the aggregation step (without merge
operation), while dashed lines represent end-to-end
(aggregation followed by the merge) throughput.

# of Engines Registers LUTs BRAMs

1 99597 (11%) 87194 (18%) 126 (17%)

2 116635 (13%) 100497 (21%) 147 (19%)

3 135517 (15%) 115560 (24%) 184 (24%)

4 152132 (17%) 129775 (27%) 206 (28%)

1-Multiplexed 113695 (11%) 114280 (24%) 142 (19%)

2-Multiplexed 145690 (15%) 140684 (29%) 196 (27%)

3-Multiplexed 179641 (18%) 200175 (42%) 250 (34%)

Table 2: FPGA resource utilization for aggregation
engines.

throughput of about 450 MTuples/sec, even on very high
cardinalities. The merge step introduces an overhead, how-
ever it comes at a fixed price. This cost depends solely on
the key cardinality because aggregation reduces the initial
input into a constant number of streams which should be
merged. Hence as the size of the relation grows the merge
step overhead gets amortized, so that the full throughput is
almost constant for relations greater than 128 million tuples.

5.6 FPGA Area Utilization
Table 2 shows the resource utilization (registers, LUTs,

and BRAMs used) for both FPGA aggregation designs (repli-
cated and multiplexed) as the number of engines is scaled
up. As we can see increasing the number of engines by one
only adds an additional 2% for registers, 3% for LUTs, and
4% for BRAMs for replicated engine design. This happens
because a lot of the components are shared across the en-
gines. However as we start multiplexing the engines we stop
sharing the resources due to timing constraints. This results
in growth of FPGA resource utilization as we increase the
number of engines. The aggregation design utilizes a lot of
LUTs, which are extensively used in our CAM implemen-
tation. The hardened BRAM blocks only have two chan-
nels. This property is too restrictive for the CAMs, which
must access all locations in parallel. The aggregation design
uses only 42% of the available resources showing there is
still room to incorporate other relational operations on the

FPGA fabric.

6. CONCLUSIONS
In this paper we presented a multithreaded FPGA imple-

mentation of the group-by hash aggregation operation. We
introduce a portable approach which uses CAMs to provide
fast caching and enforce synchronization. We explore var-
ious FPGA designs and apply optimizations to further im-
prove the performance. Experimental results show that the
aggregation throughput is consistent and predictable regard-
less of a relation’s size and cardinality. Despite the fact that
the final merge step does affect performance, we show that
this overhead is amortized when the relation size increases.
Experiments show that the multithreaded FPGA approach
can significantly outperform all existing software approaches
and demonstrate especially good performance for high cardi-
nality benchmarks. Throughput ranges between 700 to 150
MTuples/sec depending on the dataset distribution and key
cardinality, with a speedup up to 10x.
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