Title
Viral diversity in autochthonous croatian grapevine cultivars

Permalink
https://escholarship.org/uc/item/86j0p6dv

Journal
Plant Disease, 101(7)

ISSN
0191-2917

Authors
Vončina, D
Al Rwahnih, M
Rowhani, A
et al.

Publication Date
2017-07-01

DOI
10.1094/PDIS-10-16-1543-RE

Peer reviewed
Viral Diversity in Autochthonous Croatian Grapevine Cultivars

Darko Vončina, Department of Plant Pathology, University of Zagreb Faculty of Agriculture, Zagreb, Croatia; Maher Al Rwahnih and Adib Rowhani, Department of Plant Pathology, University of California, Davis, USA; Mona Gouran, Foundation Plant Services, Davis, CA, USA; and Rodrigo P. P. Almeida, Department of Environmental Science, Policy, and Management, University of California, Berkeley, USA

Abstract

A survey was conducted on nine autochthonous grapevine cultivars grown along the Croatian coastal region. In total, 48 vines (44 from germplasm collection, 4 from vineyards) originating from 23 sites were tested for 26 viruses using molecular methods. Results revealed high infection rates with Grapevine leafroll-associated virus 3 (GLRaV-3); Grapevine virus A (GVA, both 91.7%); Grapevine fleck virus (GFFV, 87.5%); and Grapevine rupestris stem pitting-associated virus (GRSpaV, 83.3%). Other detected viruses were: Grapevine fanleaf virus (GFLV); Grapevine leafroll-associated viruses 1, 2, and strains of 4 (GLRaV-1, GLRaV-2, GLRaV-4); Grapevine viruses B, D, F (GVB, GVD, GVF);

Grapevine red globe virus (GRGV); Grapevine vein feathering virus (GVFV); Grapevine Syrah virus 1 (GSyV-1); and Grapevine Pinot gris virus (GPGV). No virus-free vine was found. Mixed infections were determined in all vines, the number of viruses in a single vine ranged from three to nine. GLRaV-3 variant typing confirmed presence of group I, II, and III. Four vines with leaf deformation and mottling were positive for GPGV. Seven viruses (GLRaV-4-like group, GVD, GVE, GVF, GGRV, GSyV-1, and GGVF) were detected for the first time in Croatia. This survey confirmed the deteriorated sanitary status of autochthonous Croatian grapevine cultivars.

Plant pathogens have significant impacts on food production. In a time of intensive exchange of different planting material on national and international levels, data about distribution and economic importance of plant pathogens and plant diseases are crucial for their successful management. To decrease the negative impact that pathogens have, it is crucial to constantly work on their detection and geospatial distribution. Grapevine (Vitis vinifera L.) is an important plant crop with worldwide distribution. Throughout history, grapevines have been faced with challenges that changed European viticultural practices. Phylloxera (Vites vitifolae), a pest that was introduced in Europe from America in the 19th century, caused the “Great French Wine Blight” (Gale 2003). The use of American rootstocks solved the phylloxera problem, but resulted in the introduction of two fungal diseases: powdery (Erysiphe necator) and downy mildew (Plasmopara viticola) (Pearson and Goheen 1988). Demand for American rootstocks and priority given to grapevine varieties more resistant to fungal diseases resulted in dissemination of their planting material between continents and countries. Besides that, in many grape growing regions priority given to worldwide-grown cultivars (i.e., Chardonnay, Cabernet Sauvignon, etc.), promoted by wine companies and markets, caused irretrievable loss of autochthonous cultivars (Pouget 1988). Intensive exchange of planting material opened the space for dissemination of grapevine viruses, at the time a group of practically unknown pathogens (Hull 2002).

Grapevines have 65 reported viruses, the highest number known from a single crop (Martelli 2014a). However, only a fraction of these viral species is considered economically important. Because virus infection impacts crop quality and yield, data about virus distribution and frequency are important in the implementation of appropriate disease management practices. So far, measures for virus control in vineyards are mainly based on control of vectors (insects, mites, nematodes), use of virus-free planting material, and constant work on clonal and sanitary selection (Malagka et al. 2015; Martelli and Boudon-Padieu 2006). For example, a California North Coast study on Grapevine leafroll-associated virus 3 (GLRaV-3) showed benefits of using certified plant material of $0.40 per vine, $533 per acre, and $52.7 million per year for the region (Füller et al. 2015).

In Croatia viticulture has a long tradition dating back to the Bronze Age (Batović and Kukočić 1987). Today, approximately 15% of the Croatian population is associated with viticulture (Maletić et al. 2007). Croatia has two different viticultural regions: (i) continental, with continental temperate climate; and (ii) coastal, with influence of the Adriatic Sea and Mediterranean climate. In addition to popular cultivars (i.e., Chardonnay, Cabernet Sauvignon, Merlot, etc.), there are a significant number of autochthonous cultivars, primarily grown in coastal region. According to Maletić et al. (2015) there are at least 125 autochthonous grapevine genotypes that represent valuable national heritage.

The first report of grapevine viruses in Croatia included information on the spread and detrimental effect of viruses from infective degeneration complex (Šarić and Corte 1959). Viruses from the grapevine leafroll complex were reported three decades later (Topolovec-Pintaric 1990). Prevalence of GLRaV-3 in the coastal region has been documented (Karlogan Kontić et al. 2009b; Poljuga et al. 2010; Vončina et al. 2009, 2012), revealing infection of commercial vineyards and mixed infections with Grapevine virus A (GVA) and Grapevine fleck virus (GFFV). In the continental region, up to 52% vines surveyed were free of economically important viruses, with Grapevine leafroll-associated viruses 1 (GLRaV-1) and GFFV as the most common viruses (Karlogan Kontić et al. 2009b; Vončina et al. 2012). To improve the quality of planting material and save endangered autochthonous cultivars from extinction, clonal and sanitary selection programs were initiated 10 years ago (Karlogan Kontić et al. 2009a).

The aim of this survey was to obtain additional knowledge about viruses present in autochthonous Croatian grapevine cultivars grown along the coastal region. Because of already confirmed prevalence of GLRaV-3, special attention was given to spatial distribution of its different variant groups. Results provide information that can be used for improving the quality of planting material and implementation of appropriate control measures.

Materials and Methods

Plant material. Three groups of vines were surveyed: (i) 38 vines of cv. Plavac mali, the most important autochthonous Croatian cultivar; (ii) one vine each of cv. Babica, Dobričić, ljutun, Mladenka, and Vlaška, all from the Kaštel region, considered as the source of numerous autochthonous cultivars; one vine of cv. Dobričić from the island Šolta was added to this group; and (iii) four vines (one each of cv. Jarbola
and Žlahtina and two of cv. Sansigot) selected from the northern coastal region. The first two groups of samples were taken from a collection located in Zagreb. This collection was established as the by-product of a clonal selection program and is mainly used for research on grapevine viruses. After a three-year evaluation of agronomic traits (yield, sugar/acid ratio, tolerance to fungal diseases, cluster and berry characteristics) in the original vineyards, cuttings from vines included in clonal selection were taken and self-rooted during 2008 in the current location of the collection. The collection was established on nematode-tested soil and is regularly sprayed for insect vector control to maintain sanitary status of each vine as in the original vineyard. The last group was selected because the vines were showing leaf deformation and mottling symptoms. Three petioles from different sides of each vine were taken and used for total RNA extraction. Samples from the northern coastal region were collected directly from the vineyards during July 2015, while those from the other two groups were taken in the same period but from a plant collection. In total, 48 vines from nine different autochthonous cultivars originating from 23 different locations/vineyards (Fig. 1) were included in the survey and symptoms were monitored. Some of the plants used in this investigation were previously tested for eight viruses by enzyme-linked immunosorbent assay (ELISA) (Voncina et al. 2009, 2012), and Grapevine raps estris stem pitting-associated virus (GRSPaV) by reverse transcription polymerase chain reaction (Voncina et al. 2011a). A summary of those results is available in Supplementary Table S1.

Isolation of total RNA. Total RNA was prepared by grinding 0.1 g of leaf petiole in liquid nitrogen and extracted using Qiagen RNeasy plant mini kit (Valencia, CA, USA). The modification of original protocol was made by preheating the RLT buffer to 55°C, dissolving 2.5% PVP-40 followed by filter sterilization. Purity and integrity of RNA (data not shown) was measured spectrophotometrically (A260/A280 and A260/A230) using NanoPhotometer P330 Spectrophotometer (Implen, München, Germany).

Detection of viruses by quantitative reverse transcription polymerase chain reaction (RT-qPCR). Samples were tested by RT-qPCR for a panel of 31 viruses at the University of California, Davis. Tests were conducted using reaction mixtures and cycling conditions described as one-step protocol by Osman et al. (2012). For detection of different viruses, primers and probes were used as described by: Grapevine leafroll-associated virus 2 (GLRaV-2) (Klassen et al. 2011), GRSPaV; GVA, and GFkV (Osman et al. 2008; Osman and Rowhani 2008). For all other viruses, primers developed at UC Davis were used (Adib Rowhani, unpublished). Viruses included in the survey were: Grapevine leafroll-associated virus (GLRaV) 1, 2, 2 Red Globe, 3, 4, GLRaV-4 strains 5, 6, 9, Pr, Car, GLRaV 7; Arabis mosaic virus (ArMV); Grapevine fanleaf virus (GFLV); Grapevine virus A, B, D, E, F (GVA, GVB, GVD, GVE, GVF); GRSPaV; GFkV: Grapevine red globe virus (GRGV); Grapevine Syrah virus-1 (GSyV-1); Grapevine vein feathering virus (GVFV); Grapevine Pinot gris virus (GPiV); Grapevine asteroid mosaic virus (GAMV); Tomato ringspot virus (ToRSV); Tobacco ringspot virus (TRSV); Strawberry latent ringspot virus (SLRV); Blueberry leaf mottle virus (BLMV); Raspberry ringspot virus (RpRSV); Tomato black ring virus (TBRV); and Grapevine deformation virus (GDeFV). The positive cycle threshold (Ct) value was set up to 35 with values between 30 and 35 considered as low positive.

Grapevine leafroll-associated virus 3 (GLRaV-3) variant typing. To identify GLRaV-3 specific variants the Qiagen One-Step RT-PCR kit was used following the protocols with fluorescently labeled primers as described by Sharma et al. (2011) for group I, II, III, and IV, and Blaisdell et al. (2015) for group VI. For other variants that may not be identified by the above-mentioned primers, a coat protein (CP) primer set was used (Sharma et al. 2011). PCR products were prepared for fragment analysis as described by Sharma et al. (2011) and submitted to the DNA Sequencing Facility at UC Berkeley. For variant VII, two-step RT-PCR was used according to Maree et al. (2015) with the exception that in cDNA synthesis, virus-specific primers CB19_72F and CB19_1267R (Molenar 2015) were used with the annealing temperature 55°C for 30 s. PCR products were visualized on 2% 1X TAE agarose gel previously stained in ethidium bromide. Positive control for variant group VII was the courtesy of Hans J. Maree (Agricultural Research Council, South Africa) and remaining controls were from a greenhouse collection.

Grapevine Pinot gris virus (GPGV). To verify the presence of GPGV in samples positive by RT-qPCR, tests by two-step RT-PCR and DetF/DetR primers (Morelli et al. 2014) were carried out. cDNA was synthesized using ~200 ng of total RNA mixed with 10 μM of random hexamers (Thermo Fisher Scientific, Waltham, MA) in total volume of 12 μl, denatured at 94°C for 3 min followed by 68°C for 7 min. The mixture was used for reverse transcription with RevertAid First Strand cDNA synthesis kit (Thermo Scientific) in a 20-μl reaction volume consisting of 1X reaction buffer, 20 μl of Ribolock RNase inhibitor, 1 mM of dNTP mix, and 200U of RevertAid M-MulLV reverse transcriptase. Incubation was carried out at 25°C for 5 min, followed by 42°C for 60 min and 70°C for 5 min. PCR was performed using KAPA Taq PCR kit (KAPA Biosystems, USA) in a 10-μl reaction volume consisting of: 1 μl cDNA, 1X KAPA buffer B, 0.2 mM dNTP mix, 1 U of KAPA Taq DNA polymerase, and 0.2 μM of each DetF/DetR primer. The mixture was subjected to initial denaturation at 94°C for 3 min followed by 35 cycles of denaturation at 94°C for 30 s, annealing at 60°C for 45 s, and extension at 72°C for 1 min. Final extension was carried out at 72°C for 7 min and products were visualized on 2% 1X TAE agarose gel previously stained in ethidium bromide. Amplicons were purified using QIAquick PCR purification kit (Qiagen) and cloned with Stratagene Clone PCR cloning kit (Agilent Technologies, USA) according to manufacturer’s instructions. Five cDNA clones per isolate were sequenced in both directions (DNA Sequencing Facility, UC Berkeley) and aligned using MUSCLE program (Tamura et al. 2013) to construct
was carried out at 72°C for 10 min. Products were visualized on 2% 1X agarose gel stained with ethidium bromide.

Additional one- and two-step RT-PCR tests

In addition to RT-qPCR, all samples were tested for the presence of GRSPaV by conventional one-step RT-PCR as described by Rowhani et al. (2000) using the primer pair RSP 48V/49C (Zhang et al. 1998), and by qPCR using cDNA. Two-step RT-PCR was also performed to validate low positive or questionable RT-qPCR results for ArMV, GFLV, GVD, GVF, and GSyV in vines from the northern coastal region (cvs. Jarbola, Sansigot, and Zlahtina). Sequence analyses comprising part of movement protein (MP) and coat protein (CP) genes (549 nt) showed that isolates K1 (cv. Zlahtina) and K2 (cv. Sansigot) were identical, while isolate K4 (cv. Jarbola) showed 97.5% similarity with isolates K1/K2 (14 nucleotide differences, 10 in MP, and 6 in CP region). Croatian isolates shared 95.9% and 98.5% similarity at amino acid level for partial MP and CP, respectively. Compared with reference isolate NC_015782, all Croatian isolates shared 97.1% nucleotide similarity with isolates K1/K2 (14 nucleotide differences, 10 in MP, and 6 in CP region).

Results

Sanitary status of Croatian vines

The results revealed highest infection rates for GLRaV-3 (91.7%, determined by RT-qPCR and one-step RT-PCR using CP primers), GVA (91.7%), GFKV (87.5%), and GRSPaV (83.5%) determined by qPCR using cDNA. Lower occurrence was determined for GLRaV-1 (39.6%) and GFLV (33.3% by two-step RT-PCR). GLRaV-2, GLRaV-4-like group (strains 5, 6, and Pr), GVD, GVE, GRGV, GSyV-1, GVFFV, GPFV, GPGV, and GVB were determined in range from 8.3 to 22.9%. Presence of other viruses included in the screening process was not confirmed in any sample (Table 1, Supplementary Tables S2 and S3). The results showed that mixed infections were also common. The most common combinations were GLRaV-3 + GRSPaV and GVA + GRSPaV, GVA + GFKV (91.7%), GLRaV-3 + GVA (87.5%), GFKV + GRSPaV (83.3%), GRSPaV + GFKV, and GLRaV-3 + GFKV (83.3%). In 79.2% of vines, simultaneous infection with GLRaV-3 + GVA + GFKV + GRSPaV was confirmed. No virus-free vine was found, and the number of viruses present in a single vine ranged from three (vine accessions PMC-003, PMC-011, and PMC-313) to nine (vine accession VD-102). Downward rolling of leaf margins and premature reddening were observed in late summer on vines infected with viruses from the leafroll complex.

GLRaV-3 variants

The GLRaV-3 variant group most frequently found was group II (77.3%), followed by group I (65.9%) and group III (4.6%). Variants from other groups were not detected. In cv. Plavac mali, group II was detected in 30 (85.7%) of GLRaV-3 positive vines, group I in 21 (60%), and mixed infections with both variants were present in 17 (48.6%) vines. Cultivar Dobričić from the island Šolta showed to be infected only with variant group II. Kaštel region vines were infected with group I (5 vines out of 5), followed by group II (3 out of 5). This was the only region where group III (2 out of 5) was detected. In the northern coastal region (cvs. Jarbola, Sansigot, and Zlahtina), only group I (3 out of 4) was found (Table 1).

GPGV

Four vines with symptoms of leaf deformations and mottling from the northern coastal region (cvs. Jarbola, Sansigot, and Zlahtina) were positive for GPGV. In the 2015 and 2016 growing seasons, described symptoms were evident on all plants in the period from the early stage of growth to the start of blossoming. The most severe symptoms were observed on cv. Jarbola. Sequence analyses comprising part of movement protein (MP) and coat protein (CP) genes (549 nt) showed that isolates K1 (cv. Zlahtina) and K2 (cv. Sansigot) were identical, while isolate K4 (cv. Jarbola) showed 97.5% similarity with isolates K1/K2 (14 nucleotide differences, 10 in MP, and 6 in CP region). Croatian isolates shared 95.9% and 98.5% similarity at amino acid level for partial MP and CP, respectively. Compared with reference isolate NC_015782, all Croatian isolates shared 97.1% nucleotide similarity with 16 nucleotide differences: 13 in MP region; and 5 (K1/K2) in CP region. At the amino acid level, similarity with the

Table 1

Results of molecular tests (RT-qPCR, qPCR-cDNA, one- and two-step RT-PCR) done on autochthonous Croatian grapevine cultivars grown in coastal region. Data are shown only for viruses confirmed in at least one vine/sample.

<table>
<thead>
<tr>
<th>Region</th>
<th>Cultivar(s)</th>
<th>Vineyard location(s) (see Fig. 1)</th>
<th>No. of analyzed vines</th>
<th>GLRaV-1</th>
<th>GLRaV-2</th>
<th>Variant I</th>
<th>Variant II</th>
<th>Variant III</th>
<th>RT-qPCR & CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vis</td>
<td>PM</td>
<td>V1</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>5</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>Korčula</td>
<td>Ko3</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Pelješac</td>
<td>P5</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Pelješac</td>
<td>P4</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>P1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>P2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>P3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Hvar</td>
<td>H2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>H1</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>H3</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Šolta & Kaštel Region</td>
<td>H4</td>
<td>6</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>4</td>
<td>5</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>Northern Coast</td>
<td>J, Ž, K1-K5</td>
<td>Po1, Kr1-2</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td>Total</td>
<td>23</td>
<td>48</td>
<td>19</td>
<td>4</td>
<td>29</td>
<td>34</td>
<td>2</td>
<td>44</td>
</tr>
</tbody>
</table>

% 39.6 8.3 60.4 70.8 4.2 91.7

(continued on next page)
and KX518620 (K4).

The sequences of all Croatian GPGV isolates mentioned in this paper are deposited in GenBank with Accession Nos. KX518622 (K1), KX518621 (K2), and KX518620 (K4).

Discussion

This survey confirmed high infection rates with several economically important viruses in autochthonous Croatian grapevine cultivars. Presence of GLRaV-3, GVA, GFKV and GRSPaV was confirmed in almost all vines originating from 23 different vineyards. GRSPaV, although present in most of the vines (77.1% determined by end-point RT-PCR, 83.3% by qPCR-cDNA) is considered a less harmful virus (Gambino et al. 2012). A significant difference in disease prevalence was determined for GFKV (87.5%), which was in previous investigations reported in up to 36.8% of analyzed samples (Vončina et al. 2011b). When compared with previous ELISA results, the significantly larger number of vines positive for GFKV with molecular methods was probably a consequence of monoclonal antibodies used in ELISA and the increased sensitivity of molecular detection (Table 1). The GFKV vector is still unknown, but some observations in Italy (Fortusini et al. 1996), South Africa (Engelbrecht and Kasdorf 1990), and Japan (Yamakawa, 1989) suggest the possibility of natural spread.

The larger number of vines infected with other viruses in the collection (GFLV from 13 to 15, GLRaV-1 from 14 to 19, GLRaV-2 from 2 to 4, GVA from 30 to 42, and GVB from 6 to 8) is partially a consequence of the detection methods used (serological vs. molecular), and potentially due to natural spread of viruses over the seven-year period after establishment. In the case of GFLV, as vines PMC-178 (ELISA 2008 and RT-PCR positive), PMC-181 (ELISA 2007 negative, RT-PCR positive), PMC-236 (ELISA 2007 and RT-PCR positive), and PMC-235 (ELISA 2007 negative, RT-PCR positive) were planted next to each other in the collection, it is possible that local spread occurred. Two-vine RT-PCR results (Supplementary Fig. S1) for ArMV and GFLV were more similar to ELISA results than RT-qPCR results. Differences in ELISA and molecular test results for GLRaV-1, 2, 3, GVA, and GVB may be due to sampling period, lower sensitivity of ELISA, and use of monoclonal antibodies (GVA, GVB) since more positive samples were detected by molecular tests. Although the plant collection was regularly sprayed with insecticides, the possibility for vector transmission of some of the viruses in the seven-year period cannot be ignored.

A significant difference in sensitivity of GRSPaV detection by different molecular methods was observed. The number of positive samples was the lowest using RT-qPCR (nine), while use of one-step PCR and qPCR-cDNA resulted in 26 and 29 additional positive samples, respectively. Two vines positive for GRSPaV when tested by RT-qPCR were not positive using other two methods. In addition, samples with RT-qPCR results for GVD, GFV, and GSyV-1 initially classified as low positive were positive (except two samples of GVD) with detection by two-step RT-PCR. Since the same RNA was used in all molecular tests, it is possible that primer and probe design may play a role in different results and detection efficiency. Molecular detection methods, developed over the last few decades, target specific pathogens (or closely related groups) and often are not effective in detecting pathogens that are genetically different to those already described. In such cases, preference should be given to nontargeted methods (like next generation sequencing). Those methods may allow detection and identification of pathogens without or with very limited prior knowledge about their genomes.

Common mixed infections were detected in vines prior to establishment of the collection used here, and are probably the result of the common practice of vegetative propagation without adequate clonal selection and sanitary control. Simultaneous infections, especially with viruses belonging to infective degeneration, leafroll, and rugose wood complex, often have synergistic effect leading to more severe plant damage (Martelli and Boudon-Padieu 2006).

GLRaV-3 variant typing confirmed the prevalence of variant groups I and II. The same groups were dominant in Portugal (Gouveia et al. 2011). Prevalence of variant group II is reported from South Africa (Jooste et al. 2011), Spain (Pesquera et al. 2016), and Hungary (Cseh et al. 2013), while Napa Valley (Sharma et al. 2011), China (Farooq et al. 2012), and New Zealand (Chooi et al. 2013) are dominated by group I. Mixed infections with both variants were present in 20 GLRaV-3 positive vines (45.5%), significantly more than the 25.3% variants reported from Australia (Rast et al. 2012). It is possible that GLRaV-3 variants such as group VI-like (Maree et al. 2015) and mild strains reported from Australia (Rast et al. 2012). It is possible that other GLRaV-3 variants are present in Croatia and that mixed infections are more common than determined here. Besides planting material, GLRaV-3 is spread in the field by various species of mealybugs (Pseudococcidae) and some soft-scale insects (Coccidae) in a
Semiapersistent manner (Tsai et al. 2008, 2010). Vectors are considered as the major factor responsible for introduction and spread of GLRaV-3 in newly established, healthy vineyards (Maree et al. 2013; Almeida et al. 2013). Masten Milek (2007) reported several insect species present in Croatia that are capable of transmission of different viruses: *Neopulvinaria innumerabilis* (GLRaV-1, GLRaV-3, GVA); *Parthenolecanium corni* (GLRaV-1, GVA); *Pulvinaria vitis* (GLRaV-1, GLRaV3); *Phenacoccus aceris* (GLRaV-1, GLRaV-3); *Planococcus citri* (GLRaV-3, GVA); *P. ficus* (GLRaV-1, GLRaV-3, GVA); and *Pseudococcus viburni* (GLRaV-3). *Phenacoccus aceris*, *Planococcus citri*, *Parthenolecanium corni*, and *N. innumerabilis* were reported by Maceljški (1999) as significant grapevine pests in Croatia. Their role in virus spread under Croatian environmental conditions is unknown, but it is expected that they are vectors (Tsai et al. 2010).

GPGV was recently reported from different European countries (Bertazzon et al. 2015; Beuve et al. 2015; Martelli 2014b; Mavrić Pleško et al. 2014), the United States (Al Rwahnih et al. 2016), Canada (Xiao et al. 2016), China (Fan et al. 2015), and South Korea (Cho et al. 2013). After the first report from Croatia by Bertazzon et al. (2015), this study provides partial genomic data for isolates originating from autochthonous Croatian grapevine cultivars. According to the phylogenetic analysis and classification proposed by Saldarelli et al. (2015), all Croatian isolates belong to the symptom-associated phylogenetic clade (Fig. 2). Since all GPGV-infected vines were multiply infected, it was not possible to connect disease symptoms to GPGV alone. According to Bertazzon et al. (2016), expression of symptoms is not correlated only with GPGV variants, but also with virus populations; symptomatic vines have significantly higher virus populations when compared with symptomless vines.

To the best of our knowledge, the presence of seven viruses (multiple strains of GLRaV-4, GVD, GVE, GVf, GPGV, GSyV-1, and GVfV) was confirmed for the first time in Croatia. Although viruses from the GLRaV-4 group are transmitted by mealybugs, they are considered less important when compared with GLRaV-3 (Maree et al. 2013). GPGV is disseminated through grafting and propagation material, causing symptomless infections (Martelli et al. 2002). GSyV-1, reported also as Grapevine virus Q (GVQ) from muscadine grapes and blackberries (Sabanadzovic et al. 2009) and in grapevines from different countries (Al Rwahnih et al. 2009; Engel et al. 2010; Gianpetruzzi et al. 2012; Glasa et al. 2015; Oosthuizen et al. 2016), is widespread with as-yet limited data on its effect on grapevine production and interaction with other viruses. Two more recently discovered members of the genus Vitivirus (GVE and GVfV), in which some members cause wood-marking abnormalities (e.g., GVA and GVfV), were also found in this survey. More detailed investigation of this group of Croatia’s newly discovered viruses, including additional confirmation tests, will be undertaken if specific symptoms or negative impacts are recorded on infected vines.

Acknowledgments

We thank Kai Blaisdell and Anne Sicard for help and assistance in laboratory work and Kristina Điklić for field observations. Special thanks to Hano J. Maree and Rachelle Bester for constructive suggestions and for providing GLRaV-3 variant group VII positive control.

The research leading to these results has received funding from Foundation Plant Services and the European Union Seventh Framework Program (FP7-2007-2013) under grant agreement no. 291823 Marie Curie FP7-PEOPLE-2011-COFUND (The New International Fellowship Mobility Program for Experienced Researchers in Croatia - NEWFELPRO). This article has been prepared as a part of a project “Ecology of an emerging grapevine virus in Croatia and California (EcoGVCC)” which has received funding through NEWFELPRO project under grant agreement no. 51.

Literature Cited

Fig. 2. Phylogenetic tree constructed by MEGA 6 program using maximum likelihood method and 1000 bootstrap replicates. GPGV genome movement and coat protein genes (549 nt) were used for construction of the tree. Croatian GPGV isolates are marked with K1 (cv. Zlahtina), K2 (cv. Sansigot), and K4 (cv. Jarbola). Ten other GPGV isolates from GenBank were used as representatives of “symptomatic” and “symptomless groups.” Results revealed that all Croatian GPGV isolates clustered within “symptomatic group.”