Title
Gifi Goes Logistic: SCASA 2005 Keynote

Permalink
https://escholarship.org/uc/item/865628ch

Author
Jan de Leeuw

Publication Date
2011-10-25
The Gifi System is one particular way to define and organize a large class of descriptive multivariate analysis techniques. The system allows the techniques to be implemented in a modular series of computer programs.

We start with an \(n \times m \) data matrix \(X \), with \(n \) observations on \(m \) variables.

This is, of course, the basic format for data in packages like SPSS and SAS, in spreadsheet programs such as Excel, and (as the *data frame*) in R.

For the time being, we assume (*without loss of generality*) all variables are discrete, and variable \(j \) has \(k_j \) categories.

A Data Matrix can also be coded as Profile Frequencies.
To indicate the generality of indicator matrix (dummy) coding, we discuss some extensions that can be used. This also shows how so-called continuous variables can be handled:

-- missing data
-- fuzzy coding
-- interactive coding
-- spline coding

Missing Data

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
<th>p</th>
<th>q</th>
<th>r</th>
<th>u</th>
<th>v</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td><NA></td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Fuzzy Coding

<table>
<thead>
<tr>
<th>a</th>
<th>b</th>
<th>c</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>1/3</td>
<td>1/3</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1/3</td>
<td>1/3</td>
</tr>
</tbody>
</table>
The basis of the Gifi system for MCA is the notion of homogeneity, applied to a joint plot of objects and categories. This means we like the plot if:

- Objects with similar profiles are close together.
- Categories with similar content are close together.
- Objects are close to the categories they are in.
We now have to construct a quantitative measure of homogeneity, or rather of loss of homogeneity, which we will then minimize. Here are the basic ingredients.

- An $n \times p$ matrix X of object scores.
- $k_j \times p$ matrices Y_j of category quantifications.
- $n \times k_j$ indicator matrices G_j.

The Y_j can be collected in a $K \times p$ matrix Y, and the G_j in an $n \times K$ matrix G.

Now suppose we represent all n objects and all K categories as points in p-space. The coordinates are the rows of X and Y.

We can think of the indicator super-matrix G as the adjacency matrix of a graph, in which object i is adjacent to category k (of variable j) if i is in category k of variable j.

We can draw this graph by connecting the object points to all category points that they are in, so m lines depart from each object, for a total of nm lines in the drawing. This is the graphplot.

The core of the algorithm is the reciprocal averaging (or alternating least squares) algorithm. Start with some $X^{(0)}$. Then iteratively apply the centroid principles.

\[Y^{(k)} = D^{-1}G'X^{(k)}, \]
\[\bar{X} = m^{-1}GY^{(k)}, \]
\[X^{(k+1)} = \text{orth}(\bar{X}^{(k)}). \]

Here $\text{orth}()$ is an orthogonalizer, such as Gram-Schmidt or QR or Procrustus.

Iterate until convergence, that is until $X^{(k)}$ no longer changes. Let us illustrate a single iteration.
Make Y from X in the “small” example, using the first centroid principle. Start with a circle.

Finally: Normalizing X, using Gram-Schmidt.

Make X from Y in the “small” example, using the second centroid principle.

We can illustrate the iterations using movies.

“Small” example

On the left: changes in the graphplot over iterations

On the right: changes in the object scores over iterations
Some real examples we use throughout are

-- the GALO data (1290 students, gender (2), IQ (9), Advice (6), SES(7)).

-- the senate data, 20 votes in the 2002 US Senate (50 senators).

Starplots for GALO

GALO 3d object scores (cloud function from lattice package)
The algorithm using rank restriction is based on the partitioning
\[
\sigma(X, Z, A) = \frac{1}{m} \sum_{j=1}^{m} \text{SSQ}(X - G_j \hat{Y}_j) + \\
+ \frac{1}{m} \sum_{j=1}^{m} \text{tr}(\hat{Y}_j - z_j a'_j)' D_j(\hat{Y}_j - z_j a'_j).
\]
We use alternating least squares. The update for \(X\) given \(Y\) is the same as before. If we update \(Y\), we use the rank restrictions, except for multiple variables.

We can relate homogeneity to principal component analysis by restricting the category quantifications of all variables to be on straight lines through the origin. A separate line for each variable, of course. In other words, we require the category quantifications to be of rank one. In formula
\[
Y_j = z_j a'_j.
\]
The \(z_j\) are called the lower rank quantifications, the \(a_j\) are the category loadings. They are written, by default, to the output file of the homals program.
Regression and canonical analysis can also be incorporated in a simple way. We have seen that we can introduce the notion of sets of variables using *interactive coding*. All variables in a set become a single variable, and we then apply ordinary homogeneity analysis. But interactive coding can soon become impractical. Then we use *additivity restrictions*.

By using suitable partitionings of the variables into sets, and by using measurement and rank restrictions, we can construct generalizations of many classical descriptive multivariate analysis techniques.

With both rank and additivity constraints, category quantifications are on a regular lattice grid.

The Gifi loss function, incorporating additivity by using sets of variables, becomes

$$
\sigma(X, Y) = \frac{1}{m} \sum_{j=1}^{m} \text{SSQ}(X - \sum_{\ell \in L_j} G_{\ell} Y_{\ell}).
$$

Here the indicators can be fuzzy or incomplete, and there can be rank constraints on the category quantifications.
Software

The *homals* package in R does principal component analysis, correspondence analysis, multiple correspondence analysis, regression, canonical correlation analysis, and multiset canonical correlation analysis. It allows for treating variables nominal, ordinal, numerical; as well as single and multiple.

A similar set of options is available in *SPSS Categories*, except that they are distributed over various programs.

So far, we have measured homogeneity using Euclidean geometry, centroids, and correlations, and all loss functions lead to some form of *least squares*. We now depart somewhat from the framework and measure loss on a probability scale. This has the additional advantage that no arbitrary normalizations are needed.

Our basic data are still the indicator matrices, but our metric becomes *logistic likelihood*. This is not necessarily *better* than least squares, but it can be expected to lead to quite different solutions.

Let us look at a single indicator matrix G with n rows and k columns. The probability that object i is in category l is

$$
\pi_{il}(X, Y) = \frac{\exp(\phi(x_i, y_{il}))}{\sum_{j=1}^{k} \exp(\phi(x_i, y_j))},
$$

for some suitable function ϕ, which we do not specify yet.

Assuming independence, we find for the *deviance* (-2 times the log likelihood)

$$
\Delta(X, Y) = -2 \sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{l=1}^{k_j} g_{ijl} \log \pi_{ijl}(X, Y).
$$

This means that if object i is in category l of variable j, then we want

$$
\phi(x_i, y_{jl}) > \phi(x_i, y_{j\nu}) \quad \forall \nu.
$$

If ϕ is homogeneous, i.e. if

$$
\phi(\alpha x_i, \alpha y_{jl}) = \alpha^r \phi(x_i, y_{jl}).
$$

for some non-negative r, and these inequalities are satisfied, then we can actually make sure that

$$
\pi_{ijl}(X, Y) \Rightarrow 1
$$

and the deviance can be made equal to zero.
For instance
\[\phi_{ij\ell}(X, Y) = -\|x_i - y_{j\ell}\|. \]

This means we want objects to be closer to the category they are in than to any other category, i.e. objects need to be in the Voronoi cell of the category.

Or
\[\phi_{ij\ell}(X, Y) = x_i'y_{j\ell} + \alpha_{j\ell} \]
which means categories are separated by hyperplanes, which can be chosen to be parallel by using rank one restrictions.

Instead of least squares we use majorization to arrive at a sequence of related least squares problems.

The general idea behind majorization, in the form in which we use it here, supposes we minimize a function with an upper bound for the Hessian. So
\[x'D^2f(y)x \leq Kx'x. \]
This implies
\[f(x) \leq f(y) + (x - y)'Df(y) + \frac{1}{2}K(x - y)'(x - y), \]
and gives the convergent algorithm
\[x^{k+1} = x^k - K^{-1}Df(x^k). \]

For a constrained problem the least squares sequence becomes
\[x^{k+1} \in \arg\min_{x \in X} (x - z^k)'(x - z^k), \]
with
\[z^k = x^k - \frac{1}{K}Df(x^k). \]

Now apply this to our logistic likelihood.
In the case of negative distance we must minimize

\[
\partial \log \pi_{ijl} \over \partial \phi_{ij
}\] = \delta_{\ell
} - \pi_{ij
},
\]

\[
\partial^2 \log \pi_{ijl} \over \partial \phi_{ij\nu} \partial \phi_{ij\omega} = -(\pi_{ij\nu} \delta_{\nu\omega} - \pi_{ij\nu} \pi_{ij\omega}),
\]

It follows that

\[-\sum_{\nu=1}^{k_j} \sum_{\omega=1}^{k_j} \partial^2 \log \pi_{ijl} \over \partial \phi_{ij\nu} \partial \phi_{ij\omega} x_{\nu} x_{\omega} \leq \frac{1}{2} \sum_{\nu=1}^{k_j} x_{\nu}^2,
\]

and this bound can be used to majorize the deviance.

After a great deal of calculation we see that in each iteration we must minimize

\[
\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{\ell=1}^{k_j} (\phi_{ij\ell}(X, Y) - \tilde{z}_{ij\ell})^2,
\]

where

\[
\tilde{z}_{ij\ell} = \phi_{ij\ell}(\tilde{X}, \tilde{Y}) + 2(g_{ij\ell} - \pi_{ij\ell}(\tilde{X}, \tilde{Y})).
\]

Thus (a) we are back to least squares, and (b) no normalization is needed.

In the case of negative distance we must minimize

\[
\sum_{i=1}^{n} \sum_{j=1}^{m} \sum_{\ell=1}^{k_j} (d(x_i, y_{\ell'}) - (-\tilde{z}_{ij\ell}))^2
\]

This is a metric unfolding problem (with the additional complication that the target values or dissimilarities may be negative). We can use existing unfolding algorithm to update the object scores and category quantifications.

GALO: Gender

Note: The table is not transcribed into the text format.
The algorithms (written in R) are still very tentative, especially compared with the least squares methods which are very well tested and well-understood.

Principal component analysis of binary data by iterated singular value decomposition

Computational Statistics & Data Analysis, Volume 50, 2006, 21-39