Title
To Crack or Not to Crack: Strain in High Temperature Superconductors

Permalink
https://escholarship.org/uc/item/86c52026

Author
Godeke, Arno

Publication Date
2008-05-29
To Crack or Not to Crack: Strain in High Temperature Superconductors

Arno Godeke
August 22, 2007

With kind contributions from

Najib Cheggour (NIST)
Danko van der Laan (NIST)
Shlomo Caspi (LBNL)

Funded by the US Department of Energy under contract No. DE-AC02-05CH11231
Motivation

Magnetic field records in dipole magnets

- Bi-2212
- Nb₃Sn
- Lietzke 2003?
- NbTi
- Leroy 1998
How do Nb$_3$Sn magnets work?

Example: LARP Quad TQS01
- Ti-6Al-4V poles
- 8 W&R cos Θ coils
- 90 mm bore, > 220 T/m

Reversible strain!

Caspi, MT20: 4LX03 (2007)
Why do Nb$_3$Sn magnets work?

Reversible axial strain dependence

Reversible means:
- $\Delta \varepsilon \Rightarrow \Delta N(E_F), \Delta \lambda_{ep}$
- ΔT_c and ΔH_{c2}
- ΔJ_c
- Slope depends on H and T

Godeke, *SuST* 19 2006
How can magnets fail?

‘Preliminary’ J_c collapse
- Irreversible
- Crack formation

Axial strain tests IT wire:

Bend tests IT wire:

This workshop!
Limitations of NbTi and Nb$_3$Sn

- Nb$_3$Sn dipoles are limited to 17 – 18 T
 - Provided that strain can be handled

A switch to Bi-2212 is inevitable: $\mu_0 H_{c2}^*(4.2 \text{ K}) \approx 85 \text{ T}$
Towards new magnetic field records

Bi-2212 W&R subscale magnet program

<table>
<thead>
<tr>
<th>Material</th>
<th>Reaction</th>
<th>Insulation</th>
<th>Quench</th>
</tr>
</thead>
<tbody>
<tr>
<td>NbTi</td>
<td>Ductile R&W</td>
<td>Polyimide</td>
<td>> 20 ms⁻¹</td>
</tr>
<tr>
<td>Nb₃Sn</td>
<td>675°C Ar/Vacuum</td>
<td>S/R glass</td>
<td>~ 20 ms⁻¹</td>
</tr>
<tr>
<td>Bi-2212</td>
<td>890±2°C O₂</td>
<td>Ceramic</td>
<td>< 0.05 ms⁻¹</td>
</tr>
</tbody>
</table>

Table: Wind-and-React Bi-2212 subscale coil test configurations

<table>
<thead>
<tr>
<th>Layout</th>
<th>Turns</th>
<th>(\mu_0 H) [T]</th>
<th>(I_{ss}) [A]</th>
<th>(L) [mH]</th>
<th>(P_x) [MPa]</th>
<th>(P_y) [MPa]</th>
<th>(P_z) [MPa]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bi-2212 stand alone</td>
<td>2 × 6</td>
<td>2.6</td>
<td>6213</td>
<td>0.036</td>
<td>1.1</td>
<td>0</td>
<td>1.9</td>
</tr>
<tr>
<td>Bi-2212 stand alone</td>
<td>2 × 19</td>
<td>4.9</td>
<td>5179</td>
<td>0.25</td>
<td>9.7</td>
<td>0</td>
<td>9.4</td>
</tr>
<tr>
<td>Bi-2212 common coil(^a)</td>
<td>2 × 19</td>
<td>5.8</td>
<td>4948</td>
<td>0.28</td>
<td>27</td>
<td>7.5</td>
<td>15</td>
</tr>
<tr>
<td>Bi-2212 dipole(^a)</td>
<td>2 × 19</td>
<td>6.6</td>
<td>4777</td>
<td>1.2</td>
<td>1.6</td>
<td>14</td>
<td>3.2</td>
</tr>
<tr>
<td>1 × Bi-2212 / 2 × Nb₃Sn hybrid dipole(^b)(^c)</td>
<td>2 × 19 (Bi-2212)</td>
<td>8.5</td>
<td>4595</td>
<td>2.4</td>
<td>34</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>2 × 20 (×2 Nb₃Sn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 × Bi-2212 / 2 × Nb₃Sn hybrid dipole(^b)(^c)</td>
<td>2 × 19 (Bi-2212)</td>
<td>9.9</td>
<td>4486 (Bi-2212)</td>
<td></td>
<td>34</td>
<td>0</td>
<td>20</td>
</tr>
<tr>
<td>2 × 20 (×2 Nb₃Sn)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Typical axial tensile behavior in Bi-2212

Axial strain dependence early (~1993) 2212 tapes

- Independent of \(H \) and \(T \)
- **Always** irreversible
 - Crack formation
- \(J_c \) collapse point depends on pre-strain

\[\text{Pre-strain} \quad 0.2 - 0.4\% \]

\(J_c \) collapse

Generalized axial strain behavior in Bi-2212

3 regions

I and III
- J_c collapses
- Significant cracks

II
- Quasi constant
 - (Still irreversible)
- Quasi-elastic behavior
- Small cracks?
- Length corresponds to pre-strain

Fig. 1. The normalised critical current as a function of the axial strain. Measured on different samples for compressive and tensile strains (measured at 4.2 K and 8 or 16 T).

A model for axial strain behavior in Bi-2212

Model...

...and measurement

All axial compressive strain irreversibly reduces J_c

Ten Haken, *ToM* 32 (1996)
Repetitive ‘low’ strain variations

- All strain irreversible

Fig. 5. The I_c versus strain in two samples of conductor A. First a cyclic deformation between 0 and 0.28% axial strain and then between 0 and -0.28% strain. The solid and dotted line follows the measuring sequence. The solid lines indicate two sequential I_c measurements and a dotted line is used when one or more strain cycles are skipped.

Ten Haken, TAS, 1997
Are these ‘cracks’ real...? (~1996)

Axial strain measurement on Bi-2212 tapes:
- With strain gauge
 - Direct
- With X-ray
 - Indirect
Are these ‘cracks’ real…? (~1996)

Apply external axial strain
- Shift in 2Θ for 0020 peak
 - Proportional to strain in c direction (if elastic)
 - $\varepsilon_y = -\nu_y \varepsilon_z \propto -2\Theta$

Yes, these cracks are real (~1996)

Strain behavior

- c-axis compression with axial tensile strain
 - Elastic up to +0.2% axial
 - $\varepsilon_z \propto 2\Theta$
 - Cracks above +0.2% axial

At $J_c(\varepsilon_{\text{axial}})$ plateau
- c-axis deformation proportional to $\varepsilon_{\text{axial}}$
- Elastic behavior

Outside $J_c(\varepsilon_{\text{axial}})$ plateau
- c-axis is constant
- Elastic behavior disappears
- Crack formation

Ten Haken, PhysC, 1996
MOI on strained HTS: Cracks

Unstrained Bi-2212

Strained Bi-2212

Filament
Filament + pinhole
Filament

Strained Bi-2223

MOI and J_c on strained HTS: Cracks

Magnets made from HTS?

How are we supposed to set new magnetic field records with HTS materials that break into pieces under load?
IGC Bi-2212 round wire, 7x61 filaments
Courtesy of Najib Cheggour – NIST

∅ 0.81 mm; Non optimized HT

∅ 0.81 mm; Optimized HT

Rise!
Curvature!
Showa Bi-2212 round wire
Courtesy of Najib Cheggour – NIST

∅ 0.57 mm; 19x37 filaments; Non optimized HT

∅ 0.82 mm; 7x127 fil; Optimized HT

Modern wires appear much better than 1st generation tapes

Rise and curvature!
What we need!

- Very much like Nb$_3$Sn
- No crack behavior
 - (but electronic in origin…?)

See:

- Van der Laan, *APL* 90 (2007)
- Talk this workshop

Could we get this in a wire…?
Summary

- (Accelerator) Magnet community prefers reversible strain behavior
 - Though we could work around some irreversible reduction
 - NMR type HTS insert magnets at NHMFL

- Crack formation dominates in (early generations) HTS tapes

- Latest generation wires appears much more promising

- YBCO rocks! (but for accelerator magnets we need wires…)
Spare slides on transverse pressure
A quick note on transverse pressure…

On short tape samples
- Worrying?

On cables
- OK!
 - Sensitive to proper experiment

Fig. 4 The relative current density as a function of the transverse pressure at 4.2 K.

Ten Haken, TAS 3 (1993)

Unpublished ~1993
Transverse pressure on Bi-2212 tapes

From the ‘House of Horrors’… ➤ Very discouraging!

Ten Haken, TAS, 1993; PhD thesis, 1994

Figure 6.16: The normalised critical-current reduction of the Bi-2212 tape conductor (T-19) subjected to a transversal pressure, measured on the F_{c} / B transverse press. The measured $I_c(\sigma_t)$ is compared with two lines representing the calculated I_c versus pressure dependence for two different Young’s moduli ($E_{eff} = 20$ and 3.5 GPa).
Transverse pressure on Bi-2212 cables

Better than tapes…
- …but insufficient?
- Limited to 60 MPa broad face load?

Fig. 3. Variation of the critical current (4 T, 4 K) with stress for a cable loaded on the broad face of the cable.

Fig. 4. Variation of the critical current (self-field, 4 K) with stress for a cable loaded on the edge of the cable.

Dietderich, TAS, 2001