Title
COMMENT ON. EMPIRICAL CORRECTION TO HARTREE-FOCK-SLATTER S-ELECTRON DENSITIES FOR CALCULATION OF CONTACT HYPER-FINE SPLITTINGS

Permalink
https://escholarship.org/uc/item/88800543

Author
Shirley, D.A.

Publication Date
1970-06-01
Comment on

EMPIRICAL CORRECTION TO HARTREE-FOCK SLATER S-ELECTRON DENSITIES FOR CALCULATION OF CONTACT HYPERFINE SPLITTINGS

D. A. Shirley

June 1970

AEC Contract No. W-7405-eng-48

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Mackey and Wood1 recently proposed an empirical correction to contact hyperfine structure constants. In their discussion they pointed out that the application of a relativity correction to electron densities calculated non-relativistically, or the use of relativistic wave functions will give hfs constants that are high by a factor 2. However they apparently used the relativity factor for the charge density, which depends on $f_0^2 + g_0^2$, rather than the factor for current density, which depends2 on $f_0 g_0$. Here f_0 and g_0 are the large and small components of the Dirac electronic wave functions, evaluated at the nucleus.

To calculate the magnetic hyperfine structure constant a_s for a single impaired s electron from $|\Psi(0)|^2$, the "nonrelativistic" electron density at the nucleus, the relativity factor

$$F_r(j,Z) = \frac{\hbar j(j+\frac{1}{2})(j+1)}{\rho(4\hbar^2 - 1)}$$

must be applied. Here

$$\rho = [(j+\frac{1}{2})^2 - a^2 z^2]^{1/2}$$

and $j = \frac{1}{2}$.

1. Mackey and Wood
The factor $F_r(j, Z)$ accounts for the electron current density, which is relevant to magnetic interaction in the Dirac theory. Mackey and Wood have apparently used the relativistic charge density correction factor,\(^3\)

$$S(Z) = \frac{30(1+p)Y_0^{2p-2}}{(2p+1)(2p+3) \Gamma^2 (2p+1)}$$

where $Y_0 = 2ZR/a_0$ and R is the nuclear radius. This factor is appropriate for isotope or isomer shifts, which are Coulombic in origin in the Dirac theory. It is much larger than $F_r(j, Z)$.

In Table I four factors are listed for the cases considered by Mackey and Wood: their ratio $a_{\text{exptl}}/a_{\text{nonrel}}$, $F_r(j, Z)$,\(^4\) their empirical factor, and the ratio $a_{\text{rel}}/a_{\text{nonrel}}$ given by them (this ratio is taken to be their relativity factor, because the exact value of $S(Z)$ depends on certain assumptions). The similarity for large Z of the first three of these quantities suggests that the relativity factor $F_r(j, Z)$ accounts for much of the discrepancy between a_{exptl} and a_{nonrel}. Thus their statement that consideration of the relativity factor will produce values of a that are "high by a factor of 2 for large $Z" does not apply.

References

4. Ref. 1, Table 8.
Table I. Comparison of Relativity Factors

<table>
<thead>
<tr>
<th>Z</th>
<th>$\frac{a_{exptl}}{a_{nonrel}}$</th>
<th>$F_r(J,Z)$</th>
<th>γ</th>
<th>$\frac{a_{rel}}{a_{nonrel}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.9984</td>
<td>1.0001</td>
<td>1.0000</td>
<td>1.0051</td>
</tr>
<tr>
<td>3</td>
<td>1.0685</td>
<td>1.0009</td>
<td>1.0001</td>
<td>1.0051</td>
</tr>
<tr>
<td>11</td>
<td>0.9798</td>
<td>1.0119</td>
<td>1.005</td>
<td>1.0530</td>
</tr>
<tr>
<td>19</td>
<td>1.0325</td>
<td>1.0363</td>
<td>1.026</td>
<td>1.1498</td>
</tr>
<tr>
<td>37</td>
<td>1.1784</td>
<td>1.1504</td>
<td>1.190</td>
<td>1.6483</td>
</tr>
<tr>
<td>47</td>
<td>1.3047</td>
<td>1.2626</td>
<td>1.390</td>
<td>2.0604</td>
</tr>
<tr>
<td>55</td>
<td>1.5486</td>
<td>1.3904</td>
<td>1.625</td>
<td>2.6160</td>
</tr>
<tr>
<td>79</td>
<td>3.0094</td>
<td>2.1974</td>
<td>2.854</td>
<td>5.5566</td>
</tr>
</tbody>
</table>
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.