Title
Living and Dying Abroad: Aspects of Egyptian Cultural Identity in Late Bronze Age and Early Iron Age Canaan

Permalink
https://escholarship.org/uc/item/88r900cs

Author
Pierce, Krystal Victoria Lords

Publication Date
2013

Peer reviewed|Thesis/dissertation
Living and Dying Abroad:
Aspects of Egyptian Cultural Identity
in Late Bronze Age and Early Iron Age Canaan

A dissertation submitted in partial satisfaction of the
requirements for the degree Doctor of Philosophy
in Near Eastern Languages and Cultures

by

Krystal Victoria Lords Pierce

2013
ABSTRACT OF THE DISSERTATION

Living and Dying Abroad:
Aspects of Egyptian Cultural Identity
in Late Bronze Age and Early Iron Age Canaan

by

Krystal Victoria Lords Pierce
Doctor of Philosophy in Near Eastern Languages and Cultures
University of California, Los Angeles, 2013
Professor Willemina Z. Wendrich, Chair

This study employs a new methodological approach in examining Egyptian and Egyptianized material in the Levant, which entails a thorough analysis of a range of broad and narrow Late Bronze Age and early Iron Age contexts at three sites in the Levant, entirely from an Egyptian perspective and based on the cultural norms and praxis of New Kingdom Egypt. The analysis of material culture at Beth-Shean, Deir el-Balah, and Jaffa is accomplished through a theoretical framework of cultural identity, which examines the materiality, spatiality, and temporality of how cultural identity is generated, maintained, and exhibited, both in the homeland of Egypt, and abroad in Canaan. The three case studies focus on funerary, residential, and material contexts and cover an array of facets related to cultural identity, beginning with the expansive analysis of every burial in the two cemeteries at Beth-Shean and Deir el-Balah,
subsequently shifting to the slightly more confined analysis of specific buildings at those two sites, and then narrowing down even further to focus on one aspect of material culture, ceramic vessels at Jaffa. The purpose of these broad and narrow case studies is not to substantiate the presence-or-absence of Egyptians at Beth-Shean, Deir el-Balah, and Jaffa, or the exclusive Egyptian use of the mortuary, residential, and ceramic material at these sites, but rather to investigate how an Egyptian would have interacted with the architecture, objects, and features of life and death in Canaan, based on the cultural norms and praxis of the Egyptian homeland, and how these interactions reveal information about an Egyptian cultural identity abroad.
The dissertation of Krystal Victoria Lords Pierce is approved.

Aaron Alexander Burke

Robert Mullins

William M. Schniedewind

Willemina Z. Wendrich, Committee Chair

University of California, Los Angeles

2013
Dedicated to Victoria “The Bean” Diem Pierce,

who was born and has spent her whole life in the shadow of this work,

and is the motivation and inspiration behind everything I do.
TABLE OF CONTENTS

LIST OF FIGURES .. x
ACKNOWLEDGEMENTS ... xi
CURRICULUM VITAE ... xii
CHAPTER ONE. AN INTRODUCTION .. 1
 1.1 PROSPECTUS ... 1
 1.2 RESEARCH IN EGYPTO-LEVANTINE STUDIES ... 2
 1.3 STUDIES OF EGYPTIAN/IZED MATERIAL IN CANAAN ... 3
 1.3.1 Phase 1: 1980s-early 1990s ... 3
 1.3.2 Phase 2: 1990s-early 2000s ... 12
 1.3.3 Phase 3: mid-late 2000s .. 30
 1.4 RESEARCH DESIGN ... 36
CHAPTER TWO. A THEORETICAL FRAMEWORK OF CULTURAL IDENTITY 48
 2.1 INTRODUCTION ... 48
 2.1.1 Introduction ... 48
 2.1.2 Intellectual History .. 49
 2.1.2 Social Identities ... 52
 2.1.3 Supernatural Identity ... 53
 2.2 HISTORICAL NARRATIVE ... 54
 2.3 ASPECTS OF CULTURAL IDENTITY ... 56
 2.3.1 Archaeology .. 56
 2.3.2 Material Culture .. 62
 2.4 SUMMARY AND CONCLUSION .. 74
CHAPTER THREE. MORTUARY CONTEXTS: THE NECROPOLIS AT BETH-SHEAN AND DEIR EL-BALAH ... 78
 3.1 INTRODUCTION ... 78
 3.2 THE NORTHERN CEMETERY OF BETH-SHEAN .. 79
 3.2.1 Excavation and Publication History .. 79
 3.2.2 Chronology and Construction ... 82
 3.2.3 Clay Coffins .. 84
 3.2.4 Tomb Descriptions ... 87
 3.3 THE CEMETERY OF DEIR EL-BALAH ... 106
 3.3.1 Excavation and Publication History .. 106
3.3.2 Strata and Chronology ... 114
3.3.3 Tomb Types and Contents .. 115
3.3.4 Clay Coffins and Pottery .. 118
3.3.5 Tomb Descriptions ... 123

3.4 ITEMS IN THE ISRAEL MUSEUM .. 158

3.5 SUMMARY AND CONCLUSION .. 169

CHAPTER FOUR. AN EGYPTIAN PERSPECTIVE OF THE MORTUARY CONTEXTS AT BETH-SHEAN AND DEIR EL-BALAH .. 171

4.1 INTRODUCTION ... 171
4.2 PREVIOUS SCHOLARSHIP .. 171
4.3 LIFE: PREPARATION FOR DEATH ... 175
4.4 TOMB LOCATION ... 177
 4.4.1 Tomb Location: Egypt or Abroad .. 177
 4.4.2 Tomb Location: Proximity to a City .. 182
 4.4.3 Tomb Location: Layout of a Necropolis 190
4.5 TOMB CONSTRUCTION ... 196
 4.5.1 Significance and Function ... 196
 4.5.2 Burial Compartment ... 198
 4.5.3 Offering Place ... 208
 4.5.4 Reuse ... 217
4.6 TOMB EQUIPMENT ... 224
 4.6.1 Significance and Function ... 224
 4.6.2 Containers .. 227
 4.6.3 Personal Adornment .. 247
 4.6.4 Funerary Practices and Items ... 270
4.7 SUMMARY AND CONCLUSION ... 279

CHAPTER FIVE. RESIDENTIAL CONTEXTS: FIVE STRUCTURES AT BETH-SHEAN AND DEIR EL-BALAH .. 282

5.1 INTRODUCTION ... 282
5.2 BUILDING 1500 AT BETH-SHEAN .. 284
 5.2.1 Excavation and Publication History ... 284
 5.2.2 Chronology, Dimensions, and Construction 289
5.3 BUILDING 1700 (NA) ... 305
 5.3.1 Excavation and Publication History ... 305
 5.3.2 Stratigraphy and Chronology ... 309
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.3 Dimensions and Construction</td>
<td>310</td>
</tr>
<tr>
<td>5.3.4 Layout</td>
<td>311</td>
</tr>
<tr>
<td>5.3.5 Rooms and Loci</td>
<td>312</td>
</tr>
<tr>
<td>5.4 BUILDING NB</td>
<td>324</td>
</tr>
<tr>
<td>5.4.1 Excavation and Publication History</td>
<td>324</td>
</tr>
<tr>
<td>5.4.2 Stratigraphy and Chronology</td>
<td>328</td>
</tr>
<tr>
<td>5.4.3 Dimensions and Construction of Stratum N-3b</td>
<td>329</td>
</tr>
<tr>
<td>5.4.4 Rooms and Loci of N-3b</td>
<td>330</td>
</tr>
<tr>
<td>5.4.5 Dimensions and Construction of Stratum N-3a</td>
<td>332</td>
</tr>
<tr>
<td>5.4.6 Rooms and Loci of Stratum N-3a</td>
<td>333</td>
</tr>
<tr>
<td>5.5 BUILDINGS 350 AND 1131 AT DEIR EL-BALAH</td>
<td>335</td>
</tr>
<tr>
<td>5.5.1 Excavation and Publication History</td>
<td>335</td>
</tr>
<tr>
<td>5.5.2 Stratigraphy and Chronology</td>
<td>340</td>
</tr>
<tr>
<td>5.5.3 Building 350: Dimensions and Construction</td>
<td>342</td>
</tr>
<tr>
<td>5.5.4 Building 350: Rooms and Loci</td>
<td>343</td>
</tr>
<tr>
<td>5.5.5 Building 1131: Dimensions and Construction</td>
<td>346</td>
</tr>
<tr>
<td>5.5.6 Building 1131: Rooms and Loci</td>
<td>348</td>
</tr>
<tr>
<td>5.5.7 Alleyway between Buildings 350 and 1131</td>
<td>350</td>
</tr>
<tr>
<td>5.5.8 Silo 1074</td>
<td>350</td>
</tr>
<tr>
<td>5.5.9 The Crater</td>
<td>351</td>
</tr>
<tr>
<td>5.6 SUMMARY AND CONCLUSION</td>
<td>353</td>
</tr>
<tr>
<td>CHAPTER SIX. AN EGYPTIAN PERSPECTIVE OF THE RESIDENTIAL CONTEXTS AT BETH-SHEAN AND DEIR EL-BALAH</td>
<td>355</td>
</tr>
<tr>
<td>6.1 INTRODUCTION</td>
<td>355</td>
</tr>
<tr>
<td>6.2 PREVIOUS SCHOLARSHIP</td>
<td>356</td>
</tr>
<tr>
<td>6.3 SIZE AND LAYOUT</td>
<td>362</td>
</tr>
<tr>
<td>6.4 MAIN ENTRANCE</td>
<td>367</td>
</tr>
<tr>
<td>6.5 LOCATION AND FUNCTION OF ROOMS</td>
<td>378</td>
</tr>
<tr>
<td>6.6 FRONT SECTION</td>
<td>380</td>
</tr>
<tr>
<td>6.7 MIDDLE SECTION</td>
<td>397</td>
</tr>
<tr>
<td>6.8 REAR SECTION</td>
<td>429</td>
</tr>
<tr>
<td>6.9 SUMMARY AND CONCLUSION</td>
<td>450</td>
</tr>
<tr>
<td>CHAPTER SEVEN. MATERIAL CONTEXT: THE EGYPTIAN AND EGYPTIANIZED CERAMIC ASSEMBLAGE AT JAFFA</td>
<td>454</td>
</tr>
<tr>
<td>7.1 INTRODUCTION</td>
<td>454</td>
</tr>
</tbody>
</table>
LIST OF FIGURES

Figure 3.1: The Northern Cemetery at Beth-Shean with LB and Iron Age Tombs Labeled in Red ... 80
Figure 3.2: Section through the Cemetery and Mound of Beth-Shean ... 81
Figure 3.3: The Cemetery at Deir el-Balah .. 107
Figure 3.4: Area 300 of the Deir el-Balah Cemetery ... 108
Figure 3.5: Area 600 of the Deir el-Balah Cemetery .. 109
Figure 3.6: Area 1400 of the Deir el-Balah Cemetery ... 110
Figure 3.7: Tomb 303 of the Deir el-Balah Cemetery .. 111
Figure 5.1: UME Plan of Buildings 1500, 1700 and NB at Beth-Shean 285
Figure 5.2: HU Plan of Buildings 1500, 1700, and NB at Beth-Shean 286
Figure 5.3: UME Plan of Building 1500 at Beth-Shean .. 287
Figure 5.4: HU Plan of Building 1500 at Beth-Shean .. 288
Figure 5.5: UME Plan of Building 1700 at Beth-Shean .. 306
Figure 5.6: HU Plan of Building 1700 at Beth-Shean .. 307
Figure 5.7: Tentative Reconstruction of Building 1700 at Beth-Shean 308
Figure 5.8: UME Plan of Building NB at Beth-Shean .. 325
Figure 5.9: HU Plan of Building NB (Stratum N-3b) at Beth-Shean ... 326
Figure 5.10: HU Plan of Building NB (Stratum N-3a) at Beth-Shean ... 327
Figure 5.11: Buildings 350 and 1131 at Deir el-Balah .. 336
Figure 5.12: Building 350 at Deir el-Balah ... 337
Figure 5.13: Building 1131 at Deir el-Balah ... 338
Figure 7.1: Excavated Areas at Jaffa ... 456
Figure 7.2: Architectural Plan of the Monumental Gate (Phase 4a) and Architecture to the North and South .. 459
Figure 7.3: Late Bronze Age and early Iron Age Egyptian and Egyptianized Open Forms and Carinated Jar at Jaffa .. 463
Figure 7.4: Late Bronze Age and early Iron Age Egyptian and Egyptianized Closed Forms at Jaffa ... 464
ACKNOWLEDGEMENTS

Throughout the process of researching and writing this dissertation, I have been fortunate to have the support and encouragement of several individuals. My advisor Willeke Wendrich has been with me throughout the entire progression of this study, and her insight and experience regarding Egyptian archaeology allowed me to ground my research both methodologically and theoretically. Aaron Burke graciously granted access to the corpus of Egyptian and Egyptianized material from Jaffa for examination and publication, an opportunity for which I am immensely grateful. Bob Mullins’ expertise on the stratigraphy, architecture, burials, pottery, and objects from Beth-Shean contributed greatly to my analysis of material from the site. Much of this dissertation was written while I was an Educational and Cultural Affairs Fellow at the W.F. Albright Institute of Archaeological Research in Jerusalem, and I am grateful to the director, Sy Gitin, and the staff for their hospitality and efforts towards providing both a home and a place for research. I would also like to thank Carol Redmount for my initial introduction to and subsequent fondness for Egyptian ceramics, as well as the study of interactions between Egypt and the Levant, and I would like to especially acknowledge the late Candy Keller, who was the first to foster my understanding of Egyptian language, art, and religion. A great deal of gratitude goes to my family, first, to my parents, Lorin and Vicky Lords, who have always offered the best advice, support, and encouragement in every aspect, and also to my husband, George Pierce, who has stood by my side through every late night and early morning, and without whom this dissertation would never have been possible.
EDUCATION
University of California, Berkeley
B.A. (Honors), Near Eastern Studies, Egyptian Art and Archaeology, 2003

UNIVERSITY TEACHING AND RESEARCH EXPERIENCE
University of California, Los Angeles
Teaching Associate:
“Ancient Egyptian Civilization” (Winter 2011, Spring 2011)
“Ancient Egyptian Religion” (Winter 2010)
“Ancient Near Eastern Civilizations” (Fall 2009)
“Elementary Ancient Egyptian” (Fall 2007, Winter 2008, Spring 2008)
Graduate Student Researcher:
UCLA Encyclopedia of Egyptology (Summers 2007 and 2008, Spring 2010,
AY 2010/2011, Summer 2011, AY 2011/2012)

University of California, Berkeley
Graduate Student Instructor:
“Introduction to Ancient Egypt” (Fall 2004, Fall 2005)

PUBLICATIONS
In Preparation
“The Egyptian and Egyptianized Ceramic Assemblage,” “The Inscribed Monumental
Gateway of Ramses II,” “The Late Bronze Age Egyptian Objects.” In A.A. Burke,
The Bronze and Iron Ages. Los Angeles.

“Naga el-Deir (Nag-ed-Deir).” In W. Wendrich (ed.), The UCLA Encyclopedia of
Egyptology. Los Angeles.

2010 With Aaron A. Burke, “Egyptians in Jaffa: A Portrait of Egyptian Presence in Jaffa
during the LBA.” Near Eastern Archaeology 73:1.

2008 “The Importance of Gender Studies for Predynastic Egypt: A Case Study of
Cemetery N7000 at Naga-ed-Deir.” Thinking Gender 18th Annual Conference

CONFERENCE PAPERS & PRESENTATIONS
Jerusalem, Israel, W.F. Albright Institute of Archaeological Research (Spring 2013)
“Living and Dying Abroad: Aspects of Egyptian Cultural Identity in Late Bronze
Age and Early Iron Age Canaan”

Los Angeles, California, Cotsen Institute of Archaeology (Winter 2012)
“Pots Equal People? Egyptian Technologies in the LBA Ceramics at Jaffa”
Chicago, Illinois, ARCE National Conference (Spring 2011)
“Egyptian Cultural Identity Abroad: The Form and Function of the Egyptian/ized Pottery Assemblage from Jaffa”

Los Angeles, California, Cotsen Institute of Archaeology (Winter 2011)
“Egyptian Cultural Identity Abroad: The Form and Function of the Egyptian/ized Pottery Assemblage from Jaffa”

Atlanta, Georgia, ASOR National Conference (Fall 2010)
“The Egyptian/ized Pottery Assemblage from Jaffa: Form and Function in Relation to Aspects of Cultural Identity”

Los Angeles, California, Wep-Waut in Westwood Conference (Spring 2010)
“Egyptians in the Gardens of Jaffa: NK Material on the Canaanite Coast”

University of California, Berkeley, ARCE National Conference (Spring 2010)
“The NK Egyptian Presence in Levantine Jaffa: An Analysis of Texts, Artifacts and Architecture”

New Orleans, Louisiana, ASOR National Conference (Fall 2009)
“The NK Egyptian Presence in Jaffa: An Analysis of Artifacts and Architecture”

University of California, Los Angeles, Thinking Gender Conference (Winter 2008)
“The Importance of Gender Studies for Predynastic Egypt: A Case Study of Cemetery N7000 at Naga-ed-Deir”

Bowers Museum of Cultural Art, Santa Ana, ARCE Regional Presentation (Winter 2008)
“The Ramesside Offering Ritual at the Amun Temple of Karnak”

FELLOWSHIPS AND AWARDS
W.F. Albright Institute of Archaeological Research, Jerusalem, Israel
Educational and Cultural Affairs Fellow (AY 2012/2013)

University of California, Los Angeles
Dissertation Year Fellowship (AY 2012/2013)
NELC Departmental Travel Grants (Fall 2009, Spring 2010, Fall 2010, Spring 2011, Summer 2012)
Graduate Summer Research Mentorship Fellowships (Summers 2009 and 2010)
Graduate Research Mentorship Fellowship (AY 2008/2009)
Steinmetz Archaeological Grant (Fall 2008)

University of California, Berkeley
NES Entering Graduate Student Fellowship (AY 2003/2004)
CHAPTER ONE. AN INTRODUCTION

1.1 PROSPECTUS

The Late Bronze Age and the onset of the Iron Age in the Levant are characterized by an Egyptian involvement and influence that varied in intensity, starting with the expulsion of the Hyksos, the reunification of Egypt under the Theban kings, the subsequent conquest and control of Canaan, the gradual attenuation of Egyptian rule, and the retreat of Egypt from the region. Multiple scholars have attempted to understand the multifaceted relationship between Egypt and Canaan during these complicated periods of undulating interactions between the two areas. The evidence for these international relations arrives from textual and archaeological research, both of which have been utilized as a direct reflection of the wax and wane of the contacts between the Egyptian and Canaanite cultural milieux. This study employs a new methodological approach in examining this material, which entails a thorough analysis of a range of broad and narrow Late Bronze Age and early Iron Age mortuary and residential contexts in the Levant, entirely from an Egyptian perspective and based on the cultural norms and praxis of New Kingdom Egypt. The analysis of these contexts at Beth-Shean, Deir el-Balah, and Jaffa is accomplished through a theoretical framework of cultural identity, which examines the materiality, spatiality, and temporality of how cultural identity is generated, maintained, and exhibited, both in the homeland of Egypt, and abroad in Canaan.

In this introductory chapter, an overview of general works on Egypto-Canaanite relations is provided, followed by a more detailed review of the studies that have focused on Egyptian and Egyptianized architecture and objects in the Levant during the Late Bronze Age and early Iron Age. These literature reviews reveal a series of trends in previous research focusing on this
corpus of Egyptian and Egyptian-style material culture in Canaan, and set the stage for the last section of the chapter, where the methodological approach, theoretical framework, and data sets are described and explained in light of previous work. An outline of the rest of the study, which includes a brief description of chapters two through seven, is also included in the final section of this introductory chapter.

1.2 RESEARCH IN EGYPTO-LEVANTINE STUDIES

The overwhelming majority of research into Egypto-Levantine studies focuses on the varied interests of Egypt in the region of Canaan, the scrupulous character of Egyptian control, and the constructive or destructive effects of Egyptian hegemony or neglect upon the region. Egyptian interests in the region of Canaan have been viewed as largely based on economic remuneration (Albright 1949; Na’aman 1981), ideological reasoning (Hasel 1998), or geographical management of access to trade and travel routes (Ahituv 1978). The nature of Egyptian control in the Levant has produced models of imperialism and colonialism (Dever 1992; Hasel 1998; Helck 1971; Kemp 1978a; Knapp 1992; Mazar 1990; McGovern 1985; Morris 2005; Na’aman 1981; Oren 1984; Redford 1992; Singer 1988; Smith 1991; Weinstein 1981) or indirect rule and elite emulation (Higginbotham 1993; 1996; 1998; 2000). The result of the interactions between Egypt and Canaan, whether dynamic or neglectful, has been viewed as either destructive (Albright 1949; 1975; Gonen 1984; Singer 1988) or conducive (Kenyon 1973; Liebowitz 1987; Na’aman 1981) to Canaanite politics, economics, and culture.

While the large preponderance of these studies center on either textual (e.g., Helck 1971; Redford 1992) or archaeological evidence, a few endeavor to incorporate both varieties of material culture into discussions of interactions between Egypt and the Levant. Those studies
that have focused on archaeological evidence related to Egypto-Levantine studies customarily include stratigraphic elements, such as widespread destruction or chronological synchronization, and/or material culture, such as the presence or absence of Egyptian and Egyptian-style objects in Canaan. This latter type of material has rarely been amassed or studied in detail, which results in numerous publications habitually citing a few sources without any real scrutiny or in-depth examination of the evidence or conclusions. As all of the terms using some form of the word “Egyptian,” with or without an attached suffix or secondary hyphenated word, tend to vary in definition based on the personal inclinations of the user, these terms are identified in this paper in the following manner: “Egyptian” items include those that were manufactured in Egypt. “Egyptianized,” “Egyptian-style,” and “Egyptian-type” are used interchangeably to designate those items manufactured in the Levant but demonstrating certain characteristics that have an Egyptian cultural affinity.

1.3 STUDIES OF EGYPTIAN/IZED MATERIAL IN CANAAN

1.3.1 Phase 1: 1980s-early 1990s

The first study to gather together various types of Egyptian and Egyptianized material culture in the Levant was that of James M. Weinstein, who published the seminal work “The Egyptian Empire in Palestine: A Reassessment” in 1981 (see also Weinstein 1992). In this article, Weinstein addresses a plethora of questions regarding the centuries-long relationship between Egypt and Canaan, beginning with the Levantine destruction levels of the mid-16th century BCE and ending with the final deterioration of the Egyptian empire in Canaan in the 12th century BCE. A review of this article not only provides a brief history of the relations between Egypt and Canaan throughout the Late Bronze Age and early Iron Age, but also exhibits the
beginning of several trends that will mark all subsequent studies of Egyptian and Egyptianized material in the Levant. The first section of Weinstein’s article, entitled “The Rise of the Empire,” comprises just under half of the publication and is spent examining whether the Egyptians were responsible for the mid-16th century BCE destruction levels in the southern and inland areas of the Levant and the proposed purpose behind the wholesale devastation of these sites (1981: 1-12).

Using stratigraphic evidence of destruction and abandonment in Canaan, Egyptian textual sources, and the geographical distribution of Hyksos royal-name scarabs, Weinstein concluded that the Egyptians were indeed responsible for the majority of these devastations and that the overall rationale was essentially non-imperial, but rather “directed at the defeat and elimination of the hated Hyksos who had ruled over a long stretch of the Nile Valley” and that “the complete destruction of the hated Hyksos princes and their cities was the primary goal” (1981: 8, 10). The author then proceeds to examine the textual and archaeological evidence of interactions between Egypt and Canaan prior to the Megiddo campaign of Thutmose III, which still falls under the non-imperial motives of the “Rise of the Empire,” and then the period following the campaign, which marks a move to “Political and Economic Domination” in the Late Bronze Age IB and IIA (Weinstein 1981: 12-17).

During this period, the 15th and 14th century BCE rulers of Egypt shifted their general military policy, and rather than continue to annihilate sites in the Levant, the focus was on allowing these cities to survive and even to thrive, especially those located along the Via Maris, the Mediterranean coast, and in the northern region, as some of these areas not only controlled the strategic routes to Syria, but were also the principal suppliers of the provisions required and necessitated by the Egyptian administration in the Levant. Weinstein contrasts the dearth of
Egyptian material in the Late Bronze Age I-IIA in stark contrast to the prevalence of associated finds in the Late Bronze Age IIB-Iron Age IA, which he believes reflects not only a further shift in military policy, but also an alteration in the quantity of the Egyptian workforce deployed to the area (1981: 17).

This leads to the third section of the article, “Military Occupation,” where, because of the immediate threat and pressure from several different groups, including the Hittites, Canaanite rulers, and the rural Shasu and ‘Apiru, Egypt was forced to transfer incredible numbers of Egyptian martial and administrative personnel to the Levant (Weinstein 1981: 17-22). Weinstein believes this practice is reflected in the numerous Egyptian archaeological and inscriptional discoveries for this period, which “due to limitations of space, only some of the largest and more spectacular materials will be summarized here,” including Egyptian forts, administrative buildings, residencies, miscellaneous architectural elements, temples dedicated to Egyptian deities, and royal and private statuary, stelae, and rock inscriptions (1981: 18).

Weinstein then goes on to list seven sites with “Egyptian Forts/Administrative Buildings/Residencies,” which are all generally connected through the common elements of “mud-brick construction (sometimes on stone foundations); thick exterior walls (up to ca. 2.5 m thick); a square or rectangular shape with a length of ca. 20-27; a single courtyard with rows of smaller rooms; and, in most cases, a staircase leading up to the roof or upper story” (1981: 18). The reader must assume that these common features are related to the “Egyptian” label applied to the buildings, as Weinstein never explains why any of these structures are Egyptian, nor does he provide any parallels with actual edifices in Egypt. This same practice continues with his categorization of the buildings based on utility, stating “functionally, three basic types of buildings were employed by the Egyptians” including, “(1) the simple fortress,” “(2) the
residence,” and (3) “a third type” (1981: 18). With the exception of the third type, the actual function or purpose of a simple fortress or residency, whether located in Egypt or in Canaan, is never actually described, nor are any Egyptian parallels provided.

Weinstein asserts that the third group cannot be assigned a single function, but based on the associated finds, might have been multifunctional and served defensive, administrative, storage, religious, and/or residential roles (1981: 18-19). The only Egyptian building cited regarding the third type is “one of the temples at Amarna,” whose buttressed temenos wall is employed to demonstrate that not all buttressed structures in Egypt were martially-oriented (Weinstein 1981: 18). The remainder of the article is dedicated to lists of other types of Egyptian items or buildings in the Levant, including five sites with miscellaneous architectural elements inscribed with Egyptian texts, one site (Timna’) with a temple dedicated to an Egyptian deity, and 24 instances of Egyptian royal and private statuary, stelae, and rock inscriptions discovered in the Levant.

The scarcity of private Egyptian mortuary sculpture and stelae in Canaan is noted by Weinstein, who poignantly suggests that “perhaps many Egyptians were simply buried without the funerary equipment they would have had if they had died in their homeland” (1981: 21). In the three decades since this remarkable proposition was published, no one has attempted to investigate this statement through a comprehensive examination of the burial customs of Levantine cemeteries, from the layout of a cemetery to the smallest type of grave good, in comparison with Egyptian funerary beliefs and praxis.

The article concludes with a brief discussion of “the most important, yet consistently overlooked, types of evidence,” referring to the presence of Egyptian pottery in the Levant (Weinstein 1981: 21). In response to Ruth Amiran’s admission that Egyptian pottery is rarely
discovered in the Levant, Weinstein proposes that there are indeed numerous examples, but these are difficult to recognize due to the lack of decoration, simple form, and domestic usage, therefore, was probably produced more often from local clays than imported from Egypt (Weinstein 1981: 21-22).

He continues with the declaration that “because most Egyptian pottery was produced not for commercial but for ordinary daily use, it occurs primarily at those sites where Egyptians actually lived” (Weinstein 1981: 22). This statement, which is essentially a (domestic) pots-equal-people approach, must extend to other types of Egyptian material culture in the Levant as well, for he also remarks that for the Late Bronze Age IB-IIA, “the lack of substantial archaeological monuments left by Egyptian military and administrative personnel stationed in the country” is “an interesting feature,” however, “such a situation should not be interpreted as reflecting a virtual absence of Egyptian bureaucrats and military officers in Palestine in this period” (1981: 14).

In these few statements, he references what will become the universal theme among all studies of Egyptian and Egyptianized material culture in the Levant, namely, the physical presence or absence of Egyptians in Canaan throughout the Late Bronze Age and early Iron Age, which is viewed as intimately linked with the ethnicity of the manufacturers and users of Egyptian and Egyptianized material culture. Studies regarding these questions of presence-or-absence and ethnicity habitually divide the Egyptian and Egyptianized material evidence into two separate categories: architecture and objects. This division of material culture helps to facilitate generalized, and sometimes indiscriminate, observations of both types of evidence across broad timespans and geography, without having to trudge through a room-by-room (or tomb-by-tomb) detailed description with associated finds. Burials and cemeteries with Egyptian
and Egyptianized material culture appear to fall somewhere between the two broad categories of architecture and objects, and so are habitually absent from discussions involving the former, while the associated grave goods are relegated to discourse of the latter, without any type of synthesis, or even an examination of tomb architecture.

For example, none of the studies attempting to examine a broad variety of types of Egyptian and Egyptianized material culture in the Levant devote a section to cemeteries or tombs, and those publications that even remotely analyze Egyptian-style burials together as a group focus on one object type, the anthropoid coffin, which again centers around a debate concerning the ethnicity of the occupants of these sarcophagi, without an in-depth analysis of exactly why or how a coffin burial might be significant in terms of the cultural and socio-religious beliefs of the ethnicities in question (e.g., Killebrew 2005: 65-67).¹ Even tomb architecture, another fundamental aspect of mortuary customs, plays a secondary role to the presence of an anthropoid coffin, for example, in Rivka Gonen’s 1992 treatise on Late Bronze Age burial patterns, where almost all tomb types are categorized according to a certain variety of pit, cave, or chamber (including both native and foreign types), whereas those with anthropoid coffins are placed in a separate category, even though they were also located in pit and cave tombs.

Gonen concludes that the majority of the anthropoid sarcophagi burials must have belonged to Egyptians, as “the large number of Egyptian and Egyptian-style objects, and particularly the Egyptian stelae placed over the burial, most probably point to the homeland of the deceased” (1992: 29). On the other hand, she asserts that the anthropoid coffins are discovered in the same types of pit and anthropogenic cave tombs as those without coffins, and

¹ For a more detailed description of the debate surrounding the occupants of the anthropoid coffins, see the introduction to chapter four.
that different burial types, whether with a coffin or not, reflect regional variation rather than a
distinction in burial traditions, and therefore “this leads to the conclusion that the population
buried in the anthropoid coffins did not attempt to preserve a complete burial custom but only
held on to the coffin component; they adjusted to the type of burial common in various parts of
the country” and furthermore, “these foreign soldiers had no right, and perhaps no desire, to
prepare special burial chambers and, therefore, buried their dead in whatever type of burial was
available” (1992: 29).

The above cited conclusions rely on several assumptions regarding the socio-religious
thought and praxis of burial customs of the Egyptians, of the Egyptians as foreigners, and of the
Egyptians as soldiers. First, Gonen assumes that because the Egyptians who were buried in
coffins did not construct distinct tomb types, that they did not “preserve a complete burial
custom,” without any discussion as to exactly what tomb types were extant in the New Kingdom
in Egypt that could be counted as a complete burial custom, which are, in fact, the same two
types of tombs in which they are buried in the Levant, namely pits and anthropogenic caves
(Wada 2007: 352-353). Second, Gonen assumes that these Egyptians, as foreigners and as
soldiers, had no “right” or “desire” for a “special” burial, which implies that both expatriate
Egyptians and Egyptian soldiers were lacking the same socio-political privileges and desiderata
of the Egyptians in the homeland or of other occupations. These statements do not take into
consideration the numerous high-value objects, including anthropoid coffins, in these tombs that
demonstrate the occupants would have been considered part of the privileged upper echelons of
Egyptian society, or why or why not certain elements of burial customs might be more or less
“desired.”
While mortuary architecture might not be a widespread subject among studies of Egyptian and Egyptianized material culture in the Levant, other forms of architecture, including domestic, martial, administrative, and religious varieties, are considered important enough to garner their own individual studies. Eliezer Oren was the first to publish such a study that focused on gathering together and analyzing Egyptian-style architecture in the Levant, with his pioneering 1984 article “‘Governors’ Residencies’ in Canaan under the New Kingdom: A Case Study of Egyptian Administration” (see also Oren 1992). The goal of this study was not only to catalogue and describe some of the buildings labeled as “Governor’ Residencies,” but also to ascertain the function of these structures, as well as the characteristics that bond them together.

Oren briefly examined nine sites with proposed residencies, concluding that while all of the edifices served the Egyptian administration, only seven examples truly functioned as “the palaces and patrician houses of army officers and noblemen” and were therefore proper Egyptian governors’ residencies (Tel Sera‘, Tell Jemmeh, Tell el-Hesi, Tell el-Far‘a (S), Tel Masos, and Beth-Shean), while the remaining two were a “fortified palace” (Aphek) and a “fortified structure” (Deir el-Balah) (1984: 37, 49, 54). These conclusions were the result of comparing and contrasting the architectural characteristics of the structures, which included the layout, foundations, dimensions, main entrance, and roof. A true Egyptian governor’s residency should have a symmetrical and “congenial” layout focused around a large central chamber, deep foundation trenches filled with sand, mudbrick foundations, thick walls, square dimensions between 225-550 m², a corner main entrance, and columns to support a roof, all of which are based on “typical” and “suitable analogies in Egyptian domestic architecture of the New Kingdom” (Oren 1984: 39, 50).
Oren goes no further in elucidating these Egyptian analogies than referring to a figure that displays the architectural layout of three large villas from Amarna in Egypt, which he states “comprise a reliable representative profile of domestic architecture in Egypt” (1984: 51). He also mentions the typical three-unit design of Egyptian houses, but does not explain how this layout is relevant to anything more than the central-chamber feature of governors’ residencies. Using the aforementioned list of designated characteristics of Egyptian governors’ residencies, Oren concluded that because the structure at Deir el-Balah contained corner towers and thick walls, it was “not at all a ‘governor’s residency’” and because the structure at Aphek lacked a central chamber and had stone foundations, it was “not built in Egyptian architectural style” and so both, therefore, were not governors’ residencies (1984: 49-50, 54).

These conclusions are puzzling, though, because thick walls are indeed one of the requirements for a residency, and other structures labeled as true residencies, such as Buildings 1500 and 1700 at Beth-Shean, had sandless foundations of stone, as well as the latter edifice lacked a central chamber. On the other hand, Building 350 at Deir el-Balah did have mudbrick foundations, deep foundation trenches filled with sand, thick walls, and square dimensions between 225-550 m², which fulfills the majority of the residency requirements. Oren does acknowledge that not every building he identifies as an Egyptian residency contains all of the above-listed features, and that some examples exhibit the exact opposite, such as a central entrance, no roof, and odd proportions between the central space and total area of the structure, which he theorizes was because “no particular Egyptian model was copied, or any uniform, modular plan, but rather an Egyptian architectural concept was adopted to the local building tradition” (1984: 52).
However, it is still unclear why some of the aforementioned characteristics appear to identify one building as a residency, while the same characteristics in another structure are not considered adequate evidence for the same label. Furthermore, if there is a weighting-system of features, so that some are considered more important than others in identifying a structure as an Egyptian governor’s residency, Oren makes no mention of this system or associated weights. Not only is there not a clear distinction between which characteristics are essential or the most imperative in identifying an Egyptian governor’s residency, but there is also no discussion as to why any of the aforementioned features, such as a de-centralized main entrance, were significant to the Egyptians of the New Kingdom, and what effects a central entrance would have on an Egyptian living in the residence. This same critique regarding the cultural meaning behind Egyptian features was mentioned in the examination of Egyptian-style burials and anthropoid coffins above, and can be applied to almost every study of Egyptian and Egyptianized material culture in the Levant.²

1.3.2 Phase 2: 1990s-early 2000s

This same trend is observable in the most comprehensive study of Egyptian and Egyptianized material in the Levant, *Egyptianization and Elite Emulation in Ramesside Palestine*, published by Carolyn Higginbotham in 2000 (see also 1993; 1996; 1998). In this study, Higginbotham also addresses the question of Egyptian absence-or-presence in Canaan based on an examination of Egyptian and Egyptian-style pottery, non-ceramic vessels, objects, objects, objects.

² Interestingly enough, Oren also mentions the anthropoid coffins in his article, which he claims belonged to Sea-People mercenaries in the Egyptian garrison who buried their dead in Aegean-type rock-hewn tombs and according to Egyptian burial customs (1984: 49, 52-53). Again, it is unclear exactly why Aegean mercenaries would desire to be buried in Egyptian custom, why the tombs might not just belong to Egyptians themselves, and what tomb types were common in Egypt in the New Kingdom, of which rock-hewn examples are numerous. Furthermore, the Aegean-type tombs mentioned by Oren at Beth-Shean were actually reused archetypal shaft tombs of the Early Bronze Age IV, which severs the link with a Late Bronze Age or Iron Age Aegean cultural affinity.
and architecture. While the query might be the same as previous studies (and all following scholarship) and uses the exact same material as evidence, her initial assumptions and conclusions are quite the opposite, in that she asserts the presence of Egyptian and Egyptianized architecture and objects in Canaan is actually evidence for the absence of Egyptians at the majority of sites in Canaan. Higginbotham reaches this conclusion based on her examination of the material under the lens of “Core-Periphery” and “Elite Emulation” models, in opposition to the “Direct Rule” paradigm.

According to Higginbotham, only five sites in Canaan (Beth-Shean, Deir el-Balah, Jaffa, Gaza, and Timna‘) fall under the Direct Rule model, where “the rise in the frequency of finds with Egyptian associations directly reflects the posting of large numbers of Egyptian soldiers and bureaucrats to imperial centers in Palestine,” which she associates with Weinstein’s previous work (2000: 3). Higginbotham asserts that evidence for the Direct Rule model firstly arrives from Egyptian-style architecture, which should be indistinguishable from examples in Egypt and unevenly distributed across the Levant, with some sites having more Egyptianized architecture than others, and from Egyptian and Egyptian-style artifacts, which should include both domestic and prestige items closely resembling the corpus of objects in Egypt, come from domestic, funerary, and ritualistic contexts, some of which must be “purely” Egyptian, and be unevenly distributed, with some sites having more Egyptianized artifacts than others (2000: 11, 14, Table 1).

Under the intimately connected Core Periphery and Elite Emulation models, which Higginbotham believes applies to the preponderance of the Levant, “the peripheries of prestigious cultures sometimes derive a legitimating function from the core cultures” and therefore “features of the ‘great civilization’ are adopted and adapted by local elites and their
communities to provide an iconography of power which transfers some of the prestige of the distant center to the local rulers” (2000: 6). Higginbotham claims that evidence for these two models include Egyptian-style architecture, which should consist of hybridized Egypto-Canaanite traits, be evenly distributed within a given radius of Egypt and gradually decline with further distance, and from Egyptian and Egyptian-style artifacts, which should be a restricted corpus of prestige goods and transport vessels with some Egypto-Canaanite hybridized characteristics, and come mostly from funerary and ritualistic contexts, which should never be “purely” Egyptian (2000: 7, 11, 15, Table 1).

According to the results of Higginbotham’s study, Egyptian-style architecture at Beth-Shean, Deir el-Balah, Jaffa, Gaza, and Timna‘ should be indistinguishable from examples in Egypt, while the remainder of Egyptianized architecture in the Levant should be hybridized (2000: 129). She reaches these conclusions through examining the architectural plan and construction techniques (brick size and foundations) of four categories of Egyptianized architecture: “Center Hall Houses,” “Three Room Houses,” “Administrative Buildings,” and “Temples” (Higginbotham 2000: 263-264). While she does attempt to show parallels between these types of structures and actual examples in Egypt, her identification of Egyptianized domestic architecture with regards to Egypt is not always completely accurate, as what she describes as a Center Hall House actually represents three separate domicile types in New Kingdom Egypt.

Higginbotham’s Center Hall House with Square/Broad Main Room actually corresponds to two different Egyptian house types, anteroom villas and four-sided villas, which are generally distinguishable from each other through layout, size, and occupants, with the former type being larger, having an exterior anteroom, and belonging to the highest socio-economic strata of
Egyptian society (Tietze 1985: 48-84). The residences she labels as Center Hall Houses with Long Main Room correspond to the three-sided houses of Egypt, whose layout is viewed as completely different from the large villas above, due to the lack of a centralized chamber, much smaller size, and ownership among individuals of a lower socio-economic level. Perhaps she assumed that these domestic types of architecture were similar enough to categorize all three together as one example, but this creates problems with her identification of architecture in the Levant as Egyptian or non-Egyptian.

For example, in discussing the position of the main entrance of an Egyptian-style residence, Higginbotham states that “the placement of the entrance in a location other than the front corner of the building is a variation not attested at Amarna,” and while this is certainly true of ante-room villas, this is categorically not accurate for four-sided villas and three-sided houses, which are all included together in her Center Hall House type (2000: 266, 268). This is one example of a “variation” that she utilizes as evidence that most of the Egyptian-style architecture in Canaan is hybridized and not purely Egyptian, and therefore must substantiate the Elite Emulation paradigm. However, for those sites under the Direct Rule model, such as Beth-Shean, the variation in characteristics of domestic architecture are discarded or rationalized, as these houses must represent pure Egyptian architecture for the model to be relevant.

For example, in attempting to explain why the main entrance to Building 1500 at Beth-Shean was positioned in a centralized location while those in Egypt are always in the corner, Higginbotham describes it as “an accommodation to the climate; at Beth Shan during much of the year the breeze from the street would have been cool and refreshing rather than hot and dusty,” and in explaining why the structure had stone foundations while those in Egypt always had mudbrick foundations, it was “likewise appropriate in a region of higher rainfall” (2000: 89).
It is unclear why these meteorological theories do not apply to other Egyptianized buildings in the Levant with a centralized entrance and stone foundations, which are utilized as hybridized evidence for the Elite Emulation model. Also, there really was no reason to provide an explanation for the centralized entrance to Building 1500, as this structure is most similar to an Egyptian four-sided house, which can either have a corner or centralized main threshold.

There is also a small issue with Higginbotham’s identification of a structure in Canaan as Egyptian-style based solely on comparisons with other Egyptianized houses, rather than actual examples in Egypt. Instead of trying to argue that a structure is hybridized due to its combination of Egyptian and Canaanite characteristics, she occasionally argues that a residence is not Egyptian based solely on comparisons with other Egyptian-style houses in the Levant, which she has already deemed to be hybridized, consequently invalidating the conclusion (Higginbotham 2000: 278-281, 289-290). This practice results in a few buildings in Canaan that were previously viewed as Egyptian-style now being labeled as completely non-Egyptian and therefore not even considered a part of Higginbotham’s research (2000: 277, 279, 284).

Similar findings from the study, such as “no site other than Beth Shan produced more than one Egyptian-style structure per stratum” result from her discussion of only some of the types of domestic architecture in the Egyptian New Kingdom (Higginbotham 2000: 79). Since Higginbotham’s two types of residences, Center Hall Houses and Three Room Houses, together only comprise four out of the five total non-royal house types in Egypt, many structures that might have had Egyptian characteristics were overlooked in her research. This is an especially noteworthy omission, because the one form of Egyptian domicile excluded from Higginbotham’s study, the tripartite house, is the most widespread type of residence in the New Kingdom in Egypt, and most often belongs to employees of the Egyptian government, which could be
considered the chief occupation of the majority of Egyptians proposed to be residing and working in the Levant.

It is also unfortunate that some of the descriptive information Higginbotham provides about Egyptian-style buildings in Canaan is inaccurate, as these errors continue to be cited as fact and are used as evidence in later scholarship. For example, her admission that Buildings 1500 and 1700 at Beth-Shean had “the same basic plan” or that the former can be identified as the house of the Egyptian Ramsesuserkhepesh because of hieroglyphic inscriptions discovered inside, are both erroneous, as no inscriptions related to Ramsesuserkhepesh were actually found in Building 1500, which also clearly has a centralized chamber, while Building 1700 does not (Higginbotham 2000: 89, 271). Ellen Morris and Ann Killebrew appear to have garnered this inaccurate information from Higginbotham, as these two statements about Buildings 1500 and 1700 are also included in their 2005 monographs, where they cite Higginbotham and other authors as a reference, and the other sources contain the correct information, including an original publication of the plans and descriptions of these two structures (Killebrew 2005: 54-55, 58-64, Morris 2005: 756-758, Notes 174, 183).

As is typical with most studies of Egyptian and Egyptian-style material in the Levant, there is not a major focus on function in Higginbotham’s examination of Egyptian-style buildings, and not necessarily the function of an entire structure, but rather the function and significance of a certain layout or architectural feature. For example, there is no discussion as to why a centralized hall is imperative for an anteroom or four-sided villa, but not essential in a three-sided, tripartite, or three-room house, or even why a centralized chamber might be important for any type of Egyptian residence. The layout of an Egyptian house is intimately tied with the function and privacy of each room. Without a detailed discussion of these aspects, the
inclusion of a centralized chamber or a corner entrance in an Egyptian-style house in the Levant seems like an irrelevant and nonessential point. In the rare instances where Higginbotham does comment on function, for example, the aforementioned function of the non-Egyptian entrance placement in Building 1500, she attributes it to climate, when it is widely published that the location of the main threshold was an aspect of privacy in relation to the dimensions and layout of the house.

This lack of attention on functional detail also appears in Higginbotham’s analysis of Egyptian and Egyptianized artifacts in Canaan, which she claims are evidence of the Elite Emulation model, which should include a restricted corpus of prestige goods and transport vessels with some Egypto-Canaanite hybridized characteristics, and come mostly from funerary and ritualistic contexts, which should never be “purely” Egyptian. Occasionally her analysis of an object group or specific item includes a comment about function, but these are generally vague, like “this category comprises objects intended exclusively for use in cultic activities” or for some reason only references a function proposed by scholars for the associated items in the Levant, as opposed to the parallel objects in Egypt (Higginbotham 2000: 151-153, 222). The former practice tends to gloss over the true purpose and use of an object, for example, “cultic” can apply to several different categories in New Kingdom Egypt, where cultic practices not only took place in temple and funerary contexts, but were also a part of quotidian life at home.

The latter practice of non-Egyptological references either demonstrates that original research into the use and appearance of the object type in Egypt was not performed, or relies on an assumption that Egyptians were not actually using these items and therefore Egyptian objects played a different role outside of Egypt. The confusion over this matter is evident in Higginbotham’s description of Egyptian and Egyptianized shabtis and amulets, both of which
were oddly not included in the section on cultic objects. For shabtis, Higginbotham provides a typical Egyptian function “as a substitute for the deceased as a laborer in the afterworld,” however, the use and designation of Egyptian and Egyptianized amulets is much more controversial:

In many studies and reports these objects are referred to as “amulets,” a term that implies a religious or magical function. As McGovern (1985:1) has rightly noted, that function is difficult to prove in most cases, due to a lack of documentation. Even if a particular pendant type can be shown to have served an amuletic function in a neighboring region where textual evidence is available, that does not prove that it served the same function in Palestine. (2000: 228, 248)

These statements reveal Higginbotham’s occasionally varied and disparate treatment of the objects in her study, where on the one hand, she assumes the users of the Egyptian and Egyptian-style amulets in the Levant were Canaanites (since an Egyptian using these objects would have most likely employed them in an Egyptian way), but on the other hand, she implies that shabtis were used in a strictly Egyptian manner by solely listing a Egyptian cultural function.

The block quote above about Egyptian and Egyptianized amulets also reveals some assumptions about the individuals involved in the process of Elite Emulation. These individuals appear so fixated on the use of an Egyptian-style object as a status marker, that any other purpose or meaning behind the item is completely mislaid, including any personal or local cultural beliefs associated with the object. According to this assumption, the inclusion of an Egyptian amulet in a Canaanite tomb should be viewed exclusively as a status symbol, without further acknowledgment of any other use, which leads to status essentially trumping any local religious beliefs about death and the afterlife. Furthermore, rather than only viewing these “emulators” as passive and culturally ignorant, it would seem more conceivable that an individual attempting to emulate another individual (or culture) would not only desire to emulate the possession of an object but also to emulate the utilization of an object.
The way in which Higginbotham views Elite Emulation also requires that the movement of cultural influence between two areas is entirely in one direction, asserting that “although we cannot dismiss out of hand the possibility that Egyptians might adopt Palestinian material culture … it is the less likely scenario” (2000: 13). This belief is evident in her analysis of several different objects, for example, a stela from a temple at Beth-Shean, which depicts a goddess who “is not named and cannot be identified from the iconography; she is probably a local deity presented in Egyptian guise,” implying that this is an Egypto-Canaanite hybridized stela created by Canaanites, who chose to represent a Canaanite goddess as Egyptian (Higginbotham 2000: 91). Higginbotham does not mention that a female Egyptian is shown worshipping the deity or that the stela was originally painted with an Egyptian hieroglyphic text that had become illegible, or that the very source she references (James and McGovern 1993: 240) identifies the goddess as Antit based on iconographical parallels and the text inscribed on a similar stela at Beth-Shean.

It is well known, through artistic and textual evidence in both Canaan and Egypt, that Egyptians in the New Kingdom worshipped Canaanite deities and even built temples to these foreign gods and goddesses in Egypt (David 1986: 83; Jørgensen 1998: Figs. 39, 120; Kitchen 1969: 89; Pritchard 1969: 250). For Higginbotham to completely disregard this aspect of Egyptian religious syncretism with Canaanite worship, reveals an assumption about the strictly “top-down” influence of Elite Emulation, without any acknowledgement that cultural interaction typically results in cultural influence in both directions. This assumption is also evident in her difficulties in identifying various objects in the Levant as Egyptian-style, especially when the items are found in equal numbers in both Egypt and Canaan or when it has been suggested that an object was originally Canaanite, which Higginbotham attributes to “problems involved in separating international styles from local styles that have spread beyond their place of origin.”
rather than accept that Canaanite culture (the emulators) might have actually influenced Egyptian culture (the emulated) (2000: 172, 176, 254-255).

These issues also affect Higginbotham’s identification of Egypto-Canaanite hybridization among Egyptian-style objects in the Levant, which she considers an integral feature for evidence of Elite Emulation, but only in the sense that the item was originally Egyptian and then hybridized with Canaanite traits, and not originally Canaanite and then hybridized with Egyptian traits, which, as mentioned in the preceding paragraph, is occasionally difficult to distinguish. Higginbotham appears to have only found evidence of hybridization in the techniques and materials used to manufacture certain objects. For example, she asserts that the existence of Egyptian-style stone vessels made of gypsum (as opposed to the imported Egyptian versions of calcite) are evidence of a hybridization of an Egyptian form and a Canaanite material, suggesting that “the substitution of gypsum for calcite was presumably due to the unavailability of calcite” (Higginbotham 2000: 77-78, 184). This is not a strong argument for hybridization and Elite Emulation, as Egyptians residing in Canaan would have also lacked easy local access to calcite and could have therefore been the producers and/or users of the gypsum versions in the Levant.

Higginbotham also appears to apply the same theory of material-based hybridization in analyzing Egyptianized pottery in Canaan. According to her theory, even vessels of Egyptian form that were manufactured using Egyptian techniques are considered hybridized if they were produced locally out of native clays in the Levant, which she attributes to the idea that “Palestinian potters not only imitated Egyptian pottery types, but also modified the local ceramic repertoire through the adoption of Egyptian production techniques,” such as the addition of straw temper or string-cutting (Higginbotham 2000: 76). This reveals the constricted assumption that under Elite Emulation, manufacturing techniques are only borrowed for the sole purpose of
status marking, and not because the techniques would actually be beneficial to the production of pottery by allowing more careful and even firing through the addition of straw temper, or a faster removal from the wheel through string-cutting.

In terms of stone vessels, Higginbotham even recognizes that the techniques employed “represent the work of a skilled, perhaps even Egyptian-trained, artisan, but their forms cannot be paralleled among contemporary stone vessels from the Nile Valley” and so must reflect a hybridization founded in Elite Emulation, rather than represent the borrowing of production techniques that resulted in a quicker manufacturing process or more finely created product (2000: 185-186).

According to Higginbotham, besides the Egypto-Canaanite hybridization of objects, the other essential feature of Elite Emulation is the presence of a restricted corpus of Egyptian and Egyptianized prestige goods, which is characterized by a lack of domestic items. The first problem with this aspect of the Elite Emulation model is in the dichotomy between the terms “prestige” and “domestic,” when these words actually denote two different concepts. The employment of the former word usually refers to an object that is considered to be a symbolic or physical marker of a high socio-economic status, frequently from the designation of the object as high-value, while the latter, on the other hand, typically only refers to the context in which the object was discovered. In New Kingdom Egypt, these two terms are not in opposition, as prestige objects, such as gold jewelry or imported vessels, are commonly discovered in domestic contexts. If the overwhelming majority of Egyptian objects in Canaan were high-value or prestige goods, this is more likely a result of what is routinely imported rather than a direct reflection of Elite Emulation.
Another issue stems from Higginbotham’s manner of identifying Egyptian and Egyptian-style prestige objects, whose “treatment as prestige goods is reflected in the fact that they are found primarily in temples and tombs” (2000: 133). As noted above, this method of identification does not reflect the function or employment of cultural material in Egypt, where high-value items are also found in domestic contexts, and quotidian objects, such as utilitarian ceramic vessels, are also commonly discovered in temples and tombs, where especially in the early 18th Dynasty, items of daily use were the most widespread genre of burial equipment (Meskell 1999: 184; Milde 1989: 89-95; Taylor 2010: 234). Higginbotham’s conclusion that “with the exception of Spinning Bowls and Handleless Storage Jars, the attested types can be characterized as prestige goods rather than domestic artifacts” is partially untrue regarding value (unprestigious) or context (domestic), as almost every form of locally-produced Egyptian-style pottery should be added to the list, as well the majority of objects related to the Egyptian daily personal toilette, for example.

Opportunities for further research resulting from Higginbotham’s study of Egyptian and Egyptian-style material culture in the Levant stem from the absence of a full discussion or understanding of the function and significance of individual types of Egyptian architecture and objects, as well of more detailed aspects, like individual rooms or the characteristics of an item. Although there might be some issues with Higginbotham’s work, it still remains the most comprehensively researched and thorough study of the many different types of Egyptian and Egyptianized architecture and objects in the Levant, and provides a satisfactory foundational starting point for all subsequent research on the material.

Several scholars who reacted strongly against Higginbotham’s theories focused on her basic conclusion that the presence of Egyptian and Egyptianized material in the Levant
establishes the absence of Egyptians at the majority of sites in Canaan (Hasel 1998: 116; Killebrew 2005: 53-55; Martin 2011: 259-261; Morris 2005: 8-17). Disagreements with Higginbotham and her theory of Egyptian Elite Emulation spawned several more studies that focused on the question of Egyptian presence-or-absence, all of which disagreed with Higginbotham’s results, and the majority of which reached similar conclusions proffered by Weinstein two decades earlier. A few of these studies habitually regurgitate Higginbotham’s data in order to disprove her conclusions, while still ignoring issues of individualized function and significance and detailed comparisons with Egyptian comparanda.

One of the earliest studies was Michael Hasel’s 1998 monograph, *Domination and Resistance: Egyptian Military Activity in the Southern Levant, ca.1300–1185 B.C.* (see also Hasel 1996). As the title entails, the focus of this research was to “investigate the nature of Egyptian military activity during the Late Bronze/Early Iron Transition,” which attempted to establish martial tactics, the effect on the archaeological record, and the impact on Levantine culture, based on an examination of destruction levels, military terminology and iconography, and Egyptian and Egyptian-style architecture and objects in the Levant (1998: 7). Hasel continually makes it clear that the foremost purpose of including the latter material is because “these categories of material culture are important for establishing Egyptian presence/influence” (1998: 91). This question of Egyptian presence-or-absence in Canaan is integral to Hasel’s argument that the Egyptians held a strong economic, political, and ideological interest in the region, as “Egyptian presence in the southern Levant is a matter of great importance in establishing the impetus for Egyptian military activity in the region” (1998: 92, 103).

Higginbotham’s model of Elite Emulation directly conflicts with Hasel’s theories about Egyptian interest and military activity in the Levant, and he therefore disagrees with her
conclusions, proposing that Egyptian and Egyptianized governors’ residencies, hieratic texts, temples, stelae, plaques, and monumental inscriptions especially disprove the model of Egyptian Elite Emulation in Canaan (1998: 116). Other Egyptian and Egyptian-style material is also included in his research, which he separates into fourteen categories: governors’ residencies, forts on the Ways of Horus, temples, naval bases, armory and weapons, ivory, doorjambs and lintels, stelae, statues and plaques, pottery and alabaster, anthropoid coffins, pendants and amulets, scarab seals, and hieratic inscriptions (Hasel 1998: 92).

Hasel provides a very basic overview of these types of architecture and objects in the Levant, based on previous scholarship and without further analysis, as this material is not the major focus of his study. He acknowledges that his brief survey of Egyptian and Egyptianized material culture is a “limitation,” but accommodates the lapse through directing the reader to “current references for further analysis,” which include, among a few others, the aforementioned publications of Weinstein in 1981 and Higginbotham in 1993, 1996, and 1998 (Hasel 1998: 12). Again, the purpose of Hasel’s basic overview of Egyptian and Egyptian-style architecture and objects in the Levant is reiterated in his conclusion, where he states “from the above survey of research it is evident that Egyptian influence and presence in the southern Levant is well established during the Late Bronze/Early Iron Age transition period” (1998: 114). While Hasel’s claim that his study presents “the crucial analysis of the archaeological material in an unprecedented manner” absolutely applies to his novel and thorough research regarding destruction levels and military terminology and iconography, this statement cannot be applied to his observations on Egyptian and Egyptianized material culture in the Levant, and the same holds true for more recent studies on the subject (Hasel 1998: 12).
Before turning to these more recent publications, a discussion of a closely related unpublished doctoral dissertation by Gregory Mumford filed in the same year as Hasel’s study is required (1998). In his dissertation, Mumford sought to examine the international relations between Egypt, Sinai, and Syria-Palestine during the Late Bronze Age to early Persian Period using a new methodological framework based purely on archaeological evidence, in order to verify or refute previous studies on the same subject, which he repeatedly asserts have “relied heavily upon the extant textual-pictorial record, and have mostly neglected the full potential of the archaeological record” (1998: ii, 2-4, 13, 3896). Furthermore, Mumford states that “no study to date has systematically quantified and analyzed the overall impact of Egyptian and Egyptian(izing) products upon the indigenous material culture assemblages at sites in the Sinai and Syria-Palestine,” which is somewhat of an odd claim since Weinstein, Oren, Higginbotham, and Hasel had already published their research and/or written their dissertations that focused on the same archaeological material Mumford uses in his research (Hasel 1996; 1998; Higginbotham 1993; 1996; 1998; Mumford 1998: 2-3; Oren 1984; 1992; Weinstein 1981).3

Like earlier scholarship, Mumford also attempts to answer the question of Egyptian presence-or-absence in Canaan through an analysis of Egyptian and Egyptianized material culture in the Levant, however, unlike previous studies, he focuses entirely on counting objects, whose quantities are scrutinized through statistical models in order to “measure the influence of one culture (e.g., Egypt) upon another (e.g., Syria-Palestine) by quantifying the presence of distinctive material culture components of the first culture within the material culture assemblage of the second” (1998: 2). This statistical analysis required that every single item discovered in Late Bronze Age to Persian Period contexts at more than 30 sites in the Sinai and the Levant had

3 Oren 1984 and Weinstein 1981 are the only references from this list that appear in Mumford’s dissertation.
to be identified as “Egyptian/izing” or “non-Egyptian/izing” and then quantified and totaled in order to determine the proportions and distribution of Egyptian and Egyptian-style objects across these regions. This was obviously a massive undertaking, which is clearly defined by the sheer volume of Mumford’s dissertation of over 4,000 pages.

Mumford identifies an object as Egyptian/izing or non-Egyptian/izing based on characteristics related to “materials,” “forms,” and “motifs,” each of which includes several traits that are defined as “Egyptian,” “generic,” or “non-Egyptian” (1998: 28-29, Table 1.6). For materials, the classification is straightforward: if the material is native to Egypt and not to the Levant, then it is Egyptian, and if the reverse is true, then it is non-Egyptian, and if the material is native to both areas, then it is generic. The various types of materials include metals, stones, minerals, clays, pigments, flora, and fauna. The classification of forms and motifs is not as straightforward, for there is no discussion or explanation as to why any of the listed characteristics should be considered Egyptian, non-Egyptian, or generic, and the associated citation only lists a few articles that discuss the artistic designs of inlays, ivories, and “Egyptians in Assyrian Art” (Mumford 1998: 28, Note 12 cites Albenda 1982; Liebowitz 1967; 1972; 1977; 1980).

These issues are amplified by the vaguely described types of “forms,” which include architectural elements, statuary, stelae, offering tables, seals, pendants and amulets, toiletries, containers, fittings, weaponry, weights, and game boards. For example, Egyptian pendants and amulets are only characterized as “deities, etc.,” while generic examples are defined as “simple types,” and non-Egyptian pendants and amulets are only described as “foreign types” (Mumford 1998: Table 1.6). The various types of “motifs” are even more confusing, as the Egyptian examples include “language, iconography, Hathor-style wig, cosmetic eye line, cultic symbols,
smiting posture,” while the generic motifs consist of “geometric decoration, simple depictions of fauna, simple depictions of flora,” and non-Egyptian examples are “foreign languages/symbols (e.g., cuneiform), iconography, deity standing on animal’s back, figure holding two animals apart” (Mumford 1998: Table 1.6).

Some of these motifs, which range from the very specific “Hathor-style wig” to the broad “cultic symbols,” appear to be incongruous and random, and there is absolutely no discussion or information as to why they were purposely chosen as indicators of an Egyptian or non-Egyptian cultural affinity or why they even represent a certain cultural style. Furthermore, it is never stated how many or what combination of the listed traits actually identify an object as Egyptian or non-Egyptian, which implies that if at least one characteristic of the object is deemed Egyptian in material, form, or motif, then that single trait marks the item as Egyptian/izing. It is also unclear how objects with only “generic” characteristics are categorized, as every object is only defined as either Egyptian/izing or non-Egyptian/izing in the qualitative analysis of each site. However, Mumford does state that “this study quantifies only artefacts that can be classified (with a certain degree of confidence) as ‘Egyptianizing’ in form, material, or motif,” which implies that the generic objects are all categorized as non-Egyptian/izing (1998: 29).

Although Mumford is exceptionally consistent in his approach to the material, this methodological approach creates a few issues in the classification of items as Egyptian or non-Egyptian, for example, several of the doorways in Building 1500 at Beth-Shean contained both inscribed (with hieroglyphic texts) and uninscribed limestone doorjambs and T-shaped thresholds still in situ. In his analysis of the building, Mumford always designates the uninscribed doorjambs as non-Egyptian, while the inscribed door-jambs and T-shaped thresholds are always categorized as Egyptian, even if they are all elements of the same doorway (1998:
Mumford also acknowledges that there are difficulties associated with the basic quantification of certain objects, for example, a beaded-bracelet could either be simply counted as one item or include the total amount of beads, which can become even more problematic when the excavators or authors vaguely describe finds, such as “numerous beads.” Mumford assuages these problems by delineating how he quantifies objects, as well as the various terms for the indistinct amounts sometimes listed in publications, for example, the word “numerous” is counted as 20-25+ objects (1998: 32-39).

While this solution does normalize the quantification of objects across all of the sites and time periods, allowing for feasible broad generalizations and comparisons, most of the data for an individual site, including the proportions of Egyptian and non-Egyptian material culture, cannot be used as interpretive evidence, especially since the classification of cultural affinity is problematic. Mumford acknowledges the issues with an “admittedly gross oversimplification,” but states that “these simplifications are necessary, however, to enable this writer’s series of broad comparisons concerning the spatial and temporal distribution of Egyptian material culture over a large geographical area and lengthy time period” (1998: 30). Nevertheless, Mumford’s study of Egyptian and Egyptianized material culture in the Levant resulted in several fascinating and viable conclusions about the spread of this material, how it changed over time, and what information these changes reflect about each area and time period.

Mumford’s study is aligned with the previous and subsequent publications on the same subject, all of which essentially address the same question of Egyptian presence-or-absence through the broad and generalized examination of Egyptian and Egyptianized architecture and/or objects, without an in-depth analysis of significance or function from an Egyptian cultural perspective.
1.3.3 Phase 3: mid-late 2000s

This statement also partially applies to two more recently published studies on Egyptian and Egyptian-style material culture in the Levant by Ellen Morris and Ann Killebrew in 2005. In the monograph, The Architecture of Imperialism: Military Bases and the Evolution of Foreign Policy in Egypt’s New Kingdom, Morris performs a “cross-frontier investigation of the military bases that house imperial functionaries and troops” in Syria-Palestine, Nubia, Libya, and the Nile Valley throughout the New Kingdom, through an examination of the geographical and chronological distribution of Egyptian bases (2005: 1-2). Like Mumford’s study, Morris qualifies this generalized approach as a contrast to previous textually-based research in that “such a broad-based investigation into the spatial and temporal contexts of Egyptian emplacements serves to significantly complement and contextualize both the existing isolated site reports and the trends observed in the study of the textual material,” and like Hasel’s study, she focuses on the textual and archaeological evidence of Egyptian military history (Morris 2005: 7).

The foremost use of Egyptian and Egyptian-style cultural material in the Levant as evidence of an Egyptian presence at military bases is explicitly stated by Morris, when she affirms that “the present study abides by the rule that the wider the range of Egyptian or Egyptian-style artifacts discovered at a Syro-Palestinian site, the greater the probability that Egyptians themselves had at one time been resident” (2005: 17). In fact, the sites (whether fortified or unfortified) designated as Egyptian military bases in the study were identified as such through the inclusion of at least four out of five categories of Egyptian and Egyptianized material at the site, which included architecture, statuary or hieroglyphic inscriptions, pottery, non-
prestige goods, and prestige goods (Morris 2005: 6-7, 17). Once again, the significance of “prestige” versus “non-prestige” appears among the object categories, and akin to previous scholarship, the definition of the concept is unclear, as the items of prestige include core-formed glass and faience vessels, as well as anything manufactured out of ivory, calcite, gold, silver, or semiprecious stones, while non-prestige items include figurines, ceramic objects, small frit or faience amulets, scarabs bearing hieroglyphs or amuletic designs, or any object manufactured out of “common materials” (Morris 2005: 17, Note 32).

If by prestige, Morris means high-value, then this trait cannot be applied to all objects of the materials she listed, for example, not every semi-precious stone was valuable in Egypt in the New Kingdom, and even individuals in the lower levels of the socio-economic strata could own one or two items of the four most costly stones (carnelian, feldspar, red jasper, and lapis lazuli), signifying that quantity was of more consequence than material in terms of status symbols (Markowitz 2001: 202; Smith 1992: 204). Furthermore, it appears that some objects would overlap into two or more categories, such as ceramic vessels, which could be included in the pottery, prestige, and non-prestige groups, depending on the form, function, craftsmanship, and decorative elements. These categories are obviously generalized and oversimplified, and even though Morris admits that “this work addresses the artifacts discovered in and around military bases, but it does not make them a primary focus,” the identification of a site as an Egyptian military base is entirely based upon the discovery of these five categories of Egyptian and Egyptianized material, and therefore, this material is the foundation of her research (2005: 7, Note 15).

Morris’ monograph is an immensely thorough compilation of Egyptian New Kingdom military bases in Syria-Palestine, Nubia, Libya, and the Sinai, and her discussion of the
similarities and variations between them, and how they evolved geographically and chronologically, are indispensable for the study of Egyptian military history and international relations in the New Kingdom, as is her assessment of the textual evidence and terminology of Egyptian military activity. The conclusions that Morris reaches about governmental policy changes throughout the New Kingdom and how these are reflected in the establishment, abandonment, or modification of military bases are adequately argued and wholly convincing, however, as with earlier studies, the treatment of Egyptian and Egyptian-style architecture and artifacts is broadly generalized and occasionally inaccurate.

Some of these generalizations and inaccuracies stem from Morris’ reliance on previous scholarship evaluating Egyptian and Egyptianized material culture in the Levant, especially Higginbotham’s study, as evidenced by Morris’ use of Higginbotham’s terminology, like “Center-Hall Houses,” or the perpetuation of errors in Higginbotham’s work, like the aforementioned statements about incorrect information concerning Buildings 1500 and 1700 at Beth-Shean, where Morris cites both Higginbotham and other sources, and the other references actually contain the correct information, including the original publication of the plans and descriptions of these two structures (Morris 2005: 756-758, Notes 174, 183). Morris does provide a critique of Higginbotham’s study of Egyptian and Egyptian-style architecture and objects in Canaan, especially Higginbotham’s methodology, which Morris asserts “privileges the study of individual categories of artifact over the study of artifact assemblages” and that for Higginbotham “direct rule and elite emulation must necessarily be two mutually exclusive phenomena” (Morris 2005: 10, 14). While Higginbotham’s (and other scholars’) separation of artifacts from architecture might be problematic, her categorization of five groups of material is not that dissimilar to Morris’, and concerning the second critique, Higginbotham clearly states in
her conclusions that “each model applies partially,” essentially denoting that the two are not mutually exclusive (Higginbotham 2000: 129).

Nevertheless, Morris’ exclusive employment of data from previous studies on Egyptian and Egyptian-style architecture and objects in the Levant essentially means that her research perpetuates inaccurate generalizations made in these previous studies. This is apparent in her grouping of all types of Egyptian houses together as “center-hall houses,” for example, when she states that the general outline of a building at Tell er-Retabah is “that of a large square building with a small antechamber at one corner” which is “certainly consistent with the plan of a typical center-hall house” or that a chamber of a building at Tell el-Hebua I “was not central, as was the norm in center-hall houses,” when these two features are only aspects of two types of Egyptian residences, neither of which were extremely widespread in the New Kingdom (2005: 507, 510). These generalizations are also applied to the overall corpus of Egyptian and Egyptian-style objects in the Levant, which Morris states functioned as a “cost-efficient method of providing soldiers and administrative personnel stationed in foreign lands with at least some of the comforts of home” (2005: 16).

While this statement might describe a simple reason why Egyptian and Egyptian-style cultural material would be desirable to Egyptians in the Levant, there is no in-depth analysis of why an architectural feature or object is considered to be Egyptian or Egyptian-style, why or how these features and items were significant to the Egyptians of the New Kingdom, and why these features and objects were explicitly transferred from Egypt to Canaan, while others were not conveyed. Such an analysis would necessitate extensive research into Egyptian parallels in the New Kingdom, and the function of the Egyptian and Egyptian-style comparanda in Egypt, as
well as how they might have functioned differently in the Levant, all of which is essentially lacking in almost every study of Egyptian and Egyptianized material culture in the Levant.

Like Morris’ 2005 study, Ann Killebrew’s monograph, *Biblical Peoples and Ethnicity: An Archaeological Study of Egyptians, Canaanites, Philistines, and Early Israel, 1300-1100 B.C.E.*, which was published in the same year, also relies predominantly on the previous research published by Higginbotham and others (see also Killebrew 2004). This is especially apparent in Killebrew’s discussion of Egyptian and Egyptian-style material in the Levant, not only because Killebrew states that she “follows” and is “in general agreement with Higginbotham’s summary of the textual and archaeological evidence,” but also because the same aforementioned incorrect information, such as a lintel with “an incised figure of Ramesses-weser-khepesh” in Building 1500, present in Higginbotham’s work is also relayed in Killebrew’s book (Killebrew 2005: 54-55, 58-64). More parallels with previous scholarship on Egyptian and Egyptianized material culture in the Levant arrive from Killebrew’s foremost employment of the material to address the habitual Egyptian presence-or-absence question, which she answers by asserting that “Egyptian presence is evident in the architecture and artifacts and from historical texts of the period,” while also critiquing Higginbotham’s Elite Emulation paradigm as not providing enough evidence of hybridization and material distance-correlation (Killebrew 2005: 11, 54-55).

However, unlike previous studies, Killebrew significantly acknowledges and addresses the problems with defining the ambiguous relationship between ethnicity and material culture in archaeology, which includes providing her own interpretation of ethnicity as “a dynamic and ongoing process of interaction or ethnogenesis” that results “from a variety of diverse forces that can bind individuals into a social grouping” (2005: 8-9). Killebrew also presents a more comprehensive and integrated picture of the cultural boundaries between Egypt and Canaan in
the late New Kingdom through the examination of “culturally sensitive indicators of possible ethnicity or group boundaries” between the two regions (2005: 10). For Egypt, these indicators include Egyptian and Egyptian-style architecture and artifacts, of which the treatment of the former is admittedly taken directly from Higginbotham’s study of the material, while the latter is divided into three sections on burial customs, inscriptions, and pottery (Killebrew 2005: 65).

The two-paragraph section on Egyptian-style burial customs is essentially a catalogue of Levantine sites where anthropoid sarcophagi have been discovered, with a final statement that “anthropoid coffins are clearly an Egyptian burial custom and are similar to pottery coffins found in New Kingdom Egypt,” without any discussion as to why sarcophagi should be considered an Egyptian custom, why a coffin might be significant to Egyptian tenets and praxis concerning death and the afterlife, or evidence of other Egyptian and Egyptian-style burial customs, grave goods, and mortuary architecture in the Levant (Killebrew 2005: 67). The section on inscriptions is equally brief and oversimplified, however, the third section that examines locally-produced Egyptianized ceramics in Canaan is comprehensive and informative, essentially filling the void of “one of the most neglected topics of research in Egyptian-Canaanite relations during the fourteenth to twelfth centuries B.C.E.” (Killebrew 2005: 67, see also 2004). Killebrew’s analysis of Egyptianized pottery includes detailed information on potter’s workshops, morphological features, and manufacturing techniques, which she convincingly demonstrates are closely allied to ceramic production in Egypt, and therefore “Egyptian potters working at Egyptian strongholds in Canaan were responsible for this locally produced Egyptian-style pottery” (2005: 68).

Similar investigations about Egyptian and Egyptianized ceramics in the Levant by Mario Martin, who performed meticulous and exhaustive research on the material, and who published the definitive monograph on the subject in 2011, where every single form and available site with
Egyptian and Egyptian-style pottery was included. Nevertheless, a large portion of the conclusions on the material were related to the question of ethnicity and Egyptian presence-or-absence in the Levant in association with the ceramic assemblage. Research that could supplement Killebrew’s and Martin’s work on pottery includes a comprehensive analysis of the individualized function of each Egyptian and Egyptianized ceramic type, not only based on parallels in Egypt but also an examination of how these functions were equivalent or modified in the Levant, as well as the analysis and incorporation of newly discovered or unpublished Egyptian and Egyptian-style pottery at the time of their studies.

1.4 RESEARCH DESIGN

Based on the history of scholarship outlined above, it is clear that there are several trends among previous studies of Egyptian and Egyptianized material culture in the Levant. One of the more problematic trends is the repeated use of inaccurate and outdated information from earlier research on the material, without any real scrutiny or personal investigation of the data and evidence. This problem includes rudimentary descriptive information about sites, cemeteries, architecture, and objects in the Levant, and also the same basic explanatory information about comparanda from Egypt, which has almost resulted in the transformation of error into fact over several decades of sustained transmission. Resolving these problems requires a fresh examination of excavation records and original publications for both regions, in order to verify that the primary data are correct and discontinue the perpetuation of erroneous information. Since the most recent studies amassing Egyptian and Egyptianized cultural material in the Levant were published eight years ago (and these rely on even earlier information), there is also
an opportunity to incorporate new evidence from sites that have since been excavated, published since then, or were unavailable to the authors of previous research.

Another problematic trend in earlier scholarship is the absence of in-depth analysis about the generally-accepted laundry list of Egyptian features among the architecture and objects of Canaan. Rather than just superficially scanning a building or object seeking characteristics to checkmark off a list, these traits need to be analyzed in view of actual Egyptian parallels and context in order to establish if they are truly features that appear in Egypt, which should also include research into the contexts in which they occur, as well as their prevalence in the New Kingdom or associated time period contemporary with Levantine chronology. Diverse types of Egyptian-style structures or objects in the Levant need to be distinguished as they are in Egypt, with clear categorization into parallel groups, and due caution should be used in declaring generalities like “an Egyptian building has…,” when there are clearly several different edifice types in Egypt in the New Kingdom. This research requires a new methodological approach, where Egyptian and Egyptian-style material in the Levant is examined side-by-side with tangible examples from Egypt, which will allow an accurate and concrete comparison between both data sets and their contexts.

An omission in earlier studies about Egyptian and Egyptianized material culture in Canaan is the analysis of function, whether of an entire building, one object, or even a single architectural feature or trait of an object. Only examining the form or stylistic details of an item neglects one of the most essential aspects of material culture, utilization, which can be intimately connected with the cultural significance and meaning of the structure, item, or characteristic. The function of an Egyptian or Egyptian-style element in the Levant should not only be ascertained from comparanda in Egypt, but also in light of its context both in Canaan and Egypt,
in order to establish whether the function has shifted between the homeland and journey abroad. The cultural significance and role of the feature in Egyptian dogma and praxis is especially imperative, as this information might reveal why the structure type, object, or individual characteristic was transferred, whether consciously or subconsciously, from Egypt to Canaan, and why other features were left in the homeland.

Another important aspect of investigating function is the availability of resources abroad, and material should not be solely linked with prestige or status, as rare or exotic materials in Egypt that are considered high-value might not receive a similar designation in a region where the same material is common and readily available. This might also reveal information about the hybridization of Egyptian-style architecture and objects in Canaan, which could be founded in accessibility, function, cultural meaning, or a variety of other rationales, even perhaps Egyptian acculturation abroad. The previous application of theoretical models based on Direct Rule or Elite Emulation has neglected the dual cultural osmosis that occurs during interactions between two regions, and the possibility that the widespread Egyptian syncretization of native and foreign deities also spread to other aspects and contexts of life and death in Canaan is coherent, especially in terms of technological appropriation. The hybridization of Egyptian-style architecture, objects, and features in the Levant should not be investigated in order to exclusively prove or disprove an Egyptian ethnicity, but rather should be viewed in terms of the modified effect on Egyptian cultural customs, and possible evidence for an international cultural koiné.

This is connected to the overwhelming trend of earlier scholarship on Egyptian and Egyptianized material culture in the Levant, which focused on employing the material as evidence of the presence or absence of Egyptians in the region, whose ethnicity is assumed to be clearly linked with and indicative of certain features of Egyptian-style architecture and objects. I
propose a new approach that disregards the question of ethnicity and presence-or-absence, and instead focuses on viewing Egyptian and Egyptianized material culture from one tacit cultural perspective. For an investigation of Elite Emulation, this would require analyzing the material from a Canaanite viewpoint, as this model assumes that the majority of the producers and users of Egyptian and Egyptian-style architecture belonged to this cultural sphere. In this new methodological outlook, the Canaanites are viewed as active participants in the selection of precisely what and how certain Egyptian features or objects are appropriated, hybridized, or ignored. It also credits the Canaanites with a complete or partial awareness as to the cultural significance and original function of the material in Egypt. Under the auspices of Direct Rule, a fruitful investigation of Egyptian and Egyptianized material culture in the Levant could be performed completely from an Egyptian cultural perspective, in order to ascertain exactly how and if an Egyptian using this material would have been affected according to cultural norms in the homeland.

In order to fully secede from the question of Egyptian presence-or-absence as evidence for or against the models of Elite Emulation and Direct Rule, I suggest that an entirely new theoretical outlook should be considered. Therefore, I propose that in order to correct the aforementioned inaccuracies and satiate the voids of previous superficial research on Egyptian and Egyptian-style material culture in the Levant, a theoretical framework of cultural identity should be applied, along with a new methodological approach to Egyptian and Egyptianized material in Canaan completely from an Egyptian cultural perspective. Understanding cultural identity, which is defined as an “individuals’ identification with broader groups on the basis of differences socially sanctioned as significant” (Díaz-Andreu and Lucy 2005:1), has recently moved away from analyses of material culture as an assemblage of objects and things, and more
toward seeking to understand the dynamic relationships between objects, architecture, and the individual, which fully constitute a social being (Preucel and Meskell 2004: 14).

Under this new theoretical framework, I examine Egyptian and Egyptianized material culture in the Levant through cultural identity theory, which requires an analysis of the temporality, spatiality, and materiality of how the Egyptians in the New Kingdom constructed, maintained, and asserted an Egyptian cultural identity both in the Egyptian homeland and while residing and working abroad in Canaan. The application of a theoretical paradigm of cultural identity to this material in the Levant, combined with the methodological approach of a strictly Egyptian viewpoint, reveals information about other aspects of Egyptian identity in Canaan, such as gender, age, socio-economic status, and occupation, which could either confirm or deny the restrictive high-status, male, administrative, and martial identification of Egyptians habitually emphasized or assumed in previous studies. A comprehensive assessment and detailed description of cultural identity as a theoretical framework in regards to Egyptian and Egyptianized material culture in the Levant is presented in the subsequent chapter (chapter two).

A comprehensive view of Egyptian cultural identity in Canaan requires not only an investigation of the architecture, objects, and features commonly associated with an Egyptian-style in the Levant, but must also include the analysis of every surrounding element in the contexts contiguous with this material, which is comprised of the smallest minutiae, like the technological trait of a ceramic vessel, to the broadest facet, like the location of a site on the coast or inland. Obviously, employing this approach to all sites in the Levant with Egyptian or Egyptianized material would be a massive undertaking, à la Mumford, and this issue cannot be assuaged through the common practice of the generalized categorization and division of architecture and objects in earlier scholarship, not only because this method removes the material
from its original context, but also because some features, like burials, do not fit well into either category and consequently tend to be overlooked. Furthermore, the subdivision of objects into broad groups, such as “prestige” or “domestic,” does not facilitate a comprehensive analysis because they are defined by subjective and vague traits. The socio-economic status and context associated with an item should be taken into consideration.

Nevertheless, attempting to accomplish such a thorough study of Egyptian cultural identity in Canaan could lead to the same overly simplified and generalized conclusions of previous studies on the same material, and therefore cannot include such the large geographical area and broad time-span associated with all Egyptian and Egyptianized material in the Levant. On the other hand, a series of case studies that investigate only a few sites using this methodological approach and theoretical framework could prove to be useful, while also providing the chance of an inter-regional evaluation of diverse locations, although the results and conclusions would apply only to these sites and their associated material. In order to accomplish a comprehensive and detailed analysis of the material at more than one site, only a few related features at each location are included, but are chosen from a variety of assorted contexts in order to not only compare and contrast inter-regionally, but also between sites. Focusing on only a few contexts or features allows for a detailed room-by-room, tomb-by-tomb, or trait-by-trait investigation, and can therefore include every associated aspect and feature, whether habitually viewed as Egyptian, Egyptian-style, or of any designation.

The first step for such a methodological and theoretical approach is to determine which sites to include in the study. Since previous scholarship has frequently suggested that four sites in the Levant (Gaza, Beth-Shean, Deir el-Balah, and Jaffa) exhibit the strongest evidence regarding a physical Egyptian presence in the region, as indicated by both textual and
archaeological evidence, including the highest amounts of Egyptian and Egyptian-sized material culture, these four sites provide a useful starting point. The purpose of this study is not to substantiate the presence-or-absence of Egyptians at these four sites, but rather to investigate how an Egyptian would have interacted with the architecture, objects, and features of life and death in Canaan, based on the cultural norms and praxis of the Egyptian homeland, and how these interactions might reveal information about an Egyptian cultural identity abroad.

Unfortunately, since information about Gaza is untenable and mostly unpublished, the remaining three sites (Beth-Shean, Deir el-Balah, and Jaffa) offer the best opportunities for such a study. These three sites are not only protracted geographically, both from north to south and from east to west across the southern Levant, but both Beth-Shean and Deir el-Balah also proffer an array of several different types of archaeological contexts, and since the most recent relevant publication on the former site was published in 2009 and the final report on the latter came out in 2010, there is an opportunity to not only employ a new methodological and theoretical approach to the previously-published material at these sites, but also to incorporate the new material, data, and conclusions of these recent reports (Dothan and Brandl 2010a, 2010b; Panitz-Cohen and Mazar 2009).

As for Jaffa, the Egyptian and Egyptianized material from the site remains largely unpublished, because only a few preliminary reports on Jaffa were provided by the original excavator, Jacob Kaplan (Kaplan 1972; Kaplan and Ritter-Kaplan 1993). Fortunately, the Jaffa Cultural Heritage Project (JCHP), which was established in 2007 under the direction of Aaron A. Burke and Martin Peilstöcker, has undertaken the task of not only publishing the archaeological material from Kaplan’s excavations, but also performing a thorough scientific analysis of the stratigraphy and complex history of the site (e.g., Peilstöcker and Burke 2011). The directors of
the JCHP have graciously granted access to the corpus of Egyptian and Egyptianized material from Jaffa for analysis and publication, an opportunity for which I am immensely grateful. This fortunate contingency not only requires a comprehensive descriptive presentation of the assemblage, but also an authoritative analysis employing the methodological approach and theoretical framework outlined above.

After establishing that this study is based on materials from Beth-Shean, Deir el-Balah, and Jaffa, I determined specific archaeological contexts, features, and time periods from these three sites to investigate in individual case studies. Since cultural identity is reflected in the material remains of both life and death, I have incorporated contexts related to both of these aspects. The focus of the first case study is therefore be grounded in mortuary contexts, which reveals information about the concept of Egyptian bereavement and burial abroad, while the second study focuses on residential contexts, which demonstrate the quotidian and habitational side of Egyptian life in Canaan. Obviously, both of these facets of Egyptian cultural identity were intimately connected and overlap in many instances, allowing for a cross-contextual study. A further interrelated aspect of Egyptian life and death abroad is encompassed through the ceramic assemblage of Egyptian and Egyptianized vessels in the Levant, and a third case study centered on this corpus not only adds another level of analysis to the study, but also reveals more detailed and minute facets of Egyptian cultural identity in Canaan.

The funerary contexts examined in this research include every Late Bronze Age and early Iron Age burial in the two known necropoleis at Beth-Shean and Deir el-Balah, whose analysis consists of an overall descriptive presentation of each cemetery, followed by an account of each individual tomb, including the location, date, type, dimensions, orientation, layout, shape, construction, materials, shelves, niches, human remains, and all pottery and objects discovered.
inside, with a personal translation of all textual material (chapter three). This presentation was accomplished through the creation of a database with all of the aforementioned elements for each cemetery, which were gathered from seven publication reports from 1923–1973 by Clarence Fisher, Alan Rowe, Gerald FitzGerald, and Eliezer Oren for the Northern Cemetery at Beth-Shean, and from seven publication reports from 1972–2010 by Trude Dothan, Itzhaq Beit-Arieh, and Baruch Brandl for the necropolis at Deir el-Balah. Any inconsistencies in data or variations in opinion, such as chronology or stratigraphy, between these publications are clearly noted in the text.

The second portion of the study on mortuary contexts will examine the elements and features of the cemeteries and graves at Beth-Shean and Deir el-Balah entirely from an Egyptian perspective and under the lens of cultural identity theory (chapter four). First, the intellectual history of previous scholarship on the identity of the occupants of the two Levantine necropoleis is provided, which includes aspects of ethnicity, status, gender, age, and occupation. Following this introduction, a discussion of the Egyptian funerary process of the New Kingdom occurs, beginning in life and continuing beyond death into the afterlife, followed by a close analysis of the two Levantine necropoleis and tombs in light of Egyptian mortuary dogma and practice. The aspects of the mortuary process are divided into three sections, commencing with the preparations for burial that occurred during life, the subsequent construction of a tomb, and the assemblage of equipment provisioned for the grave.

The residential contexts in this study include five buildings located in close proximity to one another at Beth-Shean and Deir el-Balah, all of which belong to strata of the Late Bronze Age IIB and Iron Age IA. These five structures include Buildings 1500, 1700, and NB at Beth-Shean, and Buildings 350 and 1131 at Deir el-Balah, which have been habitually labeled as
Egyptianized residential edifices in previous scholarship, with the exception of Building NB. Building NB at Beth-Shean has been identified as a dwelling, but has never been given an Egyptian-style designation, and so is incorporated into the study in order to provide an even further comparison within the site. The fact that Building NB was occupied, seriously modified, and then re-occupied all within the short time span of the Iron Age IA, adds a further level of analysis to the study of residential contexts and cultural identity.

Like the mortuary contexts at Beth-Shean and Deir el-Balah, the analysis of the residential examples begins with a descriptive presentation of the structures, including the location, excavation, publication history, chronology, strata, dimensions, and construction, followed by an individualized account of each room in all five structures, including dimensions, features, doorways, and finds (chapter five). The information about these five buildings was gathered from seven publication reports from 1923–2009 by Clarence Fisher, Alan Rowe, Gerald FitzGerald, Frances James, and Amihai Mazar for Buildings 1500, 1700, and NB at Beth-Shean, and from nine publication reports from 1981–2010 by Trude Dothan and Baruch Brandl for Buildings 350 and 1131 at Deir el-Balah. Again, any inconsistencies in data or variations in opinion between these publications are clearly noted in the text.

The second portion of the study on residential contexts consists of the analysis of the buildings at Beth-Shean and Deir el-Balah from an Egyptian viewpoint and through the application of cultural identity theory, which investigates how a New Kingdom Egyptian would have functioned as a resident in these structures, and how similarities or variations between these buildings and the houses in the Egyptian homeland would have determined or affected life abroad (chapter six). This includes a side-by-side comparison of these edifices with contemporary houses in Egypt, beginning with a discussion of the six Egyptian residential types
of the New Kingdom. This portion of the study is divided into sections that first reflect more broad architectural features of the buildings, including the size and layout, position of the main entrance, and the location and function of rooms, and then contracts into an analysis of each chamber in the front, middle, and rear sections of the edifices. The introduction to this portion of the study provides an intellectual history of the purpose and ethnic occupancy of the structures as presented in previous scholarship.

Unfortunately, no complete Late Bronze Age or early Iron Age cemeteries or structures have been uncovered at Jaffa, and so this site cannot be included comparatively in the previous two portions of the study on mortuary and residential contexts. However, the extant excavated finds of this time period at Jaffa include a large corpus of Egyptian and Egyptian-style ceramic vessels, which are therefore included as an integral element in the third part of the study, especially since the pottery at Beth-Shean and Deir el-Balah has already been published and analyzed, allowing the assemblage at Jaffa to be compared and contrasted with the results from these two sites. This portion of the study begins with a descriptive presentation of the material, which includes a discussion of the corpus in terms of fabric, temper, firing, and manufacturing techniques, such as secondary trimming, string-cutting, two-step formation, perforation, rope-drying, and mass production (chapter seven).

A detailed typology of the Egyptian and Egyptianized ceramic assemblage from Jacob Kaplan’s excavations in Jaffa follows, consisting of simple bowls, large bowls, carinated bowls, flowerpots, small ovoid jars, slender ovoid jars, broad ovoid jars, short-necked ovoid jars, carinated jars, short-necked storage jars, and tall-necked storage jars. Each of these types is meticulously described according to the associated form, dimensions, manufacturing techniques, surface treatments, and chronological extent, and then systematically analyzed in view of
comparanda from Egypt, as well as other sites in the Levant, including Beth-Shean and Deir el-Balah, which allows an inter-regional comparison and evaluation. The remaining portion of the study is devoted to examining the function of these vessels from an Egyptian perspective and under the lens of cultural identity theory, which analyzes the purpose and utilization of these specific vessel types in Egypt and how these same forms might have functioned or been employed the same or differently in the Levant.

These three case studies, which focus on funerary and residential contexts and ceramic assemblages, cover an array of facets related to cultural identity, beginning with the expansive analysis of every burial in the two cemeteries at Beth-Shean and Deir el-Balah, subsequently shifting to the slightly more confined analysis of specific buildings at each site, and then narrowing down even further to focus on one aspect of material culture, ceramic vessels. Through this range of broad and narrow contexts, the methodic examination of an Egyptian perspective and interaction with the architecture, objects, and features of the Late Bronze Age and early Iron Age Levant, based on the cultural dogma and praxis of the New Kingdom Egyptian homeland, illuminates the Egyptian cultural identity that underpinned living and dying abroad.
2.1 INTRODUCTION

2.1.1 Introduction

Previous studies on Egyptian and Egyptianized architecture and objects in the Levant have focused on utilizing this material to investigate the question of Egyptian presence-or-absence in Canaan, which is in turn typically used as evidence for or against theoretical paradigms examining Egyptian rule over the area, for example, through models of elite emulation or direct rule. In this study, I suggest that the application of an entirely new theoretical outlook, founded on cultural identity, can provide fresh insights and original information on Egyptian and Egyptian-style material culture in the Levant. This newly proposed theoretical framework of cultural identity, which is defined in its most basic nature as “individuals’ identification with broader groups on the basis of differences socially sanctioned as significant,” is especially linked to a sense of integration and self-perception in relation to social groups, which also entails an active engagement (Díaz-Andreu and Lucy 2005:1).

Cultural identity theory provides a framework for analyzing how individuals and groups initially create cultural identity, how they maintain or alter cultural identity across time or space, and how they outwardly exhibit and express cultural identity. The creation, maintenance, and exhibition of cultural identity is examined through three inter-connected, and many times overlapping, categories of evidence, including temporality, materiality, and spatiality. Each of these overarching categories is founded on a hierarchy of several subcategories, but it is important to note that not every subcategory is viable for each study that attempts to employ a theoretical framework of cultural identity. For this reason, examples related to New Kingdom
Egypt, Late Bronze Age and early Iron Age Canaan, and/or contemporary Nubia have been provided for many of these subcategories, which are outlined later in this chapter. It is also important to note that not every subcategory or facet is required in order to establish how cultural identity is generated, maintained, and asserted, but rather that different aspects of cultural identity are observable in each of the provided subcategories.

In the subsequent section of this chapter, the intellectual history of cultural identity theory is described and discussed, which provides the background information of how this theoretical model has fully developed into the framework that is utilized in the present day. This review also plainly exposes the similarities and differences between the related concepts of ethnicity and cultural identity, which is imperative, as the distinction between the two can sometimes be vague and intersecting. Following the intellectual history of cultural identity theory, descriptions of other identities intimately connected with cultural identity are presented, including social aspects like gender, age, status, and occupation, as well as a “supernatural” identity. The remainder of the chapter focuses on discussions of the temporality, centered on historical narrative, spatiality, centered on archaeology, and materiality, centered on material culture, of cultural identity, which includes an explanation of all relevant subcategories and features of each overarching and overlapping aspect.

2.1.2 Intellectual History

The study of cultural identity originated in the early 20th century with the “culture concept,” a theoretical model developed by German archaeologists with the goal of identifying peoples through the study of distributions of material culture. The geographical spread of characteristic artifacts was believed to mark the territory of a racially or biologically linked
group of people. Proponents of the culture concept model asserted that archaeology can isolate cultural areas or Kulturprovinzen with specific ethnic units which can be traced back into prehistory (Kossinna 1911: 3). According to this view, cultural continuity must always indicate ethnic continuity and the results of these investigations were especially utilized for contemporary regionalistic, nationalistic, and propagandistic purposes.

The idea that cultural identity, which was labeled ethnicity or ethnic identity during this period, was objective, inherent, and primordial, instigated what Eric Wolf called the “billiard ball school of history,” where populations of the past are characterized by distinct bounded languages and material culture, which could be traced as they bounced off each other through history on a massive global billiards table (Wolf 1982: 6). Theories regarding cultural identity focused on cultures and groups, with the foremost objective being the chronological reconstruction of the origin and spread of cultures identified through a few diagnostic objects, which were most commonly high value commodities (Childe 1927: 85).

This one-to-one ratio of material culture and ethnic identity, aptly titled “culture-history,” persisted throughout the 20th century, and the location and movement of peoples continued to be mapped on the ground and traced through the archaeological distributions of a limited number of diagnostic types, which were often used to label associated groups, for example, the “Beaker People” of prehistoric western Europe (Lucy 2005: 88). Any change in material culture must be due to interior or exterior stimuli and represent migration, colonization, conquest, or assimilation.

The pots-equal-people approach continued with the advent of processual archaeology in the 1960s, although the correlation between material culture and biological race became unfashionable with the rise of positivist and scientific approaches, which tended to focus more
on socio-economics and systems theory. Even the so-called “style debates” of the 1970s, which discussed typological and decorative differences among artifacts and how they signify different cultural groups or periods, sought the fundamental causes in differing subsistence strategies (Binford 1973; Sackett 1977; Bordes 1973).

The focus of this “New Archaeology” continued to be on culture and the group, with the individual taking a passive role, without choice or agency, and completely subservient to the norms and pressures of groups tied together by a similar material culture. Although culture was now seen as a system of interrelated components, these were founded on fixed views of human behavior (Binford 1968: 16-23). Neo-evolutionary theory also influenced ideas concerning cultural identity at this time, where groups were believed to follow a predetermined progression from simple and egalitarian to complex and stratified (Fried 1967; Service 1962, 1971). The emphasis of research into cultural identity tended to be on status, which was a static, measurable aspect that could be ascertained through an explicitly quantitative approach (i.e., more is better and bigger is better) (Renfrew and Shennan 1982; Binford 1972; Saxe 1970; Tainter 1978).

With the initiation of the post-processual critique in the late 1970s, the focus of theories regarding cultural identity shifted from the all-inclusive group to the defined individual. Society consists of individuals who do not exist independently of a cultural group, and it is only through the similar defined actions of these individuals that the group is initially constituted and consistently maintained (Bourdieu 1977; Giddens 1979, 1984). Cultural identity is therefore not inherent or primordial, but rather self-ascribed and more of a dynamic way of behaving than a static and hackneyed entity (Shennan 1978; Hodder 1978).

The concept of a social archaeology, or “the ways in which we express ourselves through the things that we make and use, collect and discard, value or take for granted, and seek to be
remembered by” was instituted by V. Gordon Childe in the 1920s (Childe 1927; Hall 2001: 50). Social expressions and constructions of temporality, spatiality, and materiality fall under the rubric of social archaeology. Themes regarding cultural identity have recently moved away from analyses of material culture as an assemblage of objects and things, and more toward seeking to understand the dynamic relationships which fully constitute a social being (Preucel and Meskell 2004: 14). The ways in which different individuals and groups ascribe meaning through temporality, spatiality, and materiality provides insight into the construction and maintenance of cultural identity.

2.1.2 Social Identities

The concept of cultural identity intimately interacts with other facets of identity, such as gender, age, occupation, and status. Lynn Meskell has demonstrated that the cultural identity of New Kingdom Egyptians cannot be completely separated from the other strands that are interwoven to form complex social identities (Meskell 1999). Constructions of cultural identity most commonly founded in social status in Egypt and Canaan reflect paradigms of elite emulation, hybridization, and acculturation (Higginbotham 2000). While it has generally been assumed that the Egyptians residing in Canaan in the Late Bronze Age consisted solely of high-status male administrative personnel, a full examination of the textual and archaeological evidence may also reveal information about the additional presence of Egyptian women, children, servants, potters, soldiers, priests, and craftsmen in the Levant, all of which were known to travel with Egyptian expeditions abroad.

For example, the mere existence of Egyptianized temples, shrines, altars, and tombs suggests the physical presence of Egyptian priests, embalmers, and other religious personnel,
who would have ideally been the only individuals allowed to perform certain essential rituals and ceremonies related to mortuary and cultic contexts, such as the Daily Offering Ritual or the Opening of the Mouth. On the other hand, Egyptianized ceramics and monumental hieroglyphic inscriptions illustrate the presence of scribes, potters, artists, and other craftsmen, and objects normally associated with females in Egypt, such as cooking pots or sistra, illustrate a female Egyptian presence in Canaan. A comprehensive study into cultural identity must therefore take into consideration that horizontal identities based on gender and age divisions are enmeshed in the creation of cultural identity, which also interacts with vertical divisions like status, dominance, and social hierarchy (Jones 1997).

2.1.3 Supernatural Identity

The Egyptian concept of identity included an essential “supernatural” aspect, which was a symbolic construction linked to ideological perceptions and intimately connected with conceptions of the afterlife (Wendrich 2010: 201). Indeed, the various aspects that constituted an individual in Egypt, namely the life force (kA), manifestation (bA), heart (ib), name (rn), shadow (Swt), and body (XAt), were especially important post-mortem, and transferable from life to death. Without certain arrangements and provisions for the tomb, funeral processions, and the later mortuary cult, all aspects of Egyptian identity would cease to exist, and therefore, research regarding how and why (or why not) these imperative events occurred for Egyptians living abroad, is extremely relevant in examining the propagation of Egyptian cultural identity. Even the very thought of dying or being buried outside of Egypt proper was lamented throughout Egyptian history (Baines 1982: 47).
The physical presence and quantity of Egyptian burials and tombs in Canaan might also be connected to the Egyptian disdain of being buried outside the homeland. For example, does the Egyptian demography of cities correspond to the Egyptian demography of burials? Earlier texts from the Old and Middle Kingdoms cite several examples of Egyptians who had died outside of Egypt and had to be promptly transported back for a “suitable burial” (qrst nfrt) to be undertaken, a practice that continued into the New Kingdom (Taylor 2001: 40). Research into features of behavior and praxis related to funerary and ritual contexts should be emphasized.

2.2 HISTORICAL NARRATIVE

History, or the recorded interpretation of the past, is fundamental to the temporality aspect of the creation and maintenance of cultural feelings and identities. Research into historical accounts chronicling interactions between various cultural groups can illustrate the pre-existing differences that are keenly drawn upon in the creation of cultural identities, since it is only through interactions with different cultural traditions that individuals are forced to perceive observed differences in a conscious way (Eriksen 1993: 34; Jenkins 1997: 76-77; Jones 1997: 95). Past historical events and constantly reiterated ideologies about foreigners must have influenced the Egyptians living in Canaan during the New Kingdom, when the pejorative “vile Asiatic” (aAm-Xsy) abounded and the Hyksos’ devastation and oppression of Egypt was still being referenced during the reign of Merenptah, almost 400 years after their expulsion (Redford 1997: 17-18).

However, Willeke Wendrich has recently cautioned against the unguided employment of textual material in examining Egyptian identity and personhood, where questions concerning the author, audience, purpose, occasion, material, context, and literacy must also be fully scrutinized.
in order to understand exactly why these records were initially documented (Wendrich 2010: 201). Because identity is flexible and dynamic, historical research may also provide insights into the temporality of cultural identity, and how changes in political, economic, and social histories can actively influence or reflect sequential changes in cultural identity.

Any events or proceedings in political, economic, and social histories that may have affected the cultural identity of Egyptians in Canaan should be methodically noted. For example, the Hyksos’ control and devastation of Egypt in the Second Intermediate Period, as well as the wars of their expulsion, would still have been fresh in the minds of the Egyptians of the early 18th Dynasty, while the cultural identity of the Egyptians in the later Ramesside Period might reflect more of a contemporary *pax Aegyptiaca* and already well-established administration.

Because cultural identity is flexible and dynamic, temporal changes in the political, economic, and social histories of Egypt and Canaan will most likely also mirror or parallel temporal changes in the cultural identity of Egyptians residing in the Levant. In examining historical texts, special attention should be paid to references pertaining to stereotypes, pejoratives, and foreigner ideologies propagated by the Egyptians concerning the Canaanites.

The Egyptian attitude toward foreigners is considered one important continuity throughout Egyptian history, where the Egyptians considered themselves to be culturally superior to all other peoples, to the point that the Egyptians have been labeled “ethnocentric” (Trigger et al. 1983: 194; Meskell 2002: 30). Although it must be realized that the Egyptian notion of cultural identity was probably significantly different from the concept we know today, the Egyptians were keen to set themselves apart from other groups in the Mediterranean and Africa through material culture, art, and texts, and this persistent distinction is a salient feature of cultural identity (Eriksen 1993: 12).
2.3 ASPECTS OF CULTURAL IDENTITY

2.3.1 Archaeology

2.3.1.1 Space and Place

Cultural identity is not only articulated through materiality, but also through the employment of spatiality, where discursive practices and representations can become objectified symbols of culture. While space is usually defined as a physical setting or natural science concept, a place requires human agents and can be considered the result of the social process of valuing space (Preucel and Meskell 2004: 219). Examining the archaeology of place can reveal important information about social structural arrangements, domestic symbols, kinship terminologies, production techniques, marriage practices, and especially, cultural identity (Blanton 1994: 3). Indeed, place-making plays a central role in the processes of identity formation and the construction of social orders. People create a sense of self and belonging through the creation of place, which is connected with the way they conform to and confront the outside world (Allison 1999: 1).

Individual and group experiences of place have to be understood within a much large set of social, political, and economic relationships. The concept of place was especially significant to the Egyptians in the New Kingdom, where it was closely intertwined with issues of lineage and legitimacy, and was constantly emphasized in elite writing (Meskell 2002: 50). For example, in the Ramesside “Tale of Wenamun,” the underlying importance of place and belonging are expressed through the inner dialogue of Wenamun, whose experiences abroad

2.3.1.2 Landscape and Location

Landscape has recently reemerged as a compelling framework in the analysis of spatiality in human geography and archaeology. While landscape used to be equated solely with physical environment irrespective of human presence, now it is precisely human involvement that distinguishes landscape from environment (Ashmore 2004: 256). Landscapes are no longer to be separated from human experience or seen as purely visual, instead they are part of a world of movement, relationships, memories, and histories. The social landscape consists of both context and content, and can be defined as an ideological concept that represents how specific classes of people have signified themselves and their world through their imagined relationships with nature (Cosgrove 1984: 13; Tilley 1994: 23).

Landscapes are an important result of the processes of identity formation, because “people create their sense of identity through engaging and re-engaging, appropriating and contesting the sedimented pasts that make up the landscape” (Preucel and Meskell 2004: 219). The meanings and symbolism of landscapes play a notable role in identity for members of diaspora, migration, displacement, or relocation. Although such generalizations usually assume that movement creates a dis-location between people and landscape, the sense of landscape actually extends out from the present locale and is contingent upon a larger temporal and spatial field of relationships (Sontag 1983: 385).

Issues regarding landscape and identity would have been a factor for expatriate Egyptians living in the Levant during the Late Bronze Age, where landscapes would have been both
familiar and unfamiliar. Egypt was essentially a riverine culture, centered around the Nile River and the annual inundation, phenomena that infiltrated all aspects of Egyptian life, including irrigation, food production, surplus, famine, chronometry, transportation, control, religion, and the economy. However, rivers are scarce in the Levant, and residing in areas where rain dictated irrigation and food production, including both surplus and famine, and transportation was chiefly accomplished by land, would have been influentially different to individuals from a riverine culture.

Research regarding the importance of landscape in pharaonic Egypt has identified critical components, such as earth and stone constructions mimicking the ambient world, as well as both natural and built landscapes, concluding that landscape marking and movements demonstrate a sanctification of royal authority (Richards 1999). These issues of power and control through the management of landscape also extends to foreign areas controlled by Egypt, and the precise location of these areas designates what type of administration was initially established. Sites nearer to Egypt, such as those with important harbors located on the Levantine coast, were directly controlled through conquest and colonization, while those further inland were locally-controlled through self-governance and tribute (Baines and Málek 2000: 43).

The precise location and landscape of sites in regards to identity must be taken into consideration, as Egyptians living along the cosmopolitan coastal plain or international Via Maris in the Levant will presumably assert or display a dissimilar cultural identity from those residing further inland. For instance, it has been assumed that Egyptians in large coastal port cities or along trade routes would have more direct access to Egyptian imports and craftsmen, and therefore have the ability to emphasize more of an Egyptian cultural identity. However, asserting an “Egyptianness,” in all likelihood, would actually be more significant to Egyptians
living further away from their homeland in the interior of Canaan, where they would have been part of a smaller minority cultural group.

2.3.1.3 **Borders and Boundaries**

Constantly recreated social relationships and continuously redefined boundaries must be present and be fully propagated for cultural identity to exist, because “borders and boundaries are the devices by which groups define and delineate spheres of continuity or disjuncture” (Meskell 2002: 45). Boundaries between people and things can be geographical, natural, mental, or material, but are always created where various intersections of difference meet and are played out materially, and are therefore always affected by diffusion and osmosis. The space of boundaries and borderlands can be linked to the concept of a “Thirdspace,” due to the new form of consciousness and hybridity associated with the phenomenon (Anzaldúa 1987; Soja 1996). Boundaries can be conceptualized as barriers or bridges, real or imagined, discernible or invisible, permeable or impermeable, and associated with control, transgression, gender, class, and cultural identity (Lugo 1997: 65). These “intersitial zones” shape the identity of subjects living and working within (Gupta and Ferguson 1992: 19).

The archaeology of border and boundary zones should be approached as socially constituting and multiethnic sites of identity formation, and as laboratories for observing the conflicts between varying cultural identities. The assertion of cultural identity is especially utilized in urban multi-ethnic settings, where individuals tend to become more self-conscious with regard to their origins, and cultural identities thus acquire an everyday relevance (Eriksen 1993: 80-81). Issues concerning social and cultural boundaries have been examined in Canaan at Beth Shean, where excavators have demonstrated that there were distinctive Egyptian and
Canaanite precincts, with other areas of the city showcasing a more broad-based multinational character (Martin 2009: 465-467). These mixed and segregated places might reflect an Egyptian ideology related to the constantly reiterated maintenance of mAat, which requires the continual destruction and repelling of enemies of Egypt, including the Canaanites.

While at some locations, like Beth Shean, the Egyptians were able to separate themselves physically from indigenous and other cultures, at other more spatially-restrictive sites, it might have been more economic to reuse standing structures, as it is well known in archaeological spatiality that users of buildings frequently inhabit spaces designed and constructed by the builders of an earlier period (Allison 1999: 4). The idea of living and working in an edifice previously built and used by a “vile Asiatic,” yet also following the ideology of mAat, is an interesting avenue of research in the cultural identity of Egyptians in Canaan during the Late Bronze Age. The idea that places might be associated with evil or negative associations, such as is seen at the site of Amarna, can be a useful guide in examining these issues of re-use, destruction, effacement, and dismantlement in Egyptian ideology (Meskell 2002: 30).

2.3.1.4 Diaspora and Migration

A burgeoning aspect of cultural identity theory in archaeology is the landscape of migration, diaspora, colonization, exile, return, and relocation. A polythetic set of critical attributes of these themes include, but are not limited to, dispersal, myth and memories of a homeland, alienation or distinction within a host society, a desire for an eventual return to the homeland, ongoing support and commitment for the homeland, and a collective identity importantly defined by this relationship (Clifford 1994: 305; Safran 1991: 83). The study of shifting and moving peoples in the past can enhance understanding of communities, localities,
and identities at a human scale (Lilley 2004: 287). Issues concerning the creation and maintenance of cultural identity among communities dispersed amongst other peoples are a key component to diaspora theory, which must include a thorough understanding of both the alien and host cultures.

The examination of diasporic cultures brings together such compelling issues as family, gender, race, and minority communities, and is enmeshed with issues of cultural interaction and transformation, transfers, exchanges, race and power relations, and heritage development (Agorsah 1996: 222). Issues of both regional and local identities must be examined, because “the larger political and social terrain of diaspora involves intimate and personal engagement, just as the intimate and personal engagements with place and well-worn territory opens towards larger political and social landscapes” (Bender 2001: 77). Queries regarding personal identity of shifting populations should examine how people relate to unfamiliar and hostile worlds, what is brought from the old life, what is left behind, and especially, in what ways is the old life and the new existence combined.

Personal memories are found in material markers, which are filled with narrative and sentiment, and can possibly later re-articulate shifting boundaries of a socio-cultural identity (Parkin 1999: 313). Ann Killebrew has also explicitly shown how issues of colonization, imperialism, frontierism, and administration, whether direct or indirect, must be examined in order to understand the various social and cultural identities of the groups residing and interacting in Canaan during the Late Bronze Age (Killebrew 2005: 2).
2.3.1.5 **Cultural Brokers**

Special consideration should also be given to individuals and groups involved in the interactions and connections between the expatriate Egyptians and local Canaanites. The idea of “cultural brokers,” the individuals who would have mediated between the Egyptian royal administration and the local Canaanite population, will prove especially useful, because it is these intermediaries who “stand guard over the crucial junctures of synapses of relationships which connect the local system to the larger whole” (Wolf 1956: 1075). These cultural brokers occupy an exposed dualistic position, as they must serve the interests of individuals on both the national Egyptian level and the local Canaanite level, as well as cope with any conflicts between these two echelons.

Queries regarding space should also include an investigation into the existence of shared social or cultural areas at sites, where cultural brokers might reside or perform actions in accordance with their various occupations. These contact zones, as arenas of encounter and collision, replace the linearity of the border with the image of a “liminal mosaic” (Pratt 1992: x). For example, local Canaanite leaders who are emulating or assisting Egyptian administrators in Canaan, or craftsmen who are manufacturing ceramics or other objects for both Egyptian and Canaanite commissioners, are representatives of this group of individuals who occupy an exposed dualistic position serving the interests of both cultural groups.

2.3.2 **Material Culture**

2.3.2.1 **Architecture**

While there is no simple correlation between cultural identity and architectural style, the context and employment of space and structures can demonstrate the social relationships that
actively influence and shape cultural identity (Lucy 2005: 107). An archaeology of architecture, which falls under both spatiality and materiality, can reveal information about kinship terminologies, social structural arrangements, production techniques, domestic symbols, and marriage practices (Blanton 1994: 3). The forms and patterns of buildings are part of the nonverbal communication of a society. Amos Rapoport has sorted these forms of architectural communication into two categories: canonical and indexical (1982: 179-183).

Canonical communication occurs inside the structure in private spaces, and includes private household interactions and rituals that pertain to “the meaning of enduring symbols reflecting concepts held in common by people participating in a common cultural system,” even though the physical structure can also provide a means to separate these activities from the direct influence of society (Ardener 1993: 11). The interior structure of a building serves as a direct link between ideas and events, and is commonly associated with cosmogonic metaphors. These links can serve as the vehicles through which social structures and cultural categories achieve sensory existence, which is associated with the concept of habitus “through the intermediary of the divisions and hierarchies it sets up… which inculcates and reinforces the taxonomic principles underlying all the arbitrary provisions of a culture” (Bourdieu 1977: 89). The interior architectural layout of a building can reflect social and other cultural divisions.

The second form of architectural communication is indexical, which exists outside the physical structure, whether private, public, or cultic, and includes public spaces, facades, and exterior features (Blanton 1994: 11). These places and characteristics transmit messages from the occupants to others outside the house, and can reveal and display social conformity or nonconformity, which relates to the formulation and enactment of patterns of human interrelationships. While the interior private spaces of a building may be hidden and
confidential, the exterior spaces can act as a medium through which the outside world can exercise control over the activities within, for buildings can act as “repressive mechanisms and authoritarian representations” (Miller 1987: 164). However, exterior spaces can also exude power and control over the outside world. While canonical and indexical forms of communication are conceptually distinct, they are not always distinguishable, as they both contain intertwined information concerning social status, social boundaries, rank, power, symbolic meaning, and cultural identity (Blanton 1994: 10-11, 13; Rapoport 1982: 43-48, 116).

Unfortunately, while the architecture of most periods and areas of ancient Egypt remains a carefully investigated and well-known subject, Egyptian architecture in the Levant remains poorly researched and therefore regularly misunderstood. Excavators and scholars at Levantine sites have a checklist of specific architectural characteristics that are frequently referred to as “Egyptian” or “Egyptian-style,” including: T-shaped thresholds, mudbrick foundations, sand-filled foundation trenches, buttresses, corner towers, and square-shaped plans (Killebrew 2005: 58-64).

One or any number of these architectural aspects or construction techniques is considered enough to identify a structure as Egyptian. The rationale as to why these characteristics are considered Egyptian, where they occur in Egypt, and in what time periods, is never discussed. These simplistic conclusions lead scholars to label all Egyptian buildings in the Levant under various designations including: houses, administrative buildings, palaces, forts, migdolim, governor’s residences, and temples, without any real comparison to or discussion of these building types in Egypt. The subject of Egyptian architecture in the Levant remains a wide-open area for new research and possibilities.
2.3.2.2 **House and Household**

The importance of the archaeology of house and household, defined as “task-oriented residence units,” in relation to aspects of cultural identity has overtly been discussed and placed in context, due to the fact that households represent the bulk of population in ancient societies (Netting, Wilk, Arnould 1984: xx). Houses face both inward and outward, embodying social identities for those both inside and outside of the house. Due to this bifacial existence, houses showcase the interaction between cultural norms and personal choice. Individuals, informed by cultural knowledge and acting within cultural constraints, shape houses that then “communicate canonically by serving as a material frame which continuously reinforces social divisions and categorical oppositions” (Lawrence 1999: 137). Households are the major arena in which both economical and social productive strategies are played out.

In ancient cultures, the household can be the center of production, distribution, transmission, and reproduction (Wilk and Rathje 1982: 621). Production situated in the domestic space of the house and household offers a conjunction between social action and locale, which contributes to the understanding of agency and social identity. The house itself is viewed as a consumer good, with its consumption being public in nature, reflecting and influencing social relations (Orlove and Rutz 1989: 17, 19; Douglas and Isherwood 1978: 74-76). The study of household production and social relations is integral to understanding the nature of ancient economies and social organization, and can also illustrate relationships between ideology and power, structure and agency, and the construction of cultural identity.

The household in ancient Egypt was organized as a gigantic extension of the pharaoh’s household, imitating on a smaller scale many of the attributes of the king and household of the palace (Weber 1978: 1044). This household organization has been called the “fractal house of
pharaoh,” consisting of a segmentary structure of a hierarchy of households within households, from the pharaoh to the elite and on down to the poorer strata of society (Lehner 2000). Whether this same type of organization existed for Egyptian households outside the bounds of Egypt, but still inside the constraints of the Egyptian government, requires further investigation.

The architectural layout and different areas of houses in New Kingdom Egypt, especially at Amarna and Deir-el Medina, is well-known. Processing, cooking, workshop, and production zones were situated in every house, and the existence, location, and materials of these areas in so-called Egyptian houses outside of Egypt should be analyzed with this in mind (Borchardt and Ricke 1980: 282-283; Meskell 2002: 40). The relationship of houses and households with one another across Egyptian settlements has also proven to be enlightening. For example, smaller houses at Amarna were clustered around larger houses, which were outfitted with granaries and wells, a situation leading to the idea of a patrimonial hierarchy of dependency, where smaller households traded finished products and labor for grain and supplies owned by the larger households (Kemp 1989: 294; Shaw 1996: 100; Schloen 2001: 314). The larger elite households were provisioned by the palace through the royal treasury, temple, or fortress, etc. An examination of this phenomenon in Egyptian settlements outside of Egypt would be fruitful in comparing the relationship between Egyptian households in foreign lands.

2.3.2.3 Structural Divisions within the House

The investigation of the division of structural remains leads to an understanding of the cultural patterning of space, which is closely tied to the cultural patterning of identity. Practice- and agency-oriented research of the household and domestic space of the house can shed light on how gender, age, class, and other factors intersect to shape cultural identity (Hendon 2004: 278).
Household divisional layouts showcase differences that are formed across diverse cultures, frequently due to gender and generationally-based variances (Blanton 1994: 8). A productive strategy for understanding the division of space is to focus on gender as a symbolic system that structures social and economic relations within the household and the larger community.

Gender and gendered divisions of labor can be made visible within architectural structures and layouts, and these divisions are a vital part of cultural context and the household decision-making process (Wilk 1991: 6). Maintaining the household’s social and cultural identity, which is usually accomplished through the display during entertainment, is a gendered task that involves the informed purchase of consumer goods and the creation of an appropriate domestic environment, which is linked to issues concerning acculturation, rejection, and hybridization (Lawrence 1999: 136-137). However, the visibility of gender and gendered divisions of labor must go beyond the simple male and female distinctions, and include other aspects of identity, like age, status, and occupation.

The concept that the male is the sole head of the household and key decision-maker, yet is assumed to be invisible within the house itself, while females are the only individuals visible in archaeological remains of the household, must be abandoned (Allison 1999: 10). The focus should be shifted instead to issues of public versus private space, with the addition of other identities, such as age (adults, children, etc.) or social status (owners, servants, etc.), must be taken into consideration. Buildings’ manifest social divisions are based not only on gender, but also on generation, rank, and cosmological schemes like order and disorder, elite and non-elite, and purity and danger (Blanton 1994: 10).

New Kingdom domestic architecture at Amarna and Deir el-Medina has proven to be especially indicative of Egyptian ideologies concerning the use of restrictive space (Wendrich
Whether these ideologies are transferred into the architecture of Egyptian domestic contexts in Canaan needs to be analyzed, as well as features regarding parallels and contrasts in arrangement, dimension, construction, material, and function, and the reasons why these might vary outside of the Egyptian homeland.

2.3.2.4 **Functionality of Space**

The traditional facets investigated according to architectural theory in archaeology include layout, size, spatial complexity, use of space, external embellishment, and construction materials. However, examining less traditional architectural elements can take the social arrangements of space from a two-dimensional concept and provide it with proper three-dimensional proportions. These three-dimensional features all fall under the category of the functionality of space and can include: windows, perspectives, symbolic content, viewpoints, decorative elaboration, ritual and domestic activities, and material culture (Allison 1999: 4; Blanton 1994: 24-37).

While examining ritual activities, such as feasting, worship, and birth, in architectural context can provide more cultural details than just a floor plan or dimensions, “to understand the power of space as a social construct, one must look beyond ritual action and grand cosmological belief systems and into the practical actions of daily life” (Pader 1993: 114). Since dwellings are generally the principal location for the daily consumption of material culture, the entire artifact assemblage from a building must be combined with its architectural features to gain a holistic viewpoint. The functionality of space is extremely important, and artifactual remains of activities can be a far better indicator of room function than general architectural features, for
architecture could reflect more the majority outside world, while material culture could reflect the minority inside world (Ciolek-Torello 1984: 134).

The functionality of space has been studied in regards to New Kingdom Egypt, where the Egyptians understood that different cities had different purposes, as evidenced by the various terms used for diverse settlement types (Meskell 2002: 28). Since many New Kingdom town districts consist of a major city surrounded by satellite towns, rural villages, and countryside hinterlands, it has been suggested that the study of Egyptian settlements be approached using a multiscalar framework (O’Connor 1995: 321). This framework begins with large urban aggregations, continues onto regional centers and villages, and eventually down to the household level. Studying settlements in this manner can highlight the strong urban and rural cultural dichotomy that existed in Egypt (Meskell 2002: 27; pace Schloen 2001: 314).

Applying the same multiscalar framework to Egyptian sites and areas in the Levant would provide important information regarding the differences between planned and natural settlements both inside and outside of Egypt proper. During the New Kingdom, construction was focused on building and rebuilding temples in Egypt, while towns and cities were left to grow more organically from central temple precincts (Meskell 2002: 28). The lack of known Egyptian temples in the Levant seriously conflicts with this central focus of New Kingdom construction. The presence or absence of Egyptian ritual architecture in Canaan is also related to the upholding of mAat, which necessitates the construction of temples, shrines, and altars, along with the repetitive provisioning of the gods in order to keep the world from transcending into the primordial disorder of isft, which would cause social disorder in the world as well.
2.3.2.5 **Artifacts**

While material culture may articulate cultural identity, there is not always a direct link between specific artifacts and ethnic identity (Hodder 1982: 24). The correlation between material culture distributions and population group distributions is never clearly defined or completely segregated, and only illustrates the unique divisions among groups (Håland 1977; Zvelebil 1995: 40-42). In fact, it has been demonstrated that completely dissonant social groups can share homogenous material culture, yet still maintain unique cultural identities (DeCorse 1989: 125-140; Hill 1989: 24).

However, some features of material culture can undeniably be directly linked to cultural identity, with most aspects intersecting and combining in numerous distinctive constructions (Hodder 1982: 75-86). Lynn Meskell has demonstrated how Egyptians in the New Kingdom embedded material culture with philosophical, spiritual, and corporeal meanings in a physical engagement with the world, and actively used material cultural as a medium for constituting and asserting cultural identity in an embodied and external sense (Meskell 2004). Material culture is the medium through which many social relationships and interactions are negotiated (Díaz-Andreu and Lucy 2005: 9).

Research concerning cultural identity should focus on incorporating both the differentiations between ethnic groups, as well as the innumerable processes that were involved in actively generating and sustaining these groups. Cultural groups are created, have no natural or fixed boundaries, and must be maintained by the continual expression and validation of boundaries (Lucy 2005: 94). Cultural identities are not generated and preserved due to isolation, but rather in response and opposition to constant contact and interaction with diverse internal and external social groups. Even when ethnic boundaries are continually shifting, due to inter-
marriage, trade, or a variety of other factors, people within the groups still retain their cultural identities, because people choose cultural markers that are relevant to themselves and others.

Therefore, cultural identity is not an inherent elemental quality, but rather a subjective phenomenon, designed to maximize self-interest. However, while cultural identity may be flexible and dynamic, it is not infinitely malleable, because choices regarding cultural identity must be plausible to the individual and the intended audience (Elwert 1997: 256). Studies in cultural identity must emphasize the idiosyncratic actions of an individual in generating, transmitting, and maintaining identity (Epstein 1978: 96).

2.3.2.6 Production

Because cultural identity is an aspect of contextually-based social relationships, material culture studies should not focus on the objects themselves, but rather examine issues of action, interaction, and practice, which mutually serve as a locus for emphasizing cultural or communal distinctions (Eriksen 1993: 139). Instead of viewing style (the form and decorative aspects of material culture), as a static and passive aspect of artifacts, attention must be paid to the active role of individuals and the processes of procurement (e.g., of raw materials), manufacture, and use of material culture (Sackett 1977, 1990). The context-specific knowledge drawn upon to create and manipulate artifacts is constituted in specific social and historical worlds, which also influence the construction and maintenance of cultural identity.

For example, Pierre Lemonnier has asserted that the study of the pronounced relationship between pottery and cultural identity must especially examine “not only decorative patterns or secondary aspects of shape as definitions of one’s status or ethnic identity, but also the use of given artifacts or entire processes of production” (Lemonnier 1993: 20). Mario Martin has
shown how locally-produced Egyptianized pottery in Canaan not only reproduced characteristic Egyptian shapes and decoration, but also clay preparation, production techniques, and other technological aspects, including the decision to exploit new imitation-Egyptian clays, while Canaanite-style pottery continued to be produced of the same previously-used clays (Martin 2004: 274-277).

2.3.2.7 Foodways

The materiality of the daily preparation and consumption of food and food products both within and outside the household is actively used as a social marker in group affiliation, which prompts the associated use of stereotypes by others, for example, the designation of the Irish as “potato people” by the English (Hastorf 1998: 779-780; Hamilakis 1999). In responding to the statement “we are what we eat” and exploring anthropological conceptions of food, Donna Gabaccia asked the question: “if we are what we eat, then who are we?” (Gabaccia 1998: 9). The employment of food in the construction and maintenance of cultural identity has already been established in research involving social and cultural taboos, codified norms, religious classifications, abstinence, dietetic value, haute cuisine, famine, caloric intake, and social distinction (Scholliers 2001: 3-8). Food is so central to an individual sense of identity, that it has been proven that transplanted cultural groups frequently retain food habits when language and other cultural expressions tend to be altered, assimilated, or removed (Fischler 1988: 275).

An examination of the relationship between cultural identity and foodways should not only include an investigation of the foodstuffs themselves, but also any objects related to the production, storage, allocation, presentation, and consumption of food. For example, the discovery of locally-produced Egyptianized flowerpots and beer-jars at sites across Canaan
might indicate a deliberate choice of the Egyptians to produce Egyptianized bread and beer, which are the most imperative foodstuffs throughout pharaonic history, as well as being connected to the religious, economic, and administrative systems of the country, and therefore also an essential part of Egyptian cultural identity.

2.3.2.8 **Personal Appearance**

Because material culture is actively involved in social practice and the manner in which individuals define cultural boundaries, it should be most observable in domestic and quotidian contexts (Lucy 2005: 106). Therefore, research on cultural identity must not only include high value material culture associated with ritualistic, funerary, royal, or official frameworks, but also features of domestic milieux. Lynn Meskell has demonstrated how insights into the private lives of Egyptians in the New Kingdom are fully attainable through both textual and archaeological evidence (Meskell 2002).

Aspects of personal appearance, particularly the combination of textiles and artifacts in dress and bodily adornment, can notably be related to the quotidian public and pervasive assertion of cultural identity. For instance, certain stereotypes alluding to the Canaanite utilization of throwsticks (*amaAwrt*) and apparel of vivid multicolored garments, as opposed to the Egyptian use of monochrome white linen, are prevalent in New Kingdom texts and iconography, but an actual representation of these materials in the archaeological record has not yet been investigated.
2.4 SUMMARY AND CONCLUSION

The ways in which different individuals and groups ascribe meaning through materiality, spatiality, and temporality provides insight into the construction and maintenance of cultural identity. Some features of material culture can undeniably be directly linked to cultural identity, with most aspects intersecting and combining in numerous distinctive constructions. Research concerning cultural identity should focus less on the differentiations between ethnic groups and more on the innumerable processes that were involved in actively generating and sustaining these groups. However, while cultural identity may be flexible and dynamic, it is not infinitely malleable, because choices regarding cultural identity must be plausible to the individual and the intended audience.

Because cultural identity is an aspect of contextually-based social relationships, materiality and material culture studies should not focus on the objects themselves, but rather examine issues of action, interaction, and practice, which mutually serve as a locus for emphasizing cultural or communal distinctions. Instead of viewing style as a static and passive aspect of artifacts, attention must be paid to the active role of individuals and the processes of procurement, manufacture, and use of material culture.

Examining the archaeology of spatiality can reveal important information about social structural arrangements, domestic symbols, kinship terminologies, production techniques, marriage practices, all of which can potentially express cultural identity. Individual and group experiences of place have to be understood within a much large set of social, political, and economic relationships. Landscapes are an important component of spatiality, and are no longer to be separated from human experience or seen as purely visual, instead they are part of a world of movement, relationships, memories, and histories.
Research regarding architectural elements falls under the rubric of both spatiality and materiality, and while there is no simplistic correlation between cultural identity and architectural style, the context and employment of space and structures can demonstrate the social relationships that actively influence and shape cultural identity. Examining architectural elements can take the social arrangements of space from a two-dimensional concept and provide it with proper three-dimensional proportions. Spatial functionality is extremely important, and artifactual remains of activities can be a far better indicator of room function since architecture could reflect more of the majority outside world, while material culture could reflect the minority inside world.

Investigating the division of structural remains leads to an understanding of the cultural patterning of space, which is closely tied to the cultural patterning of identity. Practice- and agency-oriented research of the household and domestic space of the house illuminate how gender, age, class, and other factors that intersect to shape cultural identity. The importance of the archaeology of house and household, also aligned under both spatiality and materiality, in relation to aspects of cultural identity has overtly been discussed and placed in context, due to the fact that households represent the bulk of population in ancient societies. Houses face both inward and outward, embodying social identities for those both inside and outside of the house. Due to this bifacial existence, houses showcase the interaction between cultural norms and personal choice.

Because material culture is actively involved in social practice and the manner in which individuals define cultural boundaries, it should be most observable in domestic contexts. The daily preparation and consumption of food and food products is actively used as a social marker in group affiliation. An examination of the relationship between cultural identity and foodways
should not only include an investigation of the materiality of foodstuffs themselves, but also any objects related to the production, storage, allocation, presentation, and consumption of food.

Aspects of personal appearance, particularly the combination of textiles and artifacts in dress and bodily adornment, can notably be related to the domestic public and pervasive assertion of cultural identity. Just as the production, manufacture, employment, and context of material culture must be viewed holistically, the concept of cultural identity intimately interacts with other facets of identity, such as gender, age, occupation, status, and the supernatural. Cultural identity cannot be completely separated from these other strands that are interwoven to form complex social identities.

A burgeoning aspect of cultural identity theory in archaeology is the landscape of migration, diaspora, colonization, exile, return, and relocation. A polythetic set of critical attributes of these themes include, but are not limited to, dispersal, myth and memories of a homeland, alienation or distinction within a host society, a desire for an eventual return to the homeland, ongoing support and commitment for the homeland, and a collective identity importantly defined by this relationship. Constantly recreated social relationships and continuously redefined boundaries must be present and be fully propagated for cultural identity to exist.

Such boundaries between people and things can be geographical, natural, mental, or material, but are always created where various intersections of difference meet and are played out materially, and are therefore always affected by diffusion and osmosis. Special consideration must also be given to individuals and groups involved in the interactions and connections between cultural groups. These cultural brokers occupy an exposed dualistic position, as they
must serve the interests of individuals in both groups, as well as cope with any conflicts between the two echelons.

History, or the recorded interpretation of the past, is fundamental to the creation and maintenance of cultural feelings and identities. Research into historical accounts chronicling interactions between various cultural groups can illustrate the pre-existing differences that are keenly drawn upon in the creation of cultural identities, since it is only through interactions with different cultural traditions that individuals are forced to perceive observed differences in a conscious way. However, questions concerning the author, audience, purpose, occasion, material, context, and literacy must also be fully scrutinized in order to understand exactly why these records were initially documented. History, as a key component of the study of temporality and cultural identity, can also shed light on aspects of materiality and spatiality, all three of which must be combined in order to truly construct a holistic theoretical framework of cultural identity.
CHAPTER THREE. MORTUARY CONTEXTS: THE NECROPOLEIS AT BETH-SHEAN AND DEIR EL-BALAH

3.1 INTRODUCTION

The focus of the first case study in this project is founded in mortuary contexts, which includes every known Late Bronze Age and early Iron Age burial in the two necropoleis at Beth-Shean and Deir el-Balah. In this chapter, these two cemeteries are presented in the form of a descriptive analysis, which begins with a complete excavation and publication history for each necropolis, as well as an account of the illicit excavations that occurred in the cemetery at Deir el-Balah and the path and final destination of the items that were removed. Next, the chronology of both necropoleis are discussed, including the date and contemporary strata and/or levels of the associated settlements, as well as any debates between scholars over the chronology of the two sites and cemeteries. Because the clay sarcophagi from Beth-Shean and Deir el-Balah have been the focus of a number of previous studies, a special section is devoted to this particular object type at each cemetery, where issues related to typology, manufacture, and petrography are discussed.

This is followed by a comprehensive and detailed account of each individual tomb at Beth-Shean and Deir el-Balah, including the location, date, type, dimensions, orientation, layout, shape, construction, materials, shelves, niches, human remains, and all pottery and objects discovered inside. The descriptive presentation of the burial goods for each tomb includes a personal translation of all textual material and identification of deities, amuletic shapes, and symbols, as well as an individualized examination of the Egyptian and Egyptianized pottery, either in-person or through the published and unpublished profiles. The final section of this chapter is devoted to the objects in the Israel Museum believed to have been originally from the
cemetery at Deir el-Balah, which includes Canaanite, Egyptianized, Egyptian, Mycenaean, Minoan, and Cypriot pottery, stone vessels, bronze objects, figurines, jewelry, and stelae.

The analyses of the cemeteries at Beth-Shean and Deir el-Balah were accomplished through the creation of a database with all of the aforementioned elements for each necropolis and tomb, which were gathered from seven preliminary and final publication reports from 1923–1973 by Clarence Fisher, Alan Rowe, Gerald FitzGerald, and Eliezer Oren for the Northern Cemetery at Beth-Shean, and from seven publication reports from 1972–2010 by Trude Dothan, Itzhaq Beit-Arieh, and Baruch Brandl for the necropolis at Deir el-Balah. Any inconsistencies in data or variations in conclusions between these publications, as well as those of outside scholars, are discussed in the text for each cemetery. This chapter not only provides a comprehensive, collated, accurate, and updated discussion of the data employed in the first case study, but also sets the stage for the second portion of the study on mortuary contexts that follows in the subsequent chapter, which examines the elements and features of the cemeteries and graves at Beth-Shean and Deir el-Balah from an Egyptian perspective and under the lens of cultural identity theory.

3.2 THE NORTHERN CEMETERY OF BETH-SHEAN (Figures 3.1 and 3.2)

3.2.1 Excavation and Publication History

The Northern Cemetery is located in the cliffs extending along the sloping northern bank of the Harod Valley, just opposite the ancient mound of Beth-Shean (Figure 3.2). The cemetery was initially excavated by the University Museum Excavations (UME) of the University of Pennsylvania in 1922 under the direction of Clarence S. Fisher, and subsequently excavated in 1926 under Alan Rowe, and from 1930-1931 under Gerald M. FitzGerald (Oren 1973: 2).
Figure 3.1: The Northern Cemetery at Beth-Shean with LB and Iron Age Tombs Labeled in Red (after Oren 1973: Fig. 1)
Figure 3.2: Section through the Cemetery and Mound of Beth-Shean
(after Oren 1973: Fig. 2)
The UME began on the western side of the cemetery in 1922, working on a strip running from south to north, and in each season thereafter a new strip was cleared just east of the previous year’s area (Oren 1973: 2). More tombs in the cemetery were discovered from 1952-1957 by the Israel Department of Antiquities and Museums (Tzori 1962: 135). Although many of the tombs and their contents had been partially destroyed by collapse, natural disasters, re-use, and ancient robbery, “the funerary furniture as a whole appeared to be homogeneous and trustworthy” (Oren 1973: 3, 129).

Because of difficulties stemming from the beginning of the Great Depression and World War II, the UME only published preliminary reports of these excavations in the Museum Journal and the Palestine Exploration Quarterly (Fisher 1923: 234-236; Rowe 1927a: 36-45; 1927b: 75, 80-82; FitzGerald 1932: 147-148). Rowe also dedicated a few pages to the Northern Cemetery in The History and Topography of Beth-Shan (1930: 9, 39-40, 52-53). Although it was never published, FitzGerald was able to complete a report of excavations in the cemetery, and it was this document that Eliezer D. Oren used to extensively publish the Northern Cemetery over four decades later (Oren 1973: 4). In his “re-excavation” of the cemetery, Oren also utilized the archives and collections of the University Museum in Philadelphia, the Palestine Archaeological Museum in Jerusalem, and the Institute of Archaeology in London, along with the UME’s field notes, diaries, sketches, and photographs (Oren 1973: 5).

3.2.2 Chronology and Construction

Over 200 total tombs were discovered in the Northern Cemetery of Beth-Shean, dating from the Early Bronze Age to the Byzantine Period (Oren 1973: 3). Thirteen of these graves date to the Late Bronze Age and Iron Age, including Tombs 7, 27, 29, 60, 66, 69, 90, 107, 202,
219, 221, 227, and 241. Although the excavators consistently dated these 13 tombs somewhere from the Late Bronze Age to the Iron Age I, a new and different date in this range was suggested in each preliminary report (Fisher 1923: 236; Rowe 1927a: 40, 1930: 2). However, a general consensus has now been reached regarding the date of these 13 tombs, with the majority suggesting a Late Bronze Age to Iron Age I range, which corresponds to Levels IX through VI on the mound of Beth-Shean (Finkelstein 1996: 177; James 1966: 137; James and McGovern 1993: 239; Martin 2011: 133; Mazar 2011: 171; Oren 1973: 129, 147).5

At least twelve of these tombs (7, 27, 29, 60, 66, 90, 107, 202, 219, 221, 227, and 241) were originally constructed in the Early Bronze Age IV and still contained some pottery and objects from this earlier period; however, no remains of the Middle Bronze Age were discovered in the burials (Oren 1973: 102).6 The mix of pottery in these tombs from the Early Bronze Age IV, Late Bronze Age, and Iron Age I caused the excavators some confusion, with Rowe remarking, with some trepidation, that it must all be somehow contemporary and FitzGerald suggesting that it was just a “strange coincidence” (FitzGerald 1930: 10; Rowe 1927a: 39; 1930: 39).

In the Early Bronze Age IV, these twelve tombs were dug into and hollowed out of a terrace of travertine without any additional masonry construction. Nine of these burial places (7, 27, 29, 60, 107, 219, 221, 227, and 241) were reused in the Late Bronze Age and Iron Age I without any changes in plan, while the remaining three (66, 90, and 202) underwent partial or comprehensive adjustments and additions (Oren 1973: 102). All twelve of the reused tombs

4 Oren dated three more tombs (42, 59, 303) to the Late Bronze Age I, but these tombs have since been re-dated to the Middle Bronze Age II or Middle Bronze Age II/Late Bronze Age I transition (Maeir 1997: 83-84; Mullins 2002: 297-299; Oren 1973: 7-9, 18, 98-99).

5 Dates proposed for each tomb will be listed in the individual tomb descriptions below.

6 There is, however, a Middle Bronze Age I tomb at Beth-Shean, but this grave seems to be unrelated to the settlement on the mound (R. Mullins 2013, pers. comm., 13 May; Oren 1971).
were in all probability single or multi-chambered shaft tombs with rectangular or rounded chambers, although half of the burials were destroyed in such a way that the shaft portions were either missing or very fragmentary (Oren 1973: 101-102). The only tomb (69) in this study without any Early Bronze Age IV remains also had a distinctive plan, with two adjoining chambers in a square-shape (Oren 1973: 101). Finds in these 13 Late Bronze Age and early Iron Age tombs from the Northern Cemetery include clay coffins, imported and locally-produced pottery, jewelry, daily life objects, figurines, and weapons.

3.2.3 Clay Coffins

Eleven of the tombs (7, 60, 66, 69, 90, 107, 202, 219, 221, 227, and 241) in this study contained at least one clay coffin and a total of 56 whole or fragmentary sarcophagi were spread throughout the 11 burial places. The placement and orientation of the coffins do not appear to be consistent, although most of the tombs were partially disturbed or destroyed. This fact is probably also why only a few bones and objects were discovered inside of the anthropoid sarcophagi. Unfortunately, the excavators did not record any characteristics regarding age or sex among the skeletal remains they found within the coffins or burials. Objects discovered inside of the coffins include a gold mouth-plate in Tomb 202, two shabtis in Tomb 221, and four female figurines and one shabti in Tomb 241 (Oren 1973: 132).

The coffins are cylindrical or “cigar-shaped,” with the top being rounded and the length of the coffin tapering inward until reaching a flat base. The average height of the sarcophagi is 1.90 m, with an average base diameter of 0.40 m, and a max diameter of 0.65 m, which always occurs at the “shoulders” of the coffin (Oren 1973: 132). The upper one third or one fourth section of each coffin had a detachable lid with facial features, arms, and hands modeled in high
relief, leading to the common name of “anthropoid sarcophagi.” When this lid was removed, the coffins took on a shoe-shape, and thus are also sometimes called “slipper coffins” (Rowe 1930: 39). A few of the sarcophagi in Tombs 219 and 221 also had modeled feet or claws at the base. Nine of the coffins had a small 5-15 cm diameter hole in the base, while three examples had a series of small holes in three rows on the back, that are thought to have been used for draining liquids (Rowe 1930: 39).

The way in which the facial features, arms, and hands were modeled on the lid led Fisher to divide them into two categories, “naturalistic” and “grotesque,” although it should be noted that the individual characteristics of each coffin are different (1923: 234). The majority of the sarcophagi fall into the naturalistic category, which are marked by life-sized human faces with the eyes, nose, and mouth rendered with a higher or lesser degree of realism. Ears do not appear on most of the naturalistic coffin lids, but the few with ears show them as schematized and distant from the face. Hair in the shape of an Egyptian-style wig frames the face of this sarcophagus type and hangs down the sides. Sometimes a wide band decorated in the center with a triangular sign is depicted on the foreheads of naturalistic coffins. Stylized hands also commonly appear on this coffin type, with the wrists always crossed below the chin and bent arms sometimes being present.

Only five of the anthropoid coffins in the Northern Cemetery can unquestionably be assigned to the grotesque category, but there are probably more due to the fragmentary nature of some of the sarcophagi (Oren 1973: 135). Grotesque coffins are marked by highly exaggerated and stylized facial features that are modeled over the entire lid, with straight bands of clay for eyebrows set on a high crest, eyes made out of almond-shaped balls, straight-edge ridges for noses, and deep horizontal grooves for mouths. The ears are located unnaturally close to the
faces and are depicted as spiral bands with a hole. The grotesque coffin lids have no hair, instead showing headgear decorated with plain horizontal bands, rows of circular projections, vertical fluting, and/or zigzag patterns. Hands on this sarcophagus type appear directly below the mouth, are never crossed, and have outstretched fingers coming nearly together. Every grotesque coffin lid has arms, with some showing groups of incised grooves near the wrists and elbows.

The anthropoid coffins from the Northern Cemetery at Beth-Shean are manufactured out of coarse clay mixed with large grits and straw and have reddish, brown, and gray surfaces with gray and black cores. Oren has suggested that the coffins were produced using the same techniques employed to make large storage jars (1973: 133). First, a flat disc was created to form the base of the coffin. Long clay coils were then added onto this base, and the shape was flattened out, widening progressively towards the top and closing up to form a dome. Many of the coffins still bear the manufacturing signs of fingerprints, clay spiral joints, and an uneven surface, which might suggest a careless or hasty construction. After the sarcophagi were built up and shaped and the clay was still soft, a circular window was excised in the upper one third or one fourth section of the coffins to serve as an opening for interring the deceased.

The facial features, hands, and arms were then added to the sarcophagi, with the naturalistic examples being formed by molding a lump of clay and applying it to the lid by pressing the clay on both sides and smoothing it over with liquid, while the grotesque examples were formed entirely by applying and working bands of clay with the frequent use of a knife for shaping detailed features. Oren suggested that the anthropoid coffins were too large to be placed in an ordinary kiln and so were most likely baked in an open fire (1973: 133). He cites the crumbling surface of the walls, large soot marks, and the different coloring of the surfaces and core as evidence of firing in low and uneven temperatures, which would result from an open fire.
Some of the coffins bear indications of repair in antiquity, such as series of small holes and the addition of a creamy plaster.

3.2.4 Tomb Descriptions

3.2.4.1 Tomb 7 (Figure 3.1)

Tomb 7 was originally part of an Early Bronze Age IV shaft tomb and had been re-used without undergoing any alterations, but had been partially destroyed and was preserved only as a rectangular, about 2.5 x 3 m, roofless ledge of rock (Oren 1973: 6, Fig. 13). A 10 cm deep depression was located across the eastern half of the tomb. None of the finds appeared to be in situ, as fragments of an anthropoid sarcophagus, bones, pottery, jewelry, and bronze and ivory objects were intermixed and scattered throughout the tomb. No information was provided about the clay sarcophagus fragments in Tomb 7, but pottery included nine lamps, six slipped and painted lentoid flasks, two slipped and painted stirrup jars, one long-necked juglet, one dipper juglet, and one Mycenaean stirrup jar (Oren 1973: 104-105, 108-109, 112-113, 217, Figs. 41, 71). Tomb 7 has been dated to the end of the Iron Age IA based on the associated flasks, lamps, stirrup jars, and especially the long-necked juglet, which does not appear until the beginning of the 11th century BCE (Oren 1973: 104-105, 130-131).

Jewelry from Tomb 7 included five yellow paste lozenge beads, five yellow paste round beads, 14 carnelian round beads, four gold round beads, two ivory spacers, 32 carnelian lotus-seed pendants, one carnelian baboon pendant, four carnelian uraei pendants, one carnelian Hathor pendant, two gold Ptah pendants, two gold earrings, one silver earring, two bronze earrings, and one gold ring (Oren 1973: 119, 122, 128-129, 217, Figs. 41, 77). The carnelian

7 Early Bronze Age IV objects discovered in the tomb include two copper javelins (Oren 1973: 217, Fig. 64).
lotus-seed pendants, baboon pendant, uraei pendants, and Hathor pendant were strung together with the ivory spacers (Rowe 1936: 278, Pl. XXXI:48). Two scarabs, one of blue frit depicting Ptah holding a was scepter fronted by two djed signs, and the other of white steatite inscribed with the name of Amun-Re surrounded by two nub signs, and one cylindrical seal of blue paste with two uraei surrounded by ankh and djed signs, were also found in Tomb 7 (Oren 1973: 124-125, 217, 247, Fig. 51). Incised ivory objects in the burial consisted of a comb, a shallow bowl with a thickened flat-topped rim, a handle, and a “fiddle-shaped” gaming board (Oren 1973: 120-122, 217, Figs. 41, 76). A bronze bowl with an inturned rim and flat sunken center was also discovered in Tomb 7 (Oren 1973: 115, 217, Fig. 41).

3.2.4.2 Tomb 27 (Figure 3.1)

Tomb 27 was initially an Early Bronze Age IV multi-chambered shaft tomb, although a partial collapse of the main chamber (E) left no remnants of the vertical shaft (Oren 1973: 6-7, 69, 99, Figs. 13-14, 35-38). The tomb was entered from the southeast through a partly destroyed 0.75 m wide passage that was probably once connected to the now missing shaft. The passage opens up onto a large (2.7 x 5 m) oval chamber (A/D/E), which had mostly collapsed into the tomb (41) below, however, all of the debris and objects from Tomb 27 were able to be distinguished and separated by the excavators. Two semicircular niches were located at the eastern (A) and western (D) ends of the chamber. The disturbed skeletal remains of one interment were discovered in the eastern niche, which measured about 1.1 m wide and 2 m long. The western niche, which was about 0.7 m wide and 2 m long, contained no finds.

8 Early Bronze Age IV remains in Tomb 27 include a few sherds found in the northernmost chamber (C), including fragments of a lug-handled pot, flat-bottomed jar, and four-spouted lamp (Oren 1973: 6, 211). One chamber (A) had also been reused in Roman and Byzantine times and contained Roman lamps, bottles, a bust, and a coin (Oren 1973: 6-7, 211).
North of the main chamber (A/D/E) was an almost square (2.2 x 2.3 m) room (B) with a vaulted ceiling rising 1.4 m high. Three distinct groups of bones were discovered at the northeastern corner, western wall, and northwestern corner, with the heads of the latter two appearing to point north and northwest, respectively. To the north of Chamber B was another small rectangular room (C) measuring 2 x 1.5 m with a floor 0.30 m higher than the surface of Chamber B. Three burials were discovered in Chamber C: one near the entrance with the head pointing northeast, another beside it with the head northwest, and the third in the northern end of the room most likely pointing northeast. Finds from Tomb 27 include pottery, stone mortars, bone and ivory objects, jewelry, and weapons.

Pottery discovered in Chamber A of Tomb 27 included two pedestal-based bowls, seven dipper juglets, and one Cypriot Base-Ring II juglet, while Chamber B contained two ring-based bowls, two pedestal-based bowls, two carinated bowls, one one-handled krater, two dipper juglets, five two-handled biconical jugs, one storage jar, three lamps, and one Cypriot Base-Ring II bowl, and pottery from Chamber C consisted of two two-handled biconical jugs, two lamps, and three Base-Ring II jugs. The ceramic assemblage discovered in the collapse of Chamber E included two disc-based bowls, two ring-based bowls, four pedestal-based bowls, five carinated bowls, one cooking pot, six juglets, one lentoid flask, seven two-handled biconical jugs, two storage jars, one Cypriot Bichrome biconical krater, one Cypriot Gray Lustrous Ware juglet, one Cypriot Base-Ring II bowl, one Cypriot White-Slip II bowl, and one Cypriot Base-Ring I jug. (Oren 1973: 205-211, Figs. 35-38)

While Aren Maeir dated Tomb 27 to the Late Bronze Age IA, both Oren and Robert Mullins assert that the tomb contains burials dating from the Late Bronze Age I to the Late Bronze Age IIA (Maeir 1997: 69; Oren 1973: 27; Mullins 2002: 299). Oren and Mullins date
Tomb 27 based on parallels between pottery in the tomb and the ceramic assemblage from Level IX on the mound of Beth-Shean, with the Late Bronze Age I represented by a Black Lustrous juglet, the Late Bronze Age IIA represented by ovoid dipper juglets with pointed or rounded bases and short wide flaring necks, tall-necked amphoriskos-jugs, and Base-Ring II vessels, and both periods by a beveled-rim cooking pot, lamps, and a single-handled jug and krater (Mullins 2002: 299; Oren 1973: 27, 99).

Besides pottery, other finds in Tomb 27 include stone mortars, bone and ivory objects, jewelry, and weapons. A marble mortar with a ledge handle and spout, a bone inlay with an incised chevron design, and an ivory whorl were discovered in Chamber A of Tomb 27. While Chamber B only contained one ivory whorl, objects from Chamber E included a basalt mortar, an ivory whorl, two carnelian beads, five faience beads, a bronze bracelet, a bronze pin, a bronze long tang arrowhead, a scarab, and a plaque (Oren 1973: 211, Figs. 38, 51, 73). The scarab is engraved with a branch arching over the back of a couchant antelope and was made of carnelian mounted in a metal setting (Oren 1973: 97-98, Fig. 51).

The oval plaque, which is made of white steatite with traces of yellow glaze, has a floral pattern of four petals of a flower and four scrolls converging to a central disc on one side, and either the name of Thutmose III or Amenhotep II in a cartouche flanked by two uraei on the reverse (Oren 1973: 97-98, Fig. 51). Rowe wrote that the cartouche was inscribed with mn-xpr-ra, the prenomen of Thutmose III, while Oren believed the cartouche reads Aa-xprw-ra, the prenomen of Amenhotep II (Oren 1973: 97; Rowe 1927a: 41). Unfortunately, there is no published photo of the plaque, and the published drawing only shows a line where the hieroglyph mn or Aa should be, so it is almost impossible to determine the correct reading from the drawing.
However, the drawing does not show the plural strokes (or any hieroglyphs) under the sign for xpr, which would be necessary for the reading to be $xprw$, so it is more likely that the name is that of Thutmose III.

3.2.4.3 Tomb 29 (Figure 3.1)

Tomb 29 was originally a double-chambered tomb constructed in the Early Bronze Age IV, however, when the entrance to a later tomb (37) was built in the center of Tomb 29, the roof of the latter collapsed (Oren 1973: 7, 69, 99, Figs. 39-40). Fortunately, the sketches provided by the excavators show that the burials were not disturbed a great deal (Oren 1973: Fig. 15). The entrance to Tomb 29 was located in the southern part, which opened onto an oval-shaped chamber (Chamber C/D) measuring 7.3 m long and 3 m wide. One burial was located on the western side (Area C) of the chamber. To the north of Chamber C/D was another smaller, 5.5 x 3 m, oval-shaped room (Chamber A/B). The remains of two burials were discovered in this area, one on the eastern side (Area A) and another on the western side (Area B) with the head pointing northwest. Finds from Tomb 29 include pottery in all three areas, a serpentine goblet, an alabaster goblet, an incised ivory whorl, and a shell in Area A, a carnelian pendant in Area B, and a basalt grinder in Area C (Oren 1973: Figs. 39-40).

The majority of pottery found in Tomb 29 was associated with the burial in Area A. The ceramic assemblage from this part of the tomb included one flat-based bowl, one disc-based bowl, four ring-based bowls, three pedestal-based bowls, and two carinated bowls, six juglets, three jars, two lentoid flasks, one krater, two jugs, one storage jar, one cooking pot, five lamps,
and one Cypriot Base-Ring I jug. The other two burials also contained pottery, with Area B containing one red-slipped bowl, one jar, one lentoid flask, and two Mycenaean stirrup jars and Area C containing one disc-based bowl, one carinated bowl, two juglets, two Mycenaean stirrup jars, three Cypriot Base-Ring I juglets, and one Cypriot Base-Ring II jug. While Oren would date Tomb 29 to the Late Bronze Age IIA based on the Base-Ring and imitation Mycenaean wares, Mullins would also include the Late Bronze Age IB based on parallels between the Base-Ring I jug, juglets, biconical krater, and lamps from the tomb and those discovered on the mound of Beth-Shean in Level IX (Mullins 2002: 299-300; Oren 1973: 99).11

3.2.4.4 Tomb 60 (Figure 3.1)

Tomb 60 began as an Early Bronze Age IV single-chambered shaft tomb. A corridor was added later, most likely in order to allow the entrance of an anthropoid coffin (Oren 1973: 9, 101-102, Fig. 10).12 The original rectangular shaft measures about 1.2 x 2 m, and a narrow (0.5 x 1 m) passage led to a rounded burial chamber with a diameter of about 3 m. Later, a new opening was cut in the southern wall of the tomb, and a corridor, measuring 1 m wide and 3 m long, led from the opening to an area outside, where a southern facing wall was located. Finds in Tomb 60 include fragments of a clay coffin, pottery, jewelry, and weights. Parts of an anthropoid coffin made of gritty dark brown clay with a black core were discovered in the burial, including part of a lid showing a nose, mouth, chin, and wig modeled in the naturalistic style (Oren 1973: 223, 259, Fig. 56a: 4). Pottery from the tomb consisted of one lamp, one slipped

11 According to R. Mullins, many of the vessels from Tomb 29 had parallels with those from Stratum R-1b (Late Bronze Age IB) in the settlement, and the pilgrim flask was certainly typically of Late Bronze Age IIB, so the tomb most likely spanned these two periods (2013, pers. comm., 13 May).

12 Earlier and later items found in the debris of the shaft included an Early Bronze Age IV pot, Roman lamp, and some Byzantine objects (Oren 1973: 9, 223, Fig. 43).
and painted lentoid flask, one Mycenaean IIIB globular flask, and one Cypriot Base-Ring II bowl
(Oren 1973: 109, 111, 113, 223, Figs. 43, 74). Tomb 60 has been dated according to the
imported pottery to the Late Bronze Age II (Oren 1973: 130). A bronze amulet described as
possibly representing two ducks, two conical gold beads, and two bronze bracelets make up the
jewelry from Tomb 60 (Oren 1973: 223).

3.2.4.5 **Tomb 66 (Figure 3.1)**

Tomb 66 was originally a single-chambered Early Bronze Age IV tomb, but was later
altered and supplemented in order to accommodate at least eight anthropoid coffin burials (Oren
1973: 9, 10, 101-102, 130-132, 134-135). The tomb consists of three rooms, and the entrance
to the tomb lies to the south of the southernmost chamber (C). Chamber C originally had a
vaulted ceiling and was oval-shaped, measuring 3.5 x 4 m, but was partially destroyed by the
later Roman quarrying of one tomb (30) below and another above (52). To the east of Chamber
C, a rectangular (1.5 x 2.5 m) room (B) had been added to the original tomb, and to the north a
square (1.9 x 1.9 m) chamber (A) had also been added, with the two rooms separated by a stub of
a rock wall.

Items discovered in Tomb 66 include anthropoid sarcophagi, pottery, jewelry, daily life
objects, weapons, and a seal (Oren 1973: 219-221, Fig. 42ab). According to the object records,
seven coffins were discovered in Tomb 66, with one coming from Chamber A and six from
Chamber C, while Oren reports that another coffin had been deposited in Chamber B. An almost
complete sarcophagus was discovered in Chamber A alongside the northwestern wall with the
head pointing to the southeast (Oren 1973: 10, 132, 135, 219, Figs. 42a, 53, 80). Only a few

13 Two ceramic ledge handles and a deep bowl discovered in Chamber C attest to the Early Bronze Age IV origin of
the tomb (Oren 1973: 101).
bones were found inside of the coffin, with pottery and other objects scattered around the outside. The entire lid of the sarcophagus was intact and depicted facial features, ears, arms, and hands in the grotesque style, with headgear made of two vertical lines of circular projections underneath vertical fluting.

Fragments of an unphotographed and undrawn coffin, lid, and bones were found scattered in Chamber B (Oren 1973: 10). At least six different coffins were found in Chamber C, with one complete example pointing northwest and lying in the center of the room, and several other sarcophagi deposited together near the western wall (Oren 1973: 10, 132, 134). All six of the lids show facial features in the naturalistic style, with three examples wearing Egyptian-style wigs, one example wearing a wide band decorated in the center with a triangular sign, three with ears, and four with crossed hands.

Pottery was found in all three chambers of Tomb 66 with the overwhelming majority being lamps (Martin 2011: Pl. 8:1-5; Oren 1973: Figs. 42ab, 72). The ceramic assemblage from Chamber A included two bowls, 25 lamps, and two stirrup jars, while that of Chamber B included five bowls, 74 lamps, one biconical strainer-spouted jug, one pyxis, 25 lentoid flasks, one dipper juglet, three stirrup jars, two Egyptianized bowls with flat bases, and one Egyptianized bowl with a flanged rim. The least amount of pottery was located in Chamber C, with only seven lamps, two lentoid flasks, and one Egyptian-style bowl with a flat base in the room. Both Oren and Finkelstein date Tomb 66 to the Iron Age IA, based on the lack of Late Bronze Age ceramic forms and the inclusion of Iron Age pottery like the biconical strainer-spouted jug and the multi-spouted lamps (Finkelstein 1996: 177; Oren 1973: 130-131).

Other items discovered in Tomb 66 include jewelry, daily life objects, weapons, a scarab, and a seal (Oren 1973: 219-221, Fig. 42ab). Two bronze bracelets, one bronze ring, one bronze
earring, one tubular carnelian bead, one oval-shaped carnelian pendant, one bronze spatulate arrowhead, and one bronze pointed arrowhead were found in Chamber A. Objects from Chamber B included one bronze bracelet, eight bronze rings, one lotus-seed shaped carnelian bead, 20 round carnelian beads, two tubular gold beads, one tubular bronze bead, four strips of gold foil, one ivory comb, one ivory spatula, one bone kohl-stick, one scarab, and one plaque. The remaining objects from Tomb 66 were found in Chamber C, including one shell, two lotus-seed shaped carnelian pendants, and two round carnelian beads.

The scarab from Chamber B is made of steatite covered with a brown glaze and mounted in a gold ring with wires around each end (Oren 1973: 125, Fig. 51; Rowe 1936: 116, Pl. XII). A cartouche and six concentric circles joined by loops are engraved on the scarab. The miniscule drawing of the object shows what appears to be a ra sign followed by the mn hieroglyph inside the cartouche, which Oren interprets as ra-mn-xpr (1973: 125). However, it is more likely that the reading should be mn-xpr-ra, the prenomen of Thutmose III. The semicylindrical plaque is also made of steatite and covered with a glaze, with the flat side engraved with a figure of Amun-Re between two uraei, one of which has a sun-disc above its head (Oren 1973: 125; Rowe 1936: 253, Pl. XXVIII). The curved side of the plaque is inscribed with the prenomen of Ramses III, wsr-mAat-ra mry-imn, which Oren incorrectly reads as ra-wsr-mAat mry-imn (1973: 125).

3.2.4.6 Tomb 69 (Figure 3.1)

The unique two-chambered plan of Tomb 69, along with the lack of any earlier material inside, led the excavators to believe that it was not a reused Early Bronze Age IV tomb, and was instead added to the cemetery in the Iron Age (Oren 1973: 10, 101, 130, 131, 223, Fig. 43). The roof of the tomb had almost entirely collapsed, which concealed any entrance, although it is
speculated the entrance was located in the southern part of the burial. The southern chamber (A) was square-shaped, measuring about 2 x 2 m, and contained the remains of a square (0.5 x 0.5 m) rock pillar to support the roof. Chamber B to the north was also square-shaped (1.7 x 1.7 m). Finds in the tomb include coffin fragments, one lentoid flask, one stirrup jar, and two Egyptian-style bowls with flat bases in Chamber A, and one bowl and two lamps in Chamber B (Martin 2011: Pl. 8:6-7, Oren 1973: 223, Fig. 43). Oren dated Tomb 69 to the Iron Age IA due to the lack of Late Bronze Age pottery and the inclusion of the flask, lamps, and stirrup jar (1973: 130-131).

3.2.4.7 Tomb 90 (Figure 3.1)

Although Tomb 90 was initially constructed as a single-chambered tomb used for Early Bronze Age IV burials, it had been reshaped into a dromos-type tomb in the 13th century BCE (Oren 1973: 12, 101-102, 130, 134-135, Figs. 44-45). The tomb was entered on the western or southwestern side, but the entrance and part of the western half of the tomb had collapsed into Roman tombs (#101, 103) below. The entrance would have opened into the original Early Bronze Age IV Chamber A/B, which had mostly collapsed into the tomb (#103) below. A rectangular (1.5 x 2.1 m) chamber (C) had been added south of Chamber A/B, and directly south of this chamber, separated by a rock buttress projecting inside the tomb, was Chamber D, which was about 1 m wide and 2.5 m long.

Finds from Tomb 90 include seven clay sarcophagi, pottery, bronze vessels, stone vessels, jewelry, weapons, daily life objects, and shabtis (Oren 1973: 225-229, Figs. 44-45). Three anthropoid coffins with lids were discovered in the northern area (B) of Chamber A/B, three anthropoid coffins with lids were discovered in the northern area (B) of Chamber A/B,

14 An Early Bronze Age IV flat-bottomed pot was found in Chamber B and Roman lamps, bottles, cups, a bell, and a chain were also discovered in Tomb 90 (Oren 1973: 227, Fig. 44b).
while the fragments of four others were found in Chambers C and D. Four of the lids depicted facial features, ears, hands, and arms in the grotesque style, with headgear represented by horizontal lines, circular projections, and a triangular design (Oren 1973: 12, 135, 249, Fig. 52). Two of this type were found alongside one another in Chamber C, with heads pointing to the northeast. The remaining three coffins were decorated with facial features in the naturalistic style, with one example also wearing a wig or hair shown as fluted strips (Oren 1973: 12, 134, 251, Fig. 53).

Only about a dozen pieces from the ceramic assemblage of Tomb 90 can be assigned to a specific chamber (Oren 1973: 225-227, Fig. 44). This pottery includes a lamp and a lentoid flask from Chamber D, a bowl, two lamps, and two lentoid flasks from Chamber B, and two bowls, a lamp, a lentoid flask, and an Egyptianized bowl with a flat base from Chamber C. The remainder of the ceramic assemblage from Tomb 90 was comprised of 11 bowls, 19 lamps, two ring-necked flasks, 12 flasks, two long-necked juglets, and four Mycenaean IIIB stirrup jars. While Finkelstein would date Tomb 90 to the Iron Age IA or later based on the pottery corpus, especially the long-necked juglet, Oren dates the burials to the Late Bronze Age IIB and the Iron Age IA, with the earlier period represented by the Mycenaean IIIB stirrup jars and the later by the ring-necked flasks and long-necked juglet (Finkelstein 1996: 177; Oren 1973: 130). Mullins also agrees with Oren as to the chronological span of this tomb, which would correspond to Levels VII and VI in the settlement of Beth-Shean (2013, pers. comm., 13 May).

Other objects from Tomb 90 include stone and bronze vessels, weapons, jewelry, daily life objects, and shabtis (Oren 1973: 229, Fig. 45). An alabaster two-handled flask and high-footed cup, faience vase, and bronze juglet, strainer, lamp, and deep hemispherical bowl were discovered in Tomb 90, with the latter being found in Chamber C. A large group of bronze
weapons and tools were also found in the tomb, including a trapezoidal razor, a spear-butt, a dagger with a punctate decoration, and 18 spatulate, elliptical, lanceolate, pointed-ovate, and stump-bladed arrowheads. Jewelry from the burial is comprised of a bronze fibula, four bronze bracelets, two bronze rings, a gold mandrake-fruit pendant, a gold bud-shaped pendant, a round carnelian bead, and a carnelian melon bead. Ivory objects found in Tomb 90 are comprised of an inlay, fiddle-shaped gaming-board, and swimming-girl spoon. Two clay mold-made shabtis also came from Tomb 90. Oren states that the bronze and stone vessels, dagger, javelin, arrowheads, gaming-board, and spoon are all evidence that Late Bronze Age II burials were present in the tomb (Oren 1973: 130).

3.2.4.8 Tomb 107 (Figure 3.1)

Tomb 107 was originally an Early Bronze Age IV single-chambered shaft tomb that was reused in the Late Bronze Age and Iron Age with alterations to the shaft and chamber (Oren 1973: 13, 101-102, 130, 223, Fig. 43). Oren believed that these modifications had occurred in the Roman Period, but because the original shaft would have been too narrow to admit an anthropoid sarcophagus, it is more likely the changes were completed before the coffin was deposited. The tomb originally consisted of a 0.5 m wide and 1 m long entry shaft in the southeast that opened into a circular chamber with a diameter of 3 m. Later, the chamber was widened by about 1 m when a rectangular (1 x 2 m) cut was made in the western wall and floor of the room. At the same time, the original shaft was widened 1 m and lengthened 1 m and altered into a small flight of four rock-cut steps.

15 One Early Bronze Age IV flat-bottomed pot was discovered in Tomb 90 and later finds include a Byzantine lamp and bottle (Oren 1973: 13, 223, Fig. 43).
Objects discovered in the tomb include the fragments of one anthropoid sarcophagus with a lid in the naturalistic style, pottery, a bronze pointed-ovate arrowhead, and a scaraboid (Oren 1973: Figs. 43, 55, 71, 74, 84). The ceramic assemblage from Tomb 107 was comprised of a carinated bowl, four lamps, a long-necked juglet, a dipper juglet, two lentoid flasks, a Cypriot Base-Ring II jug, a Mycenaean pyxis, and a Mycenaean stirrup jar. Oren dates the burials in this tomb to the Late Bronze Age IIB based on the Mycenaean and Cypriot wares and to the Iron Age IA based on the long-necked juglet from the tomb (1973: 130). The glazed steatite scaraboid from Tomb 107 is in the form of a crouching lion and is decorated with a man with outstretched hands facing a crocodile.

3.2.4.9 Tomb 202 (Figure 3.1)

Tomb 202 began as three detached Early Bronze Age IV single-chambered shaft tombs with separate southern doorways and shafts, which had been combined in the early Iron Age (Oren 1973: 14-15, 101-102, 130-132, 135, Fig. 46).16 The walls between the three tombs were cut away and the western end (B) was enlarged, creating one huge chamber (A). Chamber A was a very long, about 12 m, room that varied in width between 2 m and 5 m. On the western end of Chamber A, the originally oval chamber (B) was lengthened by 2.5 m and widened by 2 m. The entrance to Chamber B was located in the south, and connected to a long 0.7 m wide passageway, that was probably added to accommodate sarcophagi burials.

Four clay sarcophagi, pottery, and jewelry were discovered in Tomb 202 (Oren 1973: 231, Figs. 46, 55, 56, 71, 76). An almost complete coffin and lid with facial features in the naturalistic style was located against the northern wall in Chamber A, lying on a layer of basalt.

16 Early Bronze Age IV pottery found in Tomb 202 included a jar, pot, and lamp in Chamber A, and a pitcher in Chamber B (Oren 1973: 231, Fig. 46).
stones with the head pointed towards the northwest. Fragments of a lid of a second coffin were also found in Chamber A, and two more sarcophagi were found alongside one another in the western part of Chamber B. All of the coffins from Tomb 202 were decorated in the naturalistic style.

The ceramic assemblage from the burials was comprised of a lamp, a stirrup jar, six lentoid flasks, and three Egyptian-style bowls in Chamber A and two lamps, a stirrup jar, two lentoid flasks, and three Egyptianized bowls in Chamber B (Martin 2011: Pl. 8; Oren 1973: Fig.46). Oren dates the burials in Tomb 202 to the Iron Age IA, based on the inclusion of the flasks, lamps, and stirrup jars, and the lack of Late Bronze Age forms (1973: 130-131). Jewelry discovered in Tomb 202 consisted of a bronze ring from Chamber B, and a gold “mouth-plate” incised with a cross-hatched design and pierced with two holes that was found inside of the complete sarcophagus in Chamber A.

3.2.4.10 Tomb 219 (Figure 3.1)

Tomb 219 was an Early Bronze Age IV double-chambered tomb that was reused in the Late Bronze Age and Iron Age without any changes or additions to the original plan, although the tomb was almost completely quarried away by the construction of four later Roman tombs (210, 213, 222, and 229) (Oren 1973: 15-16, 101-102, 131-134, Fig. 48-49). Both chambers were semicircular, with the northeastern chamber (A) containing a vaulted roof. When Tomb 219 was reused in the Roman Period, pottery and objects from both chambers were deposited on the floor of Chamber B, so that broken pieces of the same items were spread across both chambers. Items discovered in Tomb 219 include 17 whole or fragmentary coffins, pottery,

17 Early Bronze Age IV pottery discovered in Chambers A and B of the tomb included two lamps, two jars, and a ledge handle. Roman and Byzantine pottery and objects from Chambers A and B were comprised of five lamps, three bottles, two jars, one coin, one limestone bust, one basalt mortar, and one bronze lock (Oren 1973: Fig. 48c).

Every whole or fragmentary lid of the 17 anthropoid sarcophagi discovered in Tomb 219 showed characteristics of the naturalistic style (Oren 1973: 15, 132-134, Figs. 48a, 56-58, 84). In Chamber A, a nearly whole coffin was located in the northwestern section of the room, along with the fragments of four other lids. Two entire sarcophagi were found alongside one another in Chamber B, with the heads pointing toward the east. This room also contained several sections of another coffin and its lid, as well as many lid and base fragments of eight more coffins, one of which depicted a head crowned with a wide band decorated in the center with a triangular sign. Oren described one of these bases as having feet modeled “in the form of animals’ claws,” although the drawing only shows a semicircular area divided in half by a line, which looks more like stylized human feet than animal claws (1973: 133, Fig. 57). A pierced base of another sarcophagus was discovered in Chamber C.

A large quantity of pottery was found in Tomb 219, with the majority coming from Chamber B, where many items had been placed during the later reuse of the tomb (Martin 2011: Pl. 8; Oren 1973: Figs. 48-49). In Chamber A, a lamp, seven lentoid flasks, four stirrup jars, one squat-bodied jar, one Egyptianized bowl with a rounded base, one Egyptianized bowl with a flat base, and one Mycenaean stirrup jar comprised the ceramic assemblage. The pottery corpus of Chamber B consisted of five lamps, eleven lentoid flasks, 20 stirrup jars, a globular strainer-spouted jug, a Mycenaean pyxis, an Egyptian handled-cup, and two Egyptian-style flanged-rim bowls. An Egyptianized bowl with a rounded base was the only vessel found in Chamber C. Based on the Mycenaean pyxis, Oren dated the earliest burials in the tomb to the Late Bronze Age IIB, while the latest burials were dated to the Iron Age I, based on the squat-bodied jar.
Non-jewelry bronze objects in Chamber B of the tomb include a saucer-like bronze bowl and an arrowhead.

Jewelry discovered in Tomb 219 included two bronze bracelets, a bronze ring, and a gold ring in Chamber A, five bronze rings, two silver earrings, five gold earrings, seven carnelian lotus-seed shaped beads, seven carnelian tubular beads, three gold round beads, a faience amulet engraved with figures of Bes and other deities, an onyx Bes amulet, and a faience Hathor amulet in Chamber B (Oren 1973: Figs. 49, 77). One silver earring, two gold earrings, and one carnelian tubular bead from Chamber B were located inside of the one of the anthropoid sarcophagi. Clay objects from Tomb 219 included a whorl and three shabtis found in Chamber B.

A large assortment of seals and scarabs were discovered in Chamber B of Tomb 219 (Oren 1973: 125-127, Figs. 49, 51). The seals include one unincised faience example mounted in a gold base, and one glazed steatite example engraved with the figure of a baboon on one side and the mAat-feather and Montu on the other side. Oren mistakenly identified Montu as the god Re, and therefore translated the seal as nb-mAat-ra, the name of Amenhotep III, however, Re is typically only depicted as a sun-disc on scarabs and seals and there does not appear to be a nb sign in the drawing. The correct translation is most likely a common cryptographic writing of imn, with the sun-disk on Montu’s head representing i, the mAat-feather m, and Montu n.

Eight scarabs were also discovered in Chamber B of Tomb 219. One unincised carnelian scarab was set in a bronze bezel and attached to a ring by wire. Three of the scarabs were made of faience, with one engraved with imn-ra nb (“Amun-Re is lord”) and another attached to a socket and marked with a mAat-feather in front of a uraeus, which is another common cryptographic writing of imn, where the uraeus represents both the i and the n, and the feather the
The third faience scarab is incised with *wsr-mAat stp-ra*, which Oren records as *wsr-mA stp-n-ra* which he mistakenly states is the name of Ramses II. The scarab could indeed be inscribed with the actual name of Ramses II, *wsr-mAat-ra stp-n-ra*, as the genetival *n* is commonly absent on scarabs, and the singular *ra* could represent both instances of the word in the name.

The remaining four scarabs from the tomb were made of glazed steatite. One of these was set in a gold mounting and depicts the king wearing a double crown and holding a *HqA*-scepter in front of a cartouche inscribed with *mn-xpr-ra*, the name of Thutmose III. Another example is of white steatite and shows a baboon wearing a moon-disc, which Oren identified as a *nb*-sign, in front of the god Seth. A third steatite scarab was engraved with *ptH nb mAat* (“Ptah, lord of truth”), and the final scarab with *ra-wsr-mAat*, the name of Ramses II.

3.2.4.11 Tomb 221 (Figure 3.1)

Tomb 221 was a multi-chambered Early Bronze Age IV tomb that had been reused in the Late Bronze Age and Iron Age without any changes to the original plan (Oren 1973: 16, 101-102, 130-133, Fig. 48). The tomb had been partially destroyed by the later construction of four Roman tombs (#209-211, 220) nearby, when many of the contents of the tomb were also shifted from Chamber A in the east and Chamber B in the southeast to Chamber C in the south. Finds in the tomb include nine clay sarcophagi, pottery, jewelry, *shabtis*, a seal, and a scaraboid (Oren 1973: Fig. 47). According to the object record, one almost complete coffin was discovered in Chamber A, another in Chamber B, and five in Chamber C, however Oren adds another two sarcophagi to Chamber C, reporting that three were deposited on the western side of the room, two to the north, and two to the east (Oren 1973: Figs. 47a, 57, 84). All of the facial features on

18 Early Bronze Age IV pottery discovered in Chamber C of the tomb included two lamps and a ledge-handle (Oren 1973: Fig. 47b).
the lids from the tomb were in the naturalistic style, and the base of one coffin from the eastern side of the Chamber C was modeled with human feet and toes.

The ceramic assemblage from Chamber A of Tomb 221 included two lamps, three lentoid flasks, a strainer-spouted jug, a storage jar, and an Egyptianized bowl with rounded base, while that of Chamber B included a lentoid flask, a funnel, and a Mycenaean stirrup jar. The majority of the pottery was found in Chamber C, consisting of four saucer-type bowls, a carinated bowl, ten lamps, eight stirrup jars, nine lentoid flasks, a Mycenaean stirrup jar, a Cypriot Base-Ring II bowl, two Egyptian handled-cups, and an Egyptian-style bowl with flat base. Oren dates the earliest burials in Tomb 221 to the Late Bronze Age II based on the Cypriot bowl, and the latest to the Iron Age I based on the strainer-spouted slipped and burnished jug (1973: 130-131).

Other finds in the tomb include jewelry, shabtis, and a scaraboid in Chamber C and a seal in Chamber A (Oren 1973: Fig. 47). The jewelry corpus is comprised of four bronze bracelets and a round bead of yellow paste. The two shabtis from Tomb 221 were located inside of one of the coffins in Chamber C. The scaraboid was made of faience and unincised, while the oblong plaque was of glazed steatite and inscribed on one side with a sun-disc, bird, and couchant lion and a couchant lion, two figures, and a horizontal bar on the other side.

3.2.4.12 Tomb 227 (Figure 3.1)

Tomb 227 was originally a multi-chambered Early Bronze Age IV shaft tomb that was reused on the early Iron Age without any alterations to the original plan (Oren 1973: 16-17, 101-102, 130-132).\footnote{Early Bronze Age IV pottery from the tomb consisted of a pitcher and three jars found in Chamber D (Oren 1973: 17, Fig. 18).} The 2 m deep shaft of the tomb measured 1.1 m wide and 1.4 m long and ended in a low 1 m long passageway that was 0.5 m wide near the shaft and 1 m wide at the opening to
the main chamber (A) of the tomb. Chamber A was 2.1 x 3.6 m with a ceiling 2.8 m high and a floor level 20 cm lower than the entrance passageway. To the north (B), east (D), and south (C) of Chamber A were three smaller rectangular rooms with rounded corners, measuring about 1.5 m wide and 3 m long with floors slightly higher than that of the main chamber.

The only items discovered in Tomb 227 were clay coffins and pottery (Oren 1973: Fig. 46). Three anthropoid sarcophagi in the naturalistic style were deposited in the tomb, one in the main chamber (A) with the head pointing south, and one each in Chambers B and D. Pottery from the tomb included three lamps, one Egyptian handled cup, and two Egyptianized bowls with flat bases. Oren dated the burials in Tomb 227 to the Iron Age I, based on the inclusion of deep saucer lamps with pronounced spouts and the lack of Late Bronze Age II ceramics (1973: 130-131).

3.2.4.13 Tomb 241 (Figure 3.1)

Although Tomb 241 began as a single-chambered Early Bronze Age IV shaft tomb and was reused in the Late Bronze Age without any alterations, the floor had almost completely collapsed due to later quarrying below, leaving only a semicircular rock ledge (Oren 1973: 17, 101-102, 130, 132, Fig. 50).20 Items discovered in the tomb include clay coffins, pottery, jewelry, figurines, and a scarab (Oren 1973: Figs. 50, 51, 56, 58, 76, 83, 84). Five anthropoid sarcophagi were deposited in Tomb 241, four of them lay side-by-side with the heads pointing to the southeast, while the fifth (Coffin B) lay at their feet with the head to the northwest.

The ceramic corpus from the tomb included a saucer-type bowl, a squat pot, four lentoid flasks, and three Mycenaean IIIB stirrup jars underneath Coffin B, and two stirrup jars and a

20 An Early Bronze Age IV ledge handle was found in the tomb (Oren 1973: Fig. 50).
stump-based storage jar underneath an undesignated “Coffin A.” Oren dated Tomb 241 to the Late Bronze Age IIB based on the storage jar, squat pot, and Mycenaean stirrup jars (1973: 130). Jewelry from the tomb included two bronze bracelets joined by a bronze link, a faience melon bead, and two carnelian beads (melon and lotus-seed shaped) inside of Coffin B. All five of the clay figurines were also discovered inside of Coffin B. One of these figurines was a mold-made shabti, while the other four were female figurines, one with traces of a red slip. The remaining object from Tomb 241 is a faience scarab engraved with a winged uraeus positioned above a quadruped.

3.3 THE CEMETERY OF DEIR EL-BALAH (Figures 3.3-3.7)

3.3.1 Excavation and Publication History

The cemetery of Deir el-Balah lies about 190 m southwest of the settlement and 13 km southwest of modern Gaza (Dothan 1993: 343; Lipton 2010: 3-4). The cemetery is located within a longitudinal trough running parallel to the coast and bordered on the east and west by ridges of kurkar. The cemetery was initially excavated jointly in 1972 by the Institute of Archaeology of the Hebrew University of Jerusalem under the direction of Trude Dothan and the Institute of Archaeology of Tel Aviv University under the direction of Itzhaq Beit-Arieh (Dothan 1979: 2). The existence of the cemetery was not known until numerous anthropoid sarcophagi, pottery, and Egyptian objects appeared on the antiquities market after the end of the Six-Day War (Dothan 2010a: XXVII; Lipton 2010: 3). In 1968, with the help of the Minister of Defense, Moshe Dayan, and the presence of light-colored sand on many of the objects, the provenance was traced to Deir el-Balah (Dothan 1979: 1; 2008: 16-17; 2010a: XXVII).
Figure 3.3: The Cemetery at Deir el-Balah
(after Lipton 2010: Fig. 1.1)
Figure 3.4: Area 300 of the Deir el-Balah Cemetery
(after Lipton 2010: Fig. 1.3)
Figure 3.5: Area 600 of the Deir el-Balah Cemetery
(after Lipton 2010: Fig. 1.10)
Figure 3.6: Area 1400 of the Deir el-Balah Cemetery
(after Lipton 2010: Fig. 1.31)

No burials
(Area checked in 1981)
Figure 3.7: Tomb 303 of the Deir el-Balah Cemetery
(after Lipton 2010: Fig. 1.6)
Dothan and Beit-Arieh were not allowed to excavate until four years later, and in those intervening years Dayan purchased, restored, and perhaps even illicitly removed, a large quantity of the materials from Deir el-Balah for his private collection. After Dayan’s death, his collection was donated to the Israel Museum and was subsequently published in a museum catalogue (Dothan 2008). In 1972, the excavations began in Area 100, which is separated into two sections located in the northern and western parts of the cemetery (Figure 3.3). Using a map provided by Dayan showing the provenances of the looted coffins and the help of the rais of the local workcrew (also discovered to be the original looters), the excavators initially only found previously robbed tombs (Beit-Arieh 1985: 43; Dothan 2008: 19, 28, 48). Later, after making a deal with the rais to pay for each undisturbed tomb found, Dothan excavated three pit burials with anthropoid coffins and an unknown amount of pit burials without coffins (Dothan 2008: 45; 2010a: XXVII). Beit-Arieh also excavated at least 12 pit burials, including one with a stone sarcophagus (1985: 43).

The western part of Area 100 was situated in an area covered by citrus groves, vineyards, and vegetable plots, so probes were dug in-between the strips of trees or plants about 1.5 m apart, with a total of 26 probes excavated in 10 days (Beit-Arieh 1985: 45). These 0.2 m by 0.6 m probes were oriented south-north and excavated down to virgin soil, which was up to 2.3 m below the surface (Beit-Arieh 1985: 45). In the northern section of Area 100, 8 m of sand overlay had to be removed with a bulldozer before the excavators could begin (Dothan 1979: 3). The results of the first season were published in two preliminary reports and a final report for each section of Area 100 (Beit-Arieh 1985; Dothan 1972; 1973; 1979).

Unfortunately, out of the 19 burials discovered in Area 100, only nine (100, 107, 108, 110, 111, 112, 114, 116, and 118) are described in any detail, six (101, 102, 104, 105, 106, and
109) appear on a map only as “pit burials,” one (115) is only mentioned in relation to a Cypriot milk-bowl, and the remaining three (103, 113, and 117) do not appear in any publication (Beit-Arieh 1985; Dothan 1972: 68; 1973; 1979). Presumably, some of the briefly-mentioned or missing tombs are part of the pit burials Dothan excavated between the tombs with anthropoid coffins, but do not appear to have ever been published (Beit-Arieh 1985: 45, Note 2; Dothan 1972: 67-68; 1979: 3).

The excavations in the cemetery of Deir el-Balah were renewed in the late 1970s, although the exact year is ambiguous, as it is listed as being both 1977 and 1979 in the same volume (Dothan 2010a: XXVIII; Lipton 2010: 4). Area 300 (Figure 3.4) in the northeast and Area 600 (Figure 3.5) in the west were explored in the renewed excavations, which were conducted by Dothan under the auspices of the Institute of Archaeology of the Hebrew University of Jerusalem. Both of these areas were located under 13 m of sand dunes, which were removed by bulldozers down to just above the dark patches of *hamra* (“brown, stiff sand”) surrounded by the lighter *kurkar* (calcareous sandstone), which marked the presence of the tombs (Dothan 2010a: XXVIII; Lipton 2010: 3, 5). From 1980 to 1981 (or 1982, as published in the same volume), Area 1400 (Figure 3.6) was excavated in the eastern part of the cemetery using the same methodology (Dothan 2010a: XXVIII, Lipton 2010: 4).

In 1982, the excavations abruptly ended when the owner of the land on which the cemetery and settlement of Deir el-Balah were located preemptively re-interred the excavated area and denied further access (Dothan 2010a: XXVIV). The final report of the excavations from 1977-1982 were published almost three decades later in two volumes, one for stratigraphy and architecture, and another analyzing the finds, although only a few objects from the cemetery appear in the latter volume (Dothan and Brandl 2010a; 2010b). Most of the chapters in the final
report had been originally written and submitted in the 1980s and 1990s, and many of these were not updated for the final publication in 2010 (Dothan 2010a: XXXIV). Although the entire cemetery was not explored (1469 m² of excavation), the excavators were able to define the eastern and southern boundaries, with an estimate that the entire cemetery was originally around 4 ha total (Lipton 2010: 4-5).

3.3.2 Strata and Chronology

Dothan initially dated the cemetery of Deir el-Balah to the 13th century BCE, with a possible beginning in the 14th century BCE and an extension into the 12th century BCE (1979: 3). Later, the date was resolutely pushed back with the cemetery first being used in the Late Bronze Age IIA and continuing through the end of the Late Bronze Age IIB (Dothan 1993: 347). The shift to an earlier date appears to coincide with the excavation and interpretation of the Late Bronze Age levels of the settlement at Deir el-Balah, which are believed to have been contemporary with the cemetery. A date for the cemetery is not provided in the final report published in 2010, but excavations at the settlement revealed six Late Bronze Age strata from the LB IIA (Stratum IX) to the LB IIB (Strata VII-IV), with Stratum VIII including interim sealed loci between Strata IX and VII (Dothan 2010a: XXVIII).

Before the final report was published, Ann Killebrew, Paul Goldberg, and Arlene Rosen published an article that reexamined the dated levels of the site based on the results of a geoarchaeological investigation, which was also compared with the previously excavated archaeological evidence (2006). Goldberg and Rosen analyzed the microstratigraphy and sediments of the settlement at Deir el-Balah using grain size and micromorphological techniques. The authors also examined the ceramics from the potters’ workshop, which they compared with
the pottery corpus from the cemetery. The final results of the study were that the settlement and cemetery of Deir el-Balah should only be separated into two levels, corresponding to the Late Bronze Age IIB (Stratum IX) and Iron Age IA (Stratum VII) (Killebrew, Goldberg, Rosen 2006).

An analysis of the imported and locally-produced Egyptianized ceramic assemblage in the cemetery and settlement of Deir el-Balah has also led to the same chronological conclusions as Killebrew, Goldberg, and Rosen (Martin 2011: 214-215). Both the former and more recent interpretations of the strata and dates for the site appear in the plans and the text of the final report, which Dothan states “may hamper the fluent reading of the book” (2010a: XXXIV). She credits the stratigraphic confusion to the fact that they were not able to excavate or know the full extent of the settlement or cemetery and because of the inability to reevaluate the architecture and stratigraphy after the landowner abruptly denied access (2010a: XXXIV).

3.3.3 Tomb Types and Contents

At least 44 tombs were excavated in the cemetery of Deir el-Balah, with at least another estimated 44 examples of looted burials, based on the presence of the same number of unexcavated anthropoid sarcophagi now in the Israel Museum (Dothan 2008: 96-116). The true number of excavated tombs is uncertain, as little or no information is provided for ten of the burials in Area 100, as mentioned above. Another six features in Areas 300 (Figure 3.4) and 600 (Figure 3.5) are labeled as “loci” and not tombs, based on the fact that three (302, 614, and 616) only contained pottery and another three (305, 610, and 615) were small depressions with or without pottery and lacking human remains (Lipton 2010: 10, 16, 27, 29-31). The former three are probably just ceramic markers (described below) for nearby burials, but the latter three
should most likely be understood as burials in their own right, especially since four other burials (110, 112, 601, and 619) also lacked human remains and/or pottery, but were stilled each labeled as a “tomb” (Beit-Arieh 1985: 45, 47; Lipton 2010: 17, 32).

All of the graves in the cemetery at Deir el-Balah were pit burials that were cut through the hamra and into the kurkar without any type of superstructure and with only one tomb (1405) having a mudbrick and stone superstructure. The burials were filled with hamra, which came from the thin layer of alluvial soil that overlay the kurkar (Lipton 2010: 44). With the exception of one destroyed tomb, the burials in Areas 300, 600, and 1400 were separated into seven different types based on the presence of shelves and the type of depression in the tomb (Lipton 2010: 6). Nine of the tombs (301, 602, 603, 604, 607, 617, 618, 1400/1401, and 1402) were simple pit graves without shelves or depressions (Type A). Five of the tombs (100, 112, 114, 116, and 118) from Area 100 should also probably be added to this category.

The other types include eight tombs with recessed depressions, with half (304, 306, 611, and 1406) also containing one shelf (Type D) and the other half (608, 612, 1403, and 1404) two shelves (Type E), four tombs (601, 606, 613, and 619) with unrecessed depressions and one shelf (Type B), two tombs (303 and 609; Figure 3.7) with a central unrecessed depression and no shelves (Type F), one tomb (605) with an unrecessed depression and two shelves (Type C), and the final burial (1405) was the mudbrick- and stone-lined example mentioned above (Type G) (Lipton 2010: 6). The remaining 14 tombs from Area 100 cannot be categorized due to the lack of any drawings or description other than “pit burials.” Finds in the cemetery include anthropoid sarcophagi, stelae, pottery, bronze and stone vessels, jewelry, daily life objects, and figurines.

The distribution of the seven burial types described above appears to be random, but Dothan noticed a pattern in Areas 100 (Figure 3.3) and 300 (Figure 3.4) that consisted of three
or more burials with anthropoid sarcophagi about three to four meters apart with coffin-less burials between them (Dothan 1979: 1, 3; Lipton 2010: 6). In Area 600 (Figure 3.5), the graves were arranged in what both Dothan and Lipton described as five “orderly rows,” although the outlines of these rows are difficult to distinguish in the drawing of the area (Dothan 2008: 49; Lipton 2010: 45, Fig. 1.10). Not one of the burials in all four areas cut into another grave, showing that the tombs were clearly marked through pottery, stelae, or unpreserved wood objects (Lipton 2010: 45).

At least a dozen tombs in the cemetery contained one or two large jars with a juglet inside and covered by an inverted bowl, which was placed at the head or the foot of the grave (Beit-Arieh 1985: 45, 47; Lipton 2010: 45) (Figure 3.7). The undamaged examples of these vessels clearly protruded above the fill line of the tomb and probably marked the area as a grave (Lipton 2010: 45). Five stelae with Egyptian motifs and texts are also believed to have been used as tomb markers in the cemetery at Deir el-Balah. One of these stelae was reported as coming from a coffin-less burial pit where it lay near the head of a skeleton, and another from a tomb lined with rough stone, in which it was imbedded, however, both of these accounts are highly problematic (Dothan 1979: 1; Ventura 1987: 115).21

In the cemetery of Deir el-Balah, burials with an anthropoid sarcophagus contained two to four interred individuals, while those of the coffin-less burials usually contained only one, although two (611 and 613) of the latter included two individuals each (Dothan 2008: 49; Lipton 2010: 5-6). The majority of the interments were positioned in the center or the southern part of the tomb, although there are a few examples of those placed on the northern side (Lipton 2010: 6). With one exception, the heads of the deceased were always pointed north or northwest.

21 These stelae are described in more detail below in the section on objects in the Israel Museum.
(Lipton 2010: 5). Human remains discovered in the cemetery included both genders and ages ranging from infant to at least 40 years old (Arensburg and Smith 1979: 92-97; 2010: 49-50).

3.3.4 Clay Coffins and Pottery

Five of the tombs (114, 116, 118, 301, and 620) excavated in the cemetery of Deir el-Balah contained an anthropoid clay coffin and a total of 44 more sarcophagi also believed to be from the site are now located in the Israel Museum. The coffins are cylindrical-shaped with a maximum diameter located at the “shoulders” that then tapers down toward a flat base. The sarcophagi range in height from 1.61 m to 2.06 m and are separated into two groups based on the form of the head and shoulders (Dothan 1979: 98; 2008: 24). Sarcophagi in Group A are mummiform with a clearly delineated narrower head and widening shoulders, while those in Group B have a smoother contour and are practically straight-lined (Dothan 1979: 98-100; 2008: 94). A few coffins are also designated as “intermediate” between the two groups (Dothan 2008: 94, 107-108, Nos. 24-26).

At Deir el-Balah, coffins in Group A are the dominant type, with two excavated examples from Tombs 114 and 301, and 30 more in the Israel Museum (Dothan 1979: 98; 2008: 94, 96-110, Nos. 1-23, 27-33; Lipton 2010: 6-10, Fig. 1.4, Photos 1.1-1.5). Group B includes two coffins from Tombs 116 and 118 and 10 more from the antiquities market (Dothan 1979: 98; 2008: 94, 111-116, Nos. 34-44). It is unknown to which group the anthropoid sarcophagi discovered in Tomb 620 belongs, as there is no published description, drawing, or photograph of the coffin, and it is unclear whether the drawing labeled “Tomb 620 with finds” is of the tomb itself, the coffin, or both (Lipton 2010: 33-34, Fig. 1.30).
Nearly all of the clay coffins had a short squared-off or rounded projection at the base, and two examples had a long rounded projection that was engraved to indicate the details of toes (Dothan 2008: 104-105, Nos. 17, 19). Almost half of the examples from Deir el-Balah were pierced with one to seven holes in the base or along the bottom of the sarcophagus, which are thought to have allowed the drainage of body fluids, and/or an opening in the top, which functioned “perhaps to allow the soul to escape” (Dothan 1979: 98; 2008: 24).

The upper one third or one fourth section of each coffin had a detachable lid with facial features, arms, and hands modeled in relief, leading to the common name of “anthropoid sarcophagi.” Nine coffins in the assemblage were decorated on the lid, and sometimes the body, with red, white, yellow, brown, black, and/or pink paint (Dothan 1979: 98; 2008: 24). Features on the lid, including the eyebrows, pupils, forehead, cheeks, lips, ears, wig, collar, fingers, and chest, were sometimes filled in or outlined, while the lid and body could be slipped in entirety or adorned with patterns of ladders, triangles, lines, or zigzags (Dothan 1979: 98; 2008: 24, 96-97, 103, 105, 107-109, 112, 116).

Dothan separates the coffin lids into two types, using the terms “naturalistic” and “grotesque,” which were first introduced by Fisher to describe the clay sarcophagi from Beth-Shean, and subsequently defined by Oren in his work on the same pieces (Dothan 1979: 100; Fisher 1923: 234; Oren 1973). Naturalistic and grotesque coffin types are determined by the way in which the facial features, arms, and hands were modeled on the lid, although Dothan’s definition of these two types differs from that originally used by Oren (Dothan 1979: 100; Oren 1973: 135). For Dothan, sarcophagi in the naturalistic group have lids with a life-like and clearly outlined face that was modeled separately and then applied to the surface as one unit.

22 Oren’s definition and description of these two terms appears in the section above on clay coffins from the Northern Cemetery of Beth-Shean.
while those of the grotesque variety are lacking a true facial outline, with stylized features all applied separately to the lid (1979: 100; 2008: 95).

The former type is the most common at Deir el-Balah, with examples coming from Tombs 114, 116, 118, and 310, as well as 36 more in the Israel Museum (Dothan 1979: 10, 30, 50; 2008: 96-105, Nos. 1-20, 108-115, Nos. 25-30, 32, 34-37, 39, 42-45; Lipton 2010: 9). Only nine coffins were manufactured in the grotesque style, and all of these came from the antiquities market (Dothan 2008: 106-107, Nos. 21-24, 110, Nos. 31, 33, 113-114, Nos. 38, 40-41). Dothan does mention that there are two coffins from Deir el-Balah that have a combination of naturalistic and grotesque features, but does not indicate to which examples she is referring (2008: 23).

The majority of the anthropoid sarcophagi from Deir el-Balah have lids with varied characteristics; however, these differences are not necessarily chronologically significant (Dothan 1979: 100). The diverse types of faces and features among the anthropoid sarcophagi has been attributed to variances in realistic portraiture, the level of adherence to Egyptian iconographic conventions, numerous craftsmen working on one coffin, or manufacture in several stages, conversely though, “in general, the faces were meant to symbolize the dead rather than actually portray them” (Dothan 2008: 23, 95). On the other hand, three anthropoid sarcophagi, one from Tomb 116 and the two from the antiquities market, appear to have almost identical features (Dothan 1979: 30; 2008: 113, No. 39, 116, No 44). The faces on these three coffins might have been cast in the same mold, produced in the same workshop, or by the same craftsman (Dothan 1979: 100).

Instrumental Neutron Activation Analysis (INAA) was performed on 16 coffins from Deir el-Balah in order to determine a local or foreign origin (Perlman, Asaro, and Dothan 1973).
Unfortunately, these 16 coffins are never identified in the study except that they “were described in the previous article,” referring to the immediately preceding article in the same volume of *Israel Exploration Journal*, authored by Dothan (Perlman, Asaro, and Dothan 1973: 147; Dothan 1973). However, Dothan only describes 13 coffins in the preceding article, and only five of these are actually identified by a museum number, two of which are incorrect (1973: 129, Note 2). It can probably be assumed that the remaining three coffins in the group of 16 are probably those from excavated Tombs 114, 116, and 118. Photos of the 13 coffins accompany Dothan’s article, and 12 of these can be identified by comparing the photos with those published in the 2008 museum catalogue (Dothan 2008: 96-116, Nos. 1, 4, 8, 13, 14, 21, 24, 27, 34, 37, 41, 44). One of these anthropoid sarcophagi, No. 12, does not appear in the museum catalogue and it is unknown why it has not been published.

INAA performed on the 16 coffins showed that there were three statistical groups of clay types among the sarcophagi (Perlman, Asaro, and Dothan 1973). Fifteen of the coffins fell into one of two groups, which had only slightly different compositions linked to the amount of sand dilution, and were therefore still considered to be of a similar origin. Even though these sarcophagi are not identified by number in the article, at least three came from excavated contexts, and no matter how they are split between the two groups, there must be at least one or two excavated examples in the same group as the 13 looted examples, confirming that at least some of the coffins from the Israel Museum were from Deir el-Balah.

23 Dothan reported that “No. 7 – I.M. 71.10.212” but this number actually belongs to another coffin, and the correct number is I.M. 82.2.828, and the same is true for “No. 9 – I.M. 71.10.219,” which is actually I.M. 82.2.838 (1973: 129, Note 2; 2008: 107, No. 24, 109, No. 27).

24 No. 1 – 71.10.216, No 2. – 82.2.818, No 3 – 82.2.812, No 4 – 82.2.834, No 5 – 82.2.827, No 7 – 82.2.828, No 8 – 82.2.821, No 9 – 82.2.838, No 10 – 82.2.836, No 11 – 71.10.218, No 12 – 71.10.217, No 13 – 71.10.214
On the other hand, one coffin (the only one identified in the article), was of a composition that did not statistically match any other sarcophagi from the samples, but instead was matched with pottery discovered at Ashdod and Ashkelon (Perlman, Asaro, and Dothan 1973: 149). This grotesque-style coffin came from the antiquities market and so this detail, along with the INAA results, probably show that the sarcophagus was not originally from Deir el-Balah. The two main compositional groups of coffins were almost identically matched with two groups of pottery from the cemetery at Deir el-Balah, showing that they had the same origin (Perlman, Asaro, and Dothan 1973: 148-149).

Later INAA studies were also performed on pottery from the settlement, as well as a fragment of a clay coffin lid discovered in a kiln in a potter’s workshop at Deir el-Balah (Goldberg et al. 1986, Yellin and Killebrew 2010; Yellin, Dothan, and Gould 1986). These studies showed that the composition of the pottery and coffins from the settlement was a match for the pottery and coffins from the cemetery (Yellin and Killebrew 2010: 64-65; Yellin, Dothan, and Gould 1986: 71, 73). Because a sarcophagus fragment was found inside of a kiln in the town, it is believed that the matched coffins from the cemetery and the Israel Museum were also manufactured at Deir el-Balah (Yellin and Killebrew 2010: 73).

The anthropoid sarcophagi from Deir el-Balah were manufactured using the coiling technique, where clay is rolled into coils of different lengths and thicknesses and then used to build up the desired shape of the coffin (Dothan 1979: 98; 2008: 24). The coffin lids were cut out of the leather-hard clay prior to firing, and most were fired or re-fired separately and at a higher temperature than the coffin bases (Dothan 1979: 98). Some of the lids were probably fired in a kiln, as shown in the settlement, whereas the coffin bases were placed on the ground or in a pit and covered by earth, mud, or debris and fired at low temperatures for eight to nine hours.
(Dothan 1979: 98; 2008: 24, 94). The open fire technique for firing the coffin bases resulted in a mottled and brittle fabric and it is for this reason that they were most likely manufactured locally as they were not only easily breakable, but also very large and heavy (Dothan 1979: 98).

3.3.5 *Tomb Descriptions*

3.3.5.1 **Tomb 100** (Beit-Arieh 1985: 45, Figs. 2, 5:5, 6:6, Pl. 7:4) *(Figure 3.3)*

Tomb 100 was located in the northern section of Area 100, southeast of Tomb 101 and Tomb 102. The burial was rectangular-shaped, but the actual orientation and dimensions are ambiguous, as Beit-Arieh lists them as east-west and 0.4 m by 1.07 m, whereas Lipton shows the grave to be oriented north-south and twice the size on a later map of the cemetery (Beit-Arieh 1985: 45; Lipton 2010: Fig. 1.1). In the drawing of the tomb, it appears to be a simple 0.6 m deep depression cut through the *hamra* and into the *kurkar* without any shelves or recession, and should therefore probably be ascribed to Type A (Beit-Arieh 1985: Fig. 2).

Only a few bones were recovered from the burial and this fact, along with the small size of the grave, caused Beit-Arieh to suggest the tomb belonged to a child (1985: 45). Skull fragments were found in the western end of the interment, illustrating that the head was pointed to the west. The burial marker was located south of the skull fragments and included an Egyptian-style beer jar with a rounded base covered by an upturned Egyptianized simple bowl with rounded walls, a flat base, and a plain rim (Martin 2011: 212, Pl. 44:1, 13). These vessels were situated 20 cm higher than the skeletal remains.
3.3.5.2 **Tomb 101 (Figure 3.3)**

Tomb 101 appears on a few published maps of the cemetery of Deir el-Balah, where it is located in the northern section of Area 100 to the north of and immediately adjacent to Tomb 102 (Beit-Arieh 1985: Fig. 1; Lipton 2010: Fig. 1.1). On the earlier map, the grave is marked as a pit burial, and on the later map, it is shown as a rectangular outline oriented east-west with the dimensions of about 2.5 m x 5 m, however, the dimensions for all of the tombs in Area 100 on the later map appear to be much larger than reality (for example, see Tomb 100). No other information has been published about this burial.

3.3.5.3 **Tomb 102 (Figure 3.3)**

Tomb 102 appears on a few published maps of the cemetery of Deir el-Balah, where it is located in the northern section of Area 100 to the south of and immediately adjacent to Tomb 101 (Beit-Arieh 1985: Fig. 1; Lipton 2010: Fig. 1.1). On the earlier map, the grave is marked as a pit burial, and on the later map, it is shown as a rectangular outline oriented east-west with the dimensions of about 2.5 m x 5 m, however, the dimensions for all of the tombs in Area 100 on the later map appear to be much larger than reality (for example, see Tomb 100). No other information has been published about this burial.

3.3.5.4 **Tomb 103**

No information has been published about Tomb 103 and it does not appear on any maps of the cemetery.
3.3.5.5 **Tomb 104 (Figure 3.3)**

Tomb 104 appears on a few published maps of the cemetery of Deir el-Balah, where it is located in the southwestern section of Area 100 to the south of and immediately adjacent to Tomb 105 and Tomb 106 (Beit-Arieh 1985: Fig. 1; Lipton 2010: Fig. 1.1). On the earlier map, the grave is marked as a pit burial, and on the later map, it is shown as a rectangular outline oriented east-west with the dimensions of about 1 m x 2.5 m, however, the dimensions for all of the tombs in Area 100 on the later map appear to be much larger than reality (for example, see Tomb 100). No other information has been published about this burial.

3.3.5.6 **Tomb 105 (Figure 3.3)**

Tomb 105 appears on a few published maps of the cemetery of Deir el-Balah, where it is located in the southwestern section of Area 100 to the north of and immediately adjacent to Tomb 104 and to the east of and immediately adjacent to Tomb 106 (Beit-Arieh 1985: Fig. 1; Lipton 2010: Fig. 1.1). On the earlier map, the grave is marked as a pit burial, and on the later map, it is shown as a rectangular outline oriented east-west with the dimensions of about 1.25 m x 2.6 m, however, the dimensions for all of the tombs in Area 100 on the later map appear to be much larger than reality (for example, see Tomb 100). No other information has been published about this burial.

3.3.5.7 **Tomb 106 (Figure 3.3)**

Tomb 106 appears on a few published maps of the cemetery of Deir el-Balah, where it is located in the southwestern section of Area 100 to the north of and immediately adjacent to Tomb 104 and to the west of and immediately adjacent to Tomb 105 (Beit-Arieh 1985: Fig. 1;
Lipton 2010: Fig. 1.1). On the earlier map, the grave is marked as a pit burial, and on the later map, it is shown as a rectangular outline oriented east-west with the dimensions of about 1.25 m x 3 m, however, the dimensions for all of the tombs in Area 100 on the later map appear to be much larger than reality (for example, see Tomb 100). No other information has been published about this burial.

3.3.5.8 **Tomb 107** (Beit-Arieh 1985: 45, Figs. 5:3, 10, 6:3-4) *(Figure 3.3)*

Tomb 107 was located in a modern vineyard in the southwestern part of Area 100, north of Tomb 110. The tomb was a 40 cm deep pit burial cut through the *kurkar* and oriented east-west. On a later map, the grave was drawn as rectangular-shaped with dimensions of about 2.3 m by 2.6 m, however, the dimensions for all of the tombs in Area 100 on the later map appear to be much larger than reality (for example, see Tomb 100) (Lipton 2010: Fig. 1.1). A few unidentifiable bones were found in the burial, as well as two bowls, a jug, and a chalice. Both bowls were medium-sized and one was deep-walled with a plain rim, while the other was shallow with an everted ledge rim. Both the jug and the red-slipped chalice were reported by Beit-Arieh to be Egyptian types, but Martin does not include either vessel in his study of the ceramic assemblage, and a personal examination of the profiles of these pieces also resulted in a non-Egyptian designation (Beit-Arieh 1985: 45; Martin 2011: 212-213, Pl. 44).

3.3.5.9 **Tomb 108** (Beit-Arieh 1985: 45, Fig. 5:4, 8, 13)

Although Tomb 108 was probably located in Area 100, the actual location of the tomb has never described and it was not shown on any published map of the cemetery. The grave was described as a pit burial, oriented east-west, and cut into the *kurkar*. The rectangular-shaped
burial was 0.4 m wide and 1.8 m long with a depth of 0.7 m. A few bones were discovered in the tomb, along with three bowls situated at a higher level. Two of the vessels were small simple bowls with deep-walls and plain rims, one with a rounded base and the other with a flat base. The third bowl was much larger with an externally thickened rim and a ring-base. This vessel was covered with a cream slip and was impressed with several lines of rope indentations on the rim and body. Martin reports that the simple bowl with a flat base and the large bowl were both Egyptianized, and that the latter example was probably only self-slipped, which appears to be the case after an examination of the piece (2011: 212, Note 291, Pl. 44:5, 12).

3.3.5.10 **Tomb 109 (Figure 3.3)**

Tomb 109 appears on a few published maps of the cemetery of Deir el-Balah, where it is located in the southwestern section of Area 100 to the west of Tomb 107 and Tomb 110 (Beit-Arieh 1985: Fig. 1; Lipton 2010: Fig. 1.1). On the earlier map, the grave is marked as a pit burial, and on the later map, it is shown as a rectangular outline oriented east-west with the dimensions of about 1 m x 2.5 m, however, the dimensions for all of the tombs in Area 100 on the later map appear to be much larger than reality (for example, see Tomb 100). No other information has been published about this burial.

3.3.5.11 **Tomb 110** (Beit-Arieh 1985: 45, 47, Fig. 6:8) (**Figure 3.3**)

Tomb 110 was located in the southwestern section of Area 100, south of Tomb 107 and east of Tomb 109. The 0.5 m deep grave is oriented east-west and oval-shaped, but the actual dimensions are ambiguous, as Beit-Arieh lists them as 0.4 m by 1 m, whereas Lipton shows the burial to be twice that size on a later map of the cemetery (Beit-Arieh 1985: 45; Lipton 2010: Fig. 1.1). According to Beit-Arieh, the small size of the tomb and lack of bones showed that the
grave belonged to an infant (1985: 47). A storage jar decorated with bands of red stripes at the neck and above and below the handles was discovered at an upper level in the tomb and probably served as part of a tomb marker.

3.3.5.12 **Tomb 111** (Beit-Arieh 1985: 47-48, Fig. 4, Pl. 7:3) (**Figure 3.3**)

Tomb 111 was located in the southwestern section of Area 100, north of Tombs 104-106. The 0.8 m deep burial had been looted shortly before excavations began, and all that remained were two parts of a sarcophagus made from local limestone. The bottom part of the coffin was high-sided and of a similar anthropoid shape to the clay sarcophagi from the cemetery. The convex lid of the stone coffin was shallow and broken, with the top half completely missing from the grave. The head of the sarcophagus was pointed to the west, and the entire coffin was .78 m wide, 2.2 m long, .45 m high, and had 5-8 cm thick walls. The excavators planned to remove the sarcophagus for exhibition, but “it had disappeared in the meantime,” and its present location is unknown (Beit-Arieh 1985: 48, Note 3).

It is unclear which or if any finds are associated with Tomb 111. Beit-Arieh stated that a few bones and Egyptian-type pottery sherds were discovered near the burial, whereas Dothan claimed that the sarcophagus was empty, lacking a lid, and nothing else was found in the grave (Beit-Arieh 1985: 48; Dothan 1979: 3). Lipton also commented on this tomb in the final report on Deir el-Balah, where he wrote “one funerary stela (Ventura 1987: n. 5), anthropoid fragments and a damaged stone sarcophagus, Tomb 111 (Beit-Arieh 1985: n. 4), were recovered from the disturbed area” (2010: 3). The reference to the stone sarcophagus is clear, although it should be “Fig. 4” and not “n. 4,” however, it is unclear whether Lipton means a stela was found in Tomb
111 or just in the “disturbed area.” It is also unclear to which stela he is referring, as there were only four stelae published by Ventura and therefore there is no “n. 5” as cited (Ventura 1987).25

3.3.5.13 **Tomb 112** (Beit-Arieh 1985: 47, Fig. 3, Pl. 7:2) (**Figure 3.3**)

Tomb 112 was definitely located in the northern part of Area 100, but the actual whereabouts of the grave is ambiguous. On the maps published by Beit-Arieh and Lipton, the burial was located about 2 m northwest of Tomb 114 (Beit-Arieh 1985: Fig. 1; Lipton 2010: Fig. 1.1). Conversely, in the drawing and photograph of the tomb by Beit-Arieh, and in a similar photographs published by Dothan, the grave was shown immediately southwest of Tomb 114, with only 1.25 m between the two (Beit-Arieh 1985: Fig. 3, Pl. 7:2; Dothan 1979: Ill. 6). The tomb was a 0.5 m deep pit burial, measuring 1.8 m long and 0.5 m wide, and probably in the Type A category.

No human remains were discovered in Tomb 112, but two jars and a bowl had been placed in the burial. A tomb marker at the western end of the grave consisted of a storage jar covered by an Egyptianized simple bowl with a flaring rim (Martin 2011: Pl. 44:9). A possibly local adaptation of an Egyptian meat-jar was located on the opposite end of the tomb (Martin 2011: 213, Pl. 45:5).

3.3.5.14 **Tomb 113**

No information has been published about Tomb 113 and it does not appear on any maps of the cemetery. It might be among the “several additional pit graves that were discovered during Dothan’s excavation of the anthropoid coffins” from Tombs 114, 116, and 118 (Beit-

25 For more information on the stelae reported to be from the Deir el-Balah cemetery, see the subsection “Stelae” in the section on items from the Israel Museum below.
Arieh 1985: 45, Note 2; Dothan 1972: 67-68; 1973: 3). These pit graves have never been published.

3.3.5.15 **Tomb 114** (Dothan and Beit-Arieh 1979: 5-27, Ills. 3-64) (Figure 3.3)

Tomb 114 was located in the northern section of Area 100, northeast of Tomb 116. Dothan and Beit-Arieh stated that “alongside, to the west, were remains of simple burials without coffins” (1979: 5). These simple burials are not numbered or described, but in one photograph, it appears that at least one of these graves is Tomb 112, although the relationship between the two burials is unclear.26 Tomb 114 was an oval-shaped pit burial without shelves or recession, and should probably be categorized as Type A. The grave was a shallow depression into the natural kurkar and measured about 1 m wide and 2.5 long.

An anthropoid coffin, pottery, and other objects were discovered in the burial, which was believed to be a five step process. First, the coffin was lowered into the pit and an alabaster vessel was placed on top. A layer of sand and kurkar was then added to the burial, filling it until the coffin and the vessel were covered. More vessels were then added to the tomb at the foot, head, and west of the coffin, including the ceramic tomb marker. Another layer of sand and kurkar was then deposited in the burial until all but the top of the tomb marker was covered.

The clay sarcophagus measured 1.9 m long and 0.59 m wide, tapered at the flat base, and belonged to coffin Group A, with a mummiform shape and clearly delineated head and shoulders (Dothan 1979: 98). The lid of the coffin was in the naturalistic style, with well-proportioned eyes, eyebrows, nose, and lips, a plain wig in low relief that fell over the shoulders, a lotus flower that extended from the center of the wig down to the forehead, and arms with crossed

26 For issues regarding the relationship between Tomb 114 and Tomb 112, see the section on the latter burial.
hands. The “sculpture in the round” mask was modeled separately and then applied as a unit to the lid with the wig and lotus flower in appliqué (Dothan 1979: 100).

The remains of four individuals were found inside of the sarcophagus (Arensburg and Smith 1979: 92). The uppermost skeleton was of an articulated adult mature to old male in supine position with the head pointing northwest. Underneath this skeleton was another of a young female adult lying in the same position. The remains of two other persons, a 3–4 year old child and third adult, had also been placed in the coffin, but were more fragmentary. Objects discovered in the coffin included bronze vessels, bronze knives, a bronze mirror, bone and stone pellets, carnelian and gold jewelry, and scarabs.

Three bronze vessels were situated near the lower legs and feet of the skeletons. A bronze bowl with a rounded body and a high disc with inner depression in the base had been placed northeast of the lower legs, while a small bronze Egyptian jar with a drop-shaped body had been set in a bronze strainer with a round ring handle attached through a loop at the feet of the deceased. Three bronze knives were also discovered inside the sarcophagus northeast of the legs of the skeletons. In-between the bronze bowl and jar/strainer, a bronze knife with a recurved tip and handle in the shape of an animal foreleg with a cloven hoof had been placed next to a bronze cut-out knife. A third bronze knife with a long thin blade was located northwest of the bronze bowl.

An elliptical bronze mirror with a tanged handle and traces of adhered cloth was found on the southwestern side of the coffin near the head of one of the deceased, although it is not specified which one. Five enigmatic bone and stone pellets engraved with parallel lines, circles, and criss-crosses had been placed in or near the hand of one unspecified skeleton, again on the southwestern side of the sarcophagus. All of the jewelry, including 20 beads and amulets and
one earring, were found near the heads of the skeletons. The beads consisted of 12 round
carnelian beads and seven gold beads of the same shape. A gold amulet in the shape of Ptah-
Sokar and a gold lunate earring decorated with filigree were also among the jewelry.

Three scarabs were also discovered near the heads of the skeletons. Two of the scarabs
were set in gold frames, one of which was an uninscribed carnelian example and the other of
steatite engraved with *imn-ra nb*, translated as “Amun-Re is lord.” The third scarab was also of
carnelian, but set in a silver sickle-shaped ring and inscribed with *wsr-mAat-ra stp-n-ra*, the
prenomen of Ramses II, followed by *mry DHwty*, meaning “beloved of Thoth.” The scarab was
unique in that it shows Thoth as an ibis, rather than the usual baboon-form, and typically Ramses
II is beloved of Amun, instead of Thoth.

More stone and ceramic vessels were discovered in the grave outside of the sarcophagus.
A calcite Egyptian goblet with a drop-shaped body and projection on the base had been placed
directly on the lid of the coffin below the crossed hands of the mask. A ceramic tomb marker
located northeast of the head of the coffin consisted of a juglet inside of a four-handled storage
jar topped by an Egyptianized simple bowl with rounded walls and a plain rim (Martin 2011: Pl.
44:4). A small imported Egyptian handled-cup with a cream-colored slip had been placed
opposite the tomb marker on the other side of the sarcophagus (Martin 2011: Pl. 45:3). At the
foot of the coffin on the same side were three large jars side-by-side. The most northwestern
vessel was a local storage jar, while the other two were imports, including a Mycenaean three-
handled piriform jar and an Egyptian cream-slipped slender amphora (Martin 2011: Pl. 45:2).
3.3.5.16 **Tomb 115**

Tomb 115 does not appear on any published maps of the cemetery. The burial is mentioned by Dothan in a paragraph about “simple burials” near Tombs 114, 116, and 118 (1979: 3). In this instance, Tomb 115 was definitely among the “several additional pit graves that were discovered during Dothan’s excavation of the anthropoid coffins” from Tombs 114, 116, and 118 (Beit-Arieh 1985: 45, Note 2; Dothan 1972: 67-68; 1973: 3). These pit graves have never been published, but Dothan does mention that Tomb 115 had a ceramic tomb marker with a Cypriot milk bowl as a lid (Dothan 1972: 68, Pl. 9:A-B; 1979: 3).

3.3.5.17 **Tomb 116** (Dothan 1979: 28-45, Ills. 65-112) *(Figure 3.3)*

Tomb 116 was located in the northern part of Area 100, alongside of and immediately southwest of Tomb 114 and north of Tomb 118. It is likely that there were one or more simple burials near Tomb 116, as Dothan and Beit-Arieh reported that there were “remains of simple burials without coffins” west of Tomb 114 (1979: 5). These simple burials are not numbered or described, but in one photograph, it appears that at least one of these graves is Tomb 112, although the relationship between all of the burials is unclear. Tomb 116 was an oval-shaped pit burial of Type A that was about 0.95 m wide and 2.45 m long. The grave had been robbed in antiquity, but several vessels and objects were still inside the coffin and *in situ* in the tomb, with a few more having been left by the robbers in a pile on top of the sarcophagus.

The 0.7 x 1.9 m clay sarcophagus was still *in situ*, with a cylindrically-shaped body (Group B) and a lid in the naturalistic style. The lid and the body of the coffin had been fired separately, as the bottom was much more friable and easily breakable than the lid. A round

27 For issues regarding the relationship between Tomb 114 and Tomb 112, see the section on the latter burial.
aperture with a molded pithos-like rim was located on top of the coffin and another round
opening had been cut into the base. The soles of two feet were indicated in an outline at the
base. The face was of the sculpture-in-the-round type with a short “Osiris beard” jutting below
the chin. A long simple wig flanked the face and below were two arms and hands crossed at the
wrists. The mask had been modeled separately and then applied as a unit to the lid with the ears,
wig, and beard in appliqué. Two anthropoid sarcophagi from the Israel Museum bear masks that
are almost identical to that of Tomb 116, leading the excavators to theorize that all three were
cast in a mold, made in the same workshop, or by the same craftsmen (Dothan 1979: 100; 2008:
113, No. 39, 116, No. 44).

Fragmentary human remains, pottery, jewelry and other objects were discovered inside of
the coffin. The fragmentary bones of an adult male, adolescent female aged 12 or 13 years old,
and another adult were found in the sarcophagus with the heads pointing northwest (Arensburg
and Smith 1979: 92-94). Pottery inside of the coffin included a Mycenaean stirrup jar situated
near the chest of one skeleton and a juglet decorated with horizontal bands and identified by the
excavators as Egyptian near one of the skulls; however, Martin does not include the latter vessel
among the Egyptian assemblage (Dothan 1979: 41; Martin 2011: Pls. 44-45). Five lentoid bone
and stone disks, six carnelian beads and a steatite scarab were also found inside of the
sarcophagus. Four carnelian beads, one melon-shaped, one cylindrical, and two biconical, were
recovered, and two carnelian lotus-seed beads discovered near the hand of a skeleton matched
those found in the throw-out pile on top of the coffin.

A steatite scarab was also found near the hand of one skeleton near the carnelian lotus-seed beads. The scarab was engraved with the typical Egyptian smiting scene showing the king
holding a captive in one hand and brandishing a khepesh-scimitar over his head. Hieroglyphs
appear in front of the king’s head, behind the king, and possibly below the king’s feet. Brandl interpreted the hieroglyph next to the king as representing *ra* (“Re”) and the sign behind the king as *wsr*, but did not provide a translation (1979: 44, No. 6). The hieroglyph behind the king indeed appears to be *wsr* (“power”), but the sign in front of the king’s head is definitely a *nb* (“lord”), which is a common epithet meaning “lord of power.” The two lines below the king might also represent *tawi* (“the two lands” = Egypt).

Two groups of pottery and other objects were found in the tomb outside of the coffin. At the head of the sarcophagus was a ceramic tomb marker consisting of a local imitation of a Cypriot White-Shaved juglet inside of a four-handled storage jar topped by an inverted small bowl with a straight rim, rounded body, and flat base. The second group was a pile of objects left behind by the robbers on top of the sarcophagus included three ceramic vessels, seven beads, and a seal. The vessels consisted of a small piriform Mycenaean jar with three handles, a lentoid flask, and an Egyptianized simple bowl with rounded walls and a plain rim (Martin 2011: Pl. 44:7). The seven lotus-seed carnelian beads from the throw-out pile matched those found inside of the coffin near the hand of a skeleton.

One oblong-shaped carnelian seal with the remains of a ring had also been left in the pile. One side of the seal was inscribed with the figures of Min, Montu (misidentified as Horus by Brandl), and Amun with the text *wsr-mAat-ra stp-[n]-ra imn-ra*, which is the name of Ramses II followed by the name of Amun-Re. The other side of the seal shows the king holding the crook and the flail in a chariot in front of which stands a man with two hieroglyphs above his head. The signs appear to be *DA* and *im*, which could either be a personal name or the word *DAm*, which means “offspring,” indicating one of Ramses II’s sons.
3.3.5.18 **Tomb 117**

No information has been published about Tomb 117 and it does not appear on any maps of the cemetery. It might be among the “several additional pit graves that were discovered during Dothan’s excavation of the anthropoid coffins” from Tombs 114, 116, and 118 (Beit-Arieh 1985: 45, Note 2; Dothan 1972: 67-68; 1973: 3). These pit graves have never been published.

3.3.5.19 **Tomb 118** (Dothan 1979: 46-91, Ills. 113-221) (**Figure 3.3**)

Tomb 118 was located in the northern part of Area 100, about 4 m south of Tomb 114 and Tomb 116. The pit burial was of Type A, rectangular-shaped with rounded corners, and measured 1.35 m wide and 2.9 m long. An anthropoid coffin, pottery, and other objects were discovered in the burial, which was believed to be a five step process. First, the coffin was lowered into the pit and a ceramic vessel was placed near the head. A layer of dark soil was then added to the burial and packed over the entire length of the sarcophagus. More pottery was then added to the tomb north and west of the coffin, including the ceramic tomb marker. Another layer of lighter soil was then deposited in the burial until all but the top of the tomb marker was covered.

The 0.76 m wide and 1.97 m long anthropoid sarcophagus was assigned to Group B and had a pithos-like opening in the top. The lid was in the naturalistic style, featuring a combination of construction methods including appliqué, molding in low relief, and a separately formed mask. A wig in low relief with curly hair surrounded the face, while a pair of stick-like arms with uncrossed hands was added below. Above the wig was a zigzag band with lines running down from points, which Dothan interpreted to be a debased version of a lotus flower suspended
between two buds, which was intended to represent a lotus garland (1979: 50). The remains of two undisturbed and fully articulated individuals, one male and one female, had been interred at the same time in the coffin. The male, who was between the ages of 35 and 40, was in supine position on the southern side of the coffin and was the first to be placed in the sarcophagus, while the female, who was 25-30 years-old, was to the north on her left side slightly overlying the male, so that the deceased were face-to-face with the heads touching.

Ceramic, stone, and metal vessels, jewelry, scarabs, and other objects were discovered inside of the anthropoid sarcophagus. Two lentoid flasks decorated with dark red concentric circles had been placed on the northern side of the coffin, one near the skull of the female skeleton and the other near the elbow of the same individual. An Egyptian alabaster goblet made of three adjoining parts (cup, disk, and base) and decorated with a lotus design had been placed near the shoulder of the female skeleton on the northern side of the sarcophagus. Metal vessels included a bronze jug with a handle incised with a lotus pattern sitting inside of a bronze platter with a matching handle, both of which were found near the femurs of the female skeleton.

Other objects that had been placed on the northern side of the coffin included a calcite spoon, bronze mirror, and bronze knife. The calcite cosmetic spoon was in the shape of a nude swimming-girl and was lying diagonally near the hip area of the female skeleton. Underneath the spoon was a bronze elliptical mirror with traces of cloth adhering to the face, which was also present on the bottom of the bronze platter. Dothan attributed this to the objects being wrapped in cloth. The fabric consisted of a linen cloth of tabby weave of simple form with single wefts over single warps, using 26-28 S-twisted threads per centimeter. The flax ultimate fiber shows distinct cross-markings and nodes. Although it is possible the mirror and platter were wrapped

28 Dothan first stated that three flasks were discovered in the coffin, but when the pottery was presented, only two flasks had been described, drawn, and photographed (1979: 46).
in linen, it is more likely the cloth covered the bodies of deceased. The bronze knife was cut-out-shaped and located behind the knees of the female skeleton.

The jewelry from Tomb 118 was found in at least four different groups. Most of the jewelry was discovered near the ears, neck, and chest of the male skeleton, but Dothan stated that “the gold earrings and beads found inside the eye-sockets and nasal cavity could have sunk from the original vicinity of the neck of the female skeleton” (1979: 46). Unfortunately, she does not specify exactly which earrings or beads were found in these locations. One group of jewelry was recovered from the area around the male skeleton’s right ear. This group included five gold tapered hoop earrings, four gold fruit-shaped drop earrings, and one gold pendant consisting of an oval loop and tubular ring.

A second group of jewelry was discovered near the first group, but more in the area of the male’s neck and upper chest. This group included two necklaces with gold and carnelian beads. One of these necklaces consisted of 20 gold palmette-shaped pendants each separated by two elongated carnelian beads, a gold tubular bead, and two more elongated carnelian beads. The order of the beads was certain, as the necklace was undisturbed and many of the beads had adhered to one another. The gold pendants on this necklace had been painted red and black in equal numbers of each. The second necklace consisted of six carnelian palmette-shaped pendants separated by gold biconical, fluted, and spacer beads, and biconical and elongated carnelian beads. A scarab was shown strung on the necklace in the photographs, but was not described in the details about the necklace.

A third group of jewelry was still intact on the finger bones of the female skeleton. This group consisted of two rings, one of which was cast in a gold alloy with a bezel incised with a cartouche enclosing a stylized figure of Bes. The other ring was stirrup-shaped and made of
carnelian, with horizontal, vertical, and criss-crossed lines engraved on the bezel. The fourth group of jewelry was discovered underneath the female skeleton, near the deceased’s wrist or abdomen. Three carnelian amulets were in this group, representing Bastet, Ptah-Sokar, and Bes. Another large group of beads was photographed and drawn in the publication of Tomb 118, but are only described as “the various types of beads found in Tomb 118” without further details as to exactly where they were discovered in the burial (Dothan 1979: 80). These beads include at least 100 examples in 19 different shapes made of semi-precious stone, gold, pottery, and faience.

Eleven scarabs were also found inside of the coffin near the abdominal cavity of the male skeleton. Five of these scarabs were made of steatite and engraved with inscriptions. Two of the scarabs were set in gold mounts and inscribed with mn-xpr-ra, the name of Thutmose III, one in a cartouche flanked by lions and the other with the additional epithet HqA wAst, meaning “the ruler of Thebes.” Another steatite scarab was also engraved with mn-xpr-ra with two mAat signs flanking the xpr. Brandl translated this scarab as “Thutmosis III, the just,” but this particular form of the name of Thutmose with mAat-feathers was actually a rebus for Amun (imn) (1979: 85). The name of Amun appeared on another steatite scarab from the burial, read as imn-ra nb, meaning “Amun-Re is lord.” The final steatite scarab was engraved with the titles and name of a deceased Egyptian official: imy-r-pr sS ib wHm-anx, “Overseer of the House, Scribe, Ib, repeating life.”

One amethyst and five carnelian scarabs were also found in Tomb 118. Only one of these was inscribed with a text reading mry stX pHty, which was translated as “beloved of mighty Seth.” Another gold-framed carnelian scarab reported to depict an anthropomorphized figure of Seth with horns and a long braid is actually a depiction of a Canaanite god, which could
be Baal, Resheph, or Mekal, all three of which are shown with similar iconography. The four remaining scarabs are engraved with an unknown seated god, five crossing lines, or are undecorated. Two empty gold mounts, one with the remains of faience, were also found in the tomb.

Seven ceramic vessels had been placed in the tomb outside of the sarcophagus. Two of these, a four-handled storage jar with a trefoil juglet inside, made up the tomb marker that sat above the fill line on the western side of the burial. Another almost identical storage jar was on a lower level with its base implanted in the kurkar slightly below the level of the coffin. An Egyptian-style bowl with a flaring rim and perforated base was upturned next to the lower storage jar (Martin 2011: Pl. 44: 10). Another similar Egyptianized bowl was located near the head of the sarcophagus on the northern side. On the same side, but situated further east, was a one-handled lentoid flask and an Egyptian-style tazza (Martin 2011: Pl. 45:1).

3.3.5.20 Tomb 301 (Lipton 2010: 6-10) (Figure 3.4)

Tomb 301 was located on the southern side of Area 300, about 2 m south of Tombs 303 and 304. The burial was a deep pit grave oriented east-west without any type of recession or shelves (Type A) and filled with dark brown hamra with a few kurkar inclusions. The 0.87 m wide and 2.62 m long tomb was in the shape of an elongated rectangle with rounded corners. Items discovered in Tomb 301 included a clay coffin, pottery, a bronze needle, and a carnelian bead.

The anthropoid sarcophagus, measuring 0.6 x 1.9 m, had been placed on the northern side of the grave with the head pointing west. Both the base and the bottom of the coffin had been perforated with four holes before firing. The lid was in the naturalistic style, featuring a lotus
flower descending down the forehead in high relief, a wig with long narrow strips and curled hair in low relief, and arms crossed at the wrists. The lid had collapsed into the body of the coffin, as it had not been cut from the same sarcophagus and was too large for the opening.

Three articulated and extended skeletons had been placed one on top of the other inside the coffin, with a young adult female on the bottom, and two males above, one of which was 18 or 19 years-old (Arensburg and Smith 2010: 49). The female skeleton had a perforation above the right eye socket. Lipton postulated that the combined weight of the coffin and bodies would have totaled over 230 kg, and so the deceased must have been placed in the coffin after it was already in the tomb (2010: 9).

The only objects found inside the coffin were a bronze needle at the shoulder of the upper male skeleton and a barrel-shaped carnelian bead in the center of the bottom of the sarcophagus. Lipton noted that the paucity of objects in the grave was strange when compared to other burials with coffins in the cemetery. He concluded that the individuals in the grave must have belonged to “a relatively low economic class and could only afford a second-rate coffin and few accompanying burial gifts” (Lipton 2010: 10).

Four ceramic vessels were located in the grave outside of the coffin. A tomb marker at the head of the coffin on the western side of the burial consisted of a dipper juglet inside of a storage jar, with an Egyptian-style simple bowl with plain rim, rounded sides, and flat base nearby. Another similar storage jar was located on the same level (even with bottom of the coffin lid) north of the tomb marker. Both of the storage jars had been severed below the area of the handles in antiquity.
3.3.5.21 **Locus 302** (Lipton 2010: 10) (**Figure 3.4**)

Locus 302 was located about 25 cm northwest of Locus 305 and Tomb 304 and consisted of one storage jar, which was probably originally part of a tomb marker for Locus 305 and/or Tomb 304.\(^{29}\)

3.3.5.22 **Tomb 303** (Lipton 2010: 11) (**Figures 3.4 and 3.7**)

Tomb 303 was located in the western part of Area 300, about 1 m west of Locus 302 and 1.5 m northwest of Tomb 301. The 0.62 m deep burial was rectangular-shaped, measuring 1.2 m wide and 2.4 m long, and was filled with dark red *hamra*. The grave consisted of a central depression (Type F) surrounded on all sides by benches with a niche in the northwestern corner. A single articulated and extended adult individual had been interred in the burial with the head oriented northwest (Arensburg and Smith 2010: 49).

Objects located close to or on the body included a bronze hoop earring near the right femur and three ceramic vessels. An Egyptian-style small drop-shaped jar painted with horizontal red band had been deposited on the left side of the head and a painted imitation Base-Ring jug on the right side (Gould 2010: 18). The Egyptianized jar was locally-produced according to the results of an INAA study (Yellin and Killebrew 2010: 60). The third vessel was a small biconical jug that was found on the chest area of the skeleton.

More items had been deposited further away from the deceased. A niche located in the wall above the southern shelf of the burial contained a small painted imitation Mycenaean piriform jar. A ceramic tomb marker had been placed at a higher level in the northwestern corner of the grave. The marker consisted of a dipper juglet inside of a storage jar, which was

\(^{29}\) See Locus 305 below for more details.
covered by an inverted Egyptian-style simple bowl with a plain rim and rounded walls. A barrel-shaped faience bead with a cross-hatched design was discovered in the fill beneath the storage jar.

3.3.5.23 **Tomb 304** (Lipton 2010: 12) (**Figure 3.4**)

Tomb 304 was located on the northern side of Area 300, about 25 cm north of Locus 305, with which it was aligned on the same east-west axis. The burial was a small (0.78 x 0.97 m) rectangular grave with rounded corners and a burial niche on the southern side that was cut beyond the contours of the surface of the tomb to the west and south (Type D). The 0.6 m deep tomb also contained a shelf on the northern side and was filled with soft light brown sand and *kurkar*. Lipton surmised that the funerary process consisted of placing the body in the lower niche, filling the tomb halfway, depositing the pottery and other objects, and then filling in the remainder of the tomb (2010: 12). The fragmentary bones and teeth of a child were discovered in the burial depression. An Egyptian-style necked globular jar covered by an inverted Egyptianized simple bowl with plain, rim, rounded walls, and flat base had been placed on the northern side of the shelf (Gould 2010: 24). Two bronze bangle bracelets were discovered near the globular jar. Locus 302 might have functioned as a tomb marker for Tomb 304.³⁰

3.3.5.24 **Locus 305** (Lipton 2010: 16) (**Figure 3.4**)

Locus 305 was located in the center of Area 300, about 25 cm southeast of Locus 302 and 25 cm south of Tomb 304, with which it was aligned on the same east-west axis. The locus consisted of a small (0.3 x 0.9 m) shallow (0.35 m) depression filled with light brown soil. No

³⁰ See Locus 302 above for more information.
bones, pottery, or objects were discovered in the grave, which caused Lipton to theorize that it was either prepared for burial and not used or belonged to a child, whose bones had completely decomposed (2010: 16). It is not clear why this feature was designated a “locus,” when four other burials (110, 112, 601, and 619) in the cemetery also lacked human remains and/or pottery, but were still each labeled as a “tomb” (Beit-Arieh 1985: 45, 47; Lipton 2010: 17, 32). Locus 305 should probably be considered a burial in its own right, with Locus 302 functioning as a tomb marker.31

3.3.5.25 Tomb 306 (Lipton 2010: 16-17) (Figure 3.4)

Tomb 306 was located in the eastern part of Area 300, about 2 m east of the nearest grave (301). The oval-shaped burial, measuring 0.8 m wide and 2 m long, was of the recessed type with one shelf and three levels, with the lowest being .68 m deep (Type D). The highest level consisted of a raised bench on the northern side of the grave. The lowest level was a deep depression in the center with a slightly raised niche cut into the tomb wall on the south. The burial had been filled in two stages, as the bottom of the burial niche contained dark brown soil while the rest of the tomb was filled with light brown soil.

The remains of two individuals had been placed in the burial laying side-by-side with heads pointing northwest. The skeleton on the eastern side belonged to a young male (Arensburg and Smith 2010: 49). The only finds in the grave were four ceramic vessels, including two tomb markers at the head and foot of the burial. The tomb marker situated at the head of the grave on the shelf consisted of a imitation White-Shaved juglet inside of a storage jar. An Egyptianized simple bowl with a red-painted rim was discovered below the jar in the burial depression next to

31 See Locus 302 above for more information.
the skull on the western side of the grave. A similar storage jar was also located on the shelf, but on the opposite (eastern) side.

3.3.5.26 **Tomb 601** (Lipton 2010: 17) (**Figure 3.5**)

Tomb 601 was located on the northern side of Area 600, about 3 m north of the nearest tomb (609). The north-south axis of the grave was unique for Area 600, where most of the tombs were oriented northwest/southeast. The rectangular-shaped burial measured 0.67 m wide and 1.2 m long and was filled with dark brown *hamra*. The grave contained an unrecessed elongated depression on the southern side with raised benches on the western and northern sides and one small shelf in the northwestern corner (Type B). No human remains, pottery, or objects were discovered in the tomb, leading Lipton to suggest it belonged to a youth (2010: 17).

3.3.5.27 **Tomb 602** (Lipton 2010: 18-19) (**Figure 3.5**)

Tomb 602 was located on the eastern side of Area 600, about 1.5 m north of Tomb 603, with which it shared the same northwest-southeast axis. The 0.69 x 1.8 m burial was an unrecessed 0.51 m deep depression cut into the *kurkar* and filled with dark brown *hamra* (Type A). The grave had been looted just prior to excavation and bones were discovered both in the tomb and in a throw-out pile southwest of the burial. One ceramic vessel, an imitation Mycenaean pyxis, was tucked in the southwestern corner of the grave and had been missed by the robbers. A glazed steatite scarab inscribed with *imn-ra nb* ("Amun-Re is lord"), was recovered from the throw-out pile (Brandl 2010d: 216). The size, shape, type, and finds associated with this grave make it a likely candidate for having once held an anthropoid sarcophagus.
3.3.5.28 **Tomb 603** (Lipton 2010: 20) (**Figure 3.5**)
Tomb 603 was located just east of the center of Area 600, about 25 cm east of Locus 610. The burial consisted of a single shallow (0.25 m deep) depression, measuring 0.56 m wide and 1.5 m long, and filled with dark brown *hamra* (Type A). One individual had been placed in the grave, fully articulated and extended, with the head pointing northwest and the face turned southward. No pottery or objects were discovered in the tomb.

3.3.5.29 **Tomb 604** (Lipton 2010: 20) (**Figure 3.5**)
Tomb 604 was located in center of Area 600, about 50 cm northeast of Tomb 608. The 0.5 m wide and 1.46 m long burial was a single shallow 0.25 m deep depression filled with dark brown *hamra* (Type A). A fully articulated and extended skeleton of a young male was found in the grave with the head pointing northwest and the face turned southward (Arensburg and Smith 2010: 49). No pottery or other objects had been placed in the tomb.

3.3.5.30 **Tomb 605** (Lipton 2010: 20-21) (**Figure 3.5**)
Tomb 605 was situated in the eastern part of Area 600, about 1 m southeast of Tomb 603 and 1 m north of Tomb 606. The full dimensions of the rectangular-shaped burial are unknown because one third of the western part of the grave had been disturbed. The tomb was of Type C, with an unrecessed lower burial level on the southern side, two levels of benches on the northern side, and an upper level that probably once held a now absent ceramic tomb marker. The 0.36 m deep grave was filled with dark brown *hamra*. Parts of a skeleton were recovered from the
undamaged portion of the tomb, showing that the individual was extended and probably supine with the head oriented to the west. No pottery or objects were discovered in the grave.

3.3.5.31 **Tomb 606** (Lipton 2010: 21) (Figure 3.5)

Tomb 606 was located in the southeastern part of Area 600, about 1 m south of Tomb 605. The burial was constructed on two levels, with an unrecessed burial depression on the southern side and an elongated shelf along the northern side (Type B). The grave measured 1.1 m wide, 2.35 m long, and was 0.5 m deep. The lower level containing the burial depression was filled with dark brown hamra, which was underneath and covering the human remains, which were oriented west. The surface of the tomb fill had been smoothed over. Finds in the grave include pottery and a shell pendant.

An imitation Base-Ring II jug had been placed next to the head of the deceased and was covered with the same dark brown hamra fill, however, unlike the human remains, the vessel was lying directly on the kurkar. A ceramic tomb marker sat at a higher level in a niche at the western end of the shelf and consisted of a dipper juglet inside of a two-handled storage jar. The tomb fill covered the tomb marker up to 35 cm below the base of the handles. Beneath the jar in the fill of the burial level was a perforated shell pendant.

3.3.5.32 **Tomb 607** (Lipton 2010: 23) (Figure 3.5)

Tomb 607 was located on the southeastern edge of Area 600, about 60 cm east of Tomb 617 and 1 m southwest of Tomb 606. The full dimensions of the burial are unknown as the nearby sand dune repeated collapsed onto the burial. The grave consisted of an unrecessed pit with the remains of a single individual lying in supine position with the head pointing northwest
and the arms slightly flexed (Type A). A ceramic tomb marker located west of the skull included a small dipper juglet inside of an Egyptianized beer jar.

3.3.5.33 Tomb 608 (Lipton 2010: 24) (Figure 3.5)

Tomb 608 was located on near the center of Area 600, about 50 cm north of tomb 617. This burial was a large (1.29 x 1.98 m) example of Type E, with a central recessed burial depression 1 m deep surrounded by sloping walls. The grave widened at the head, forming a pillar-like shelf to the north. The remains of a 12 year-old individual was found in the burial depression, full extended with the head pointing west and the face turned southward. The area around the skull was filled with clean yellow sand, whereas the rest of the tomb was filled with dark brown hamra mixed with kurkar. Finds in the burial include two ceramic vessels. A Cypriot Base-Ring II jug was situated on the chest of the deceased and a storage jar was located on the shelf to the north. This tomb fill covered this tomb marker jar up to the handles and 5 cm above this the vessel had been severed in antiquity.

3.3.5.34 Tomb 609 (Figure 3.5)

Tomb 609 was located in the northern part of Area 600, about 50 cm northeast of Locus 615 and 3 m away from the nearest tomb (601). The oval-shaped burial was 1.18 m wide and 2 m long with a central burial depression and shelves on the northern and southern sides (Type F). The northern shelf had been disturbed not long before excavation and the looters had left some of the human remains in the burial and some in a throw-out pile to the south, which also included dark brown hamra. Finds in the grave included two ceramic vessels. A Cypriot Base-Ring II
bowl was discovered in the burial depression and a broken storage jar, part of the original tomb marker, had been placed at the western end of the northern bench.

3.3.5.35 **Locus 610** (Lipton 2010: 27) (**Figure 3.5**)

Locus 610 was located near the center of Area 600, about 25 cm west of Tomb 603. The locus consisted of a small (0.45 x 0.9 m) shallow depression filled with *kurkar* and yellow sand. No bones, pottery, or objects were discovered in the grave, which caused Lipton to theorize that it was prepared for burial and not used (2010: 27). It is not clear why this feature was designated a “locus,” when four other burials (110, 112, 601, and 619) in the cemetery also lacked human remains and/or pottery, but were still each labeled as a “tomb” (Beit-Arieh 1985: 45, 47; Lipton 2010: 17, 32). Locus 610 should probably be considered a burial in its own right.

3.3.5.36 **Tomb 611** (Lipton 2010: 27) (**Figure 3.5**)

Tomb 611 was located on the western edge of Area 600, about 1 m west of Tomb 608. The oddly-shaped burial was rounded on the two short ends, but with wavy walls between. The grave measured 0.52 m wide, 1.97 m long, and 0.44 m deep, and was divided into four unequal quadrants on different levels (Type D). Dark concentrations of clay were located in the northwestern and southeastern quadrants, which also contained the internments. The fully articulated and extended skeleton of a young male with the head pointing west, the face turned southward, and the left arm flexed over the chest was found in the southwestern quadrant. The northeastern area held the human remains of a 4 or 5 year-old child. No pottery or objects were discovered in the tomb.
3.3.5.37 Tomb 612 (Lipton 2010: 27) (Figure 3.5)

Tomb 612 was situated on the western edge of Area 600, about 40 cm south of Tomb 613, with which it shared the same east-west axis. This small (0.9 x 1.08 m), roughly rectangular burial was rounded on the northern side and was constructed of three levels (Type E). The lowest area, 0.55 m deep, consisted of a recessed burial depression filled with yellow sand. Above this level to the north was a shelf covered with brown clay reaching up to the top of the burial. The highest level of the tomb was another step to the north, filled with yellow sand, also up to the top of the burial. The entire tomb was covered by a thin wash of brown hamra. Skeletal remains of a child were recovered from the grave. No pottery or objects were discovered in Tomb 612.

3.3.5.38 Tomb 613 (Lipton 2010: 27-28) (Figure 3.5)

Tomb 613 was situated on the western edge of Area 600, about 40 cm north of Tomb 612, with which it shared the same east-west axis. This roughly oval-shaped burial was 0.86 m wide, 2.03 m long, and 0.54 m deep with an unrecessed burial depression and one shelf to the north (Type B). The tomb was filled with brown hamra and the clay on the surface of the tomb had been stamped down and smoothed over. Both the burial depression and the shelf contained human remains. The deceased in the lower area had been turned onto his or her right side with the head pointing west and the body facing southward. The upper skeleton was facing upwards with the head oriented to the west and the left arm flexed over the abdomen.

Finds in the grave include a flint flake and two ceramic vessels. The flint flake was discovered under the left forearm of the individual on the shelf. Near the feet of the skeleton in the lower burial depression were a Mycenaean pyxis and a squat Mycenaean stirrup jar, the spout
of which was found on the abdominal area of the deceased. Lipton surmised that the two separated parts of the vessel suggested that the lower burial was the earlier of the two and the jar had been disturbed at the time of the upper burial (2010: 28).

3.3.5.39 **Locus 614** (Lipton 2010: 29) (**Figure 3.5**)

Locus 614 was located near the northwestern edge of Area 600, about 2 m west of the nearest tomb (602). The locus itself was never described or drawn except for the pottery discovered inside, however, on the map of Area 600, the locus was rectangular shaped, oriented east-west, and measured about .50 m wide and 1.5 m long, with just over half of the length appearing as a dotted line. Lipton’s note that a “large mass of dark brown *hamra*” was immediately southwest of the locus does not seem to shed any light on why only the eastern half of the feature was illustrated with a solid line (2010: 29).

Three vessels were discovered in Locus 614, including a large Egyptian-style bowl with an everted rim placed over an Egyptianized beer jar and a short-necked ovoid jar, which Gould incorrectly identified as a funnel-necked jar (Gould 2010: 32). The fact that only pottery was recovered from the locus caused Lipton to theorize that it should be “understood as a deposit” (2010: 29). It is not clear why this feature was designated as a “locus” and a “deposit,” when four other burials (110, 112, 601, and 619) in the cemetery also lacked human remains and/or pottery, but were still each labeled as a “tomb” (Beit-Arieh 1985: 45, 47; Lipton 2010: 17, 32). Locus 614 should probably be considered a burial in its own right, complete with a ceramic tomb marker consisting of the three vessels.
3.3.5.40 **Locus 615** (Lipton 2010: 29-31) (Figure 3.5)

Locus 615 was located on the northwestern edge of Area 600, about 50 cm southwest of Tomb 609. The locus consisted of a small elongated strip of brown *hamra* oriented north-south at a 90 degree angle to the other tombs in Area 600. No dimensions or drawings of the locus, apart from the finds, were published. Two ceramic vessels and six beads were discovered in the locus. An Egyptianized beer jar with a rounded base had been deposited at the southern end of the locus. Six star-shaped beads of gray and reddish-yellow clay were found beside the mouth of the jar. At the northern end was an Egyptian-style simple bowl with a plain rim, rounded walls, and a flat base. The unusual orientation of this feature and the absence of human remains prompted Lipton to surmise that the locus may have been “a deposit” (2010: 31). It seems more likely that the vessels were part of a tomb marker for an undiscovered or destroyed tomb.

3.3.5.41 **Locus 616** (Lipton 2010: 31) (Figure 3.5)

Locus 616 was located on the southwestern side of Area 600, about 40 cm northeast of Tomb 616. The locus consisted of a single large Egyptianized broad ovoid jar, which had been cut away at the shoulder in antiquity. Lipton suggested that the jar was a grave marker for nearby Tomb 619 (2010: 31).

3.3.5.42 **Tomb 617** (Lipton 2010: 31-32) (Figure 3.5)

Tomb 617 was located on the southwestern side of Area 600, about 60 cm south of Tomb 608 and 60 cm west of Tomb 607. The burial was an oblong 0.23 m deep grave measuring 0.5 m wide and 2.18 m long and filled with dark brown *hamra* (Type A). Human remains in the tomb included one articulated and extended adult with the left arm flexed over the chest. Although the
grave was oriented east-west like most of the tombs in Area 600, the head of the deceased was pointed to the east, whereas all others in the area pointed west or northwest. Finds in the grave consisted of three ceramic vessels, one of which was an Egyptianized simple bowl with a plain rim laying on the right femur of the skeleton. The other two vessels, a jug covered by a small rounded bowl, comprised a tomb marker protruding above the fill and situated at the western end of the tomb.

3.3.5.43 **Tomb 618** (Lipton 2010: 32) *(Figure 3.5)*

Tomb 618 was the southernmost tomb in Area 600 and was about 2 m away from the nearest tomb (606). The oval-shaped grave consisted of a simple pit that was 0.55 m wide and 2.02 m long (Type A). The 0.2 m deep burial was filled with dark brown soil. A single articulated and extended internment, with the head oriented to the northwest, had been placed in supine position with the head turned northward. No pottery or objects were discovered in Tomb 618.

3.3.5.44 **Tomb 619** (Lipton 2010: 32) *(Figure 3.5)*

Tomb 619 was situated on the southeastern edge of Area 600, about 40 cm to the southeast of Locus 616. The small (0.44 x 0.88 m) rectangular-shaped burial consisted of a 0.29 m deep unrecessed burial depression with a raised shelf on the southern side (Type B). The grave was filled with dark brown *hamra* and contained no human remains, which led Lipton to theorize that the burial belonged to a child (2010: 32). Finds from the tomb included one faience
lotus seed bead and three faience cylindrical beads. Locus 616 might have functioned as a tomb marker for Tomb 619.32

3.3.5.45 Tomb 620 (Lipton 2010: 33-34) (Figure 3.5)

Tomb 620 was located outside of and to the east of Area 600, among the tombs in the southwestern section of Area 100, about 7 m north of Tomb 107. The burial had been illicitly discovered a few months after the 1979 excavation season had ended. The contour of the grave was destroyed by the robbers, but the body of a 0.75 x 1.7 m anthropoid coffin was still in situ, with the head pointing northwest. No fragments of the face were recovered, and it is likely that one of the lids or masks in the Israel Museum originally belonged to this sarcophagus. A few objects had been left behind by the looters, including fragments of a calcite bowl inscribed with a leaf, a calcite tazza, one carnelian lotus-seed bead, and five carnelian cylindrical beads.

3.3.5.46 Tomb 1400/1401 (Lipton 2010: 35) (Figure 3.6)

Tomb 1400/1401 was the grave farthest to the northeast in Area 1400, just over a 1 m to the northeast of Tomb 1402. The burial was originally thought to be two separate tombs, one cut into the other, but turned out to be one grave that had been disturbed on the northwestern end. No drawings or photography of Tomb 1400/1401 itself was published, but on the map of Area 1400, the undisturbed section is rounded and about 0.5 m wide and almost 1 m long. The grave consisted of a simple unrecessed burial depression 0.58 m deep (Type A). The remains of one individual lying in supine position and oriented northwest were discovered in the burial. No pottery or objects were recovered from the tomb.

32 See Locus 616 above for more information.
3.3.5.47 **Tomb 1402** (Lipton 2010: 35) *(Figure 3.6)*

Tomb 1402 was the second tomb from the northeastern edge of Area 1400, just over 1 m northwest of Tomb 1400/1401 and 1.25 m northeast of Tomb 1403. The northwestern end of the burial had been destroyed in antiquity and Byzantine pottery was found in the disturbance. The grave was a simple unrecessed burial depression 0.32 m deep cut into the original *kurkar* surface (Type A). A drawing of the tomb itself was not published, but on the map of Area 1400, the undisturbed section is rounded and about 0.5 m wide and almost 1 m long. The remains of one individual lying in supine position and oriented northwest were discovered in the burial. No pottery or objects were recovered from the tomb.

3.3.5.48 **Tomb 1403** (Lipton 2010: 36) *(Figure 3.6)*

Tomb 1403 was located near the center of Area 1400, about 1.25 m northwest of Tomb 1402 and 1.25 m northeast of Tomb 1404. The 1.02 m wide and 2.65 m long burial was undisturbed and constructed on three levels (Type E). The lowest part of the grave was a 0.82 m deep recessed burial depression, and to the north were two raised shelves. The tomb was filled with dark brown *hamra* that was softer in the southern half of the burial. The burial depression held the remains of a male between the ages of 25-30 lying in supine position with the head turned southward and oriented to the west (Arensburg and Smith 2010: 49). Fragments of a storage jar to the west of the tomb probably belonged to a grave marker for Tomb 1403.
3.3.5.49 **Tomb 1404** (Lipton 2010: 39) (**Figure 3.6**)

Tomb 1404 was located in the center of Area 1400, about 1.25 m northwest of Tomb 1403 and 1 m northeast of Tomb 1406. The northwestern end of the burial had been destroyed and no drawings of the tomb itself were published, but on the map of Area 1400, the undisturbed section is roughly rectangular-shaped and about 0.5 m wide and almost 1.25 m long. In the description of the grave it is listed as Type C (unrecessed with two shelves), but in the list of tomb types it is listed as Type E (recessed with two shelves) (Lipton 2010: 6, 39). Without a drawing it is difficult to determine if the 0.71 m deep burial depression was recessed, but since the description stated that the “burial was in a niche,” then the pit was probably recessed and the tomb belonged to Type E (Lipton 2010: 39).

The only shelf that was described was located on the northeastern side of the burial depression. The grave niche held the remains of an adult lying in supine position with the head pointing northwest and the right hand between the legs. Ceramic vessels and faience beads were discovered in the burial. The lower half of an undrawn “beerbottle” had been deposited at the foot of the tomb. The four faience cylindrical beads and one faience melon bead found between the leg bones near the right hand probably originally comprised a bracelet. One long faience tubular bead was uncovered with the skull.

3.3.5.50 **Tomb 1405** (Lipton 2010: 39-40) (**Figure 3.6**)

Tomb 1405 was the burial farthest to the northwest in Area 1400, about 1.5 m northwest of Tomb 1406. The burial was cist tomb with a central 0.62 deep burial depression filled with dark brown *hamra* and lined on the northern and southern sides with a row of mudbricks (Type

33 The vessel type that Dothan designates as a “beerbottle” in this tomb, and elsewhere, corresponds to New Kingdom beer jars in Egypt and contemporary Egyptian-style versions in the Levant.
G). Three irregular *kurkar* stones were lying 7 cm beneath the original top level of *kurkar* in the last 0.57 m at the foot of the burial. The northwestern end of the grave had been destroyed, but the rectangular shaped undisturbed portion measured about 1.1 m wide and 2 m long. The remains of an adult male lying in supine position with the head oriented to the northwest had been placed in the burial depression. Finds in the tomb included a ceramic tomb marker consisting of a Mycenaean stirrup jar and Mycenaean piriform jar in the area of the stones at the foot of the tomb, and an incised tubular bone bead and gypsum knob recovered from the tomb fill.

3.3.5.51 **Tomb 1406** (Lipton 2010: 40) (**Figure 3.6**)
Tomb 1406 was the second tomb from the northwestern side of Area 1400, about 1 m northwest of Tomb 1404 and 1.5 m northeast of Tomb 1405. The northwestern end of the burial had been destroyed and no drawings of the tomb itself were published, but on the map of Area 1400, the undisturbed section is roughly rectangular-shaped and just over 0.5 m wide and almost 1.5 m long. The grave consisted of a 0.94 m deep recessed burial niche on the southern side with a small raised shelf cut into the *kurkar* at the foot of the tomb, and a another shelf to the north running the length the burial. The skeleton of an adult lying in supine position with the head pointing to the west was found in the grave depression. A ceramic tomb marker comprised of a Cypriot Base-Ring II jug and a storage jar were recovered in the disturbed area at the head of the burial.
3.4 ITEMS IN THE ISRAEL MUSEUM

3.4.1 Canaanite Pottery (Dothan 2008: 119-121, 128-129, 132-133)

Local pottery forms reported to be from the cemetery at Deir el-Balah include storage jars, juglets, a stirrup jar, a lentoid flask, jugs, and imitation Mycenaean and Cypriot vessels. Three examples of storage jars with an everted modeled rim, short neck, angular shoulder, two vertical handles, piriform body, and button base are in the collection. One of these jars was fitted with a solid clay lid that fits inside the rim of the vessel (IMJ 82.2.880/1). Four dipper juglets with elongated ovoid bodies, pinched rims, pointed bases, and vertical handles were also believed to be from the cemetery. One example of a globular stirrup jar and one of a lentoid flask with brown concentric circles were also in the Canaanite assemblage.

Five small jugs that were described as “probably local, but are not similar to any form of known Canaanite jugs” were also included as examples of local Canaanite pottery. These jugs have flaring or candlestick rims, globular or bi-conical bodies, and button, flat, or disc bases. Decoration on this vessel type included brown, red, or black, horizontal lines, hatched lozenges, dots, and a white slip. Locally-produced imitations of Mycenaean pottery included one two-handled jar, two three-handled jars, and one piriform jar. Seven bilbil jugs comprised the assemblage of imitation Cypriot wares.

3.4.2 Egyptianized Pottery (Dothan 2008: 118, 134-138)

Locally-produced Egyptian-style pottery alleged to have been illicitly removed from the Deir el-Balah cemetery included simple bowls with plain or flaring rims, a large bowl, drop-

34 For information concerning the anthropoid sarcophagi in the Israel Museum, see the section on “Clay Coffins and Pottery” in the description of the cemetery before the list of tombs.
shaped jars, short-necked ovoid jars, funnel-necked jars, and beer jars. Four simple bowls with rounded walls, plain rims, and flat bases and one large bowl with a disk base were included by Dothan in the section on Canaanite pottery as “a rather typical Late Bronze Canaanite form, although they show some Egyptian characteristics in their making” (2008: 118). These five bowls have further been identified as Egyptianized by Martin (2011: 212, Note 289).

Dothan designated the rest of the pottery described in this section as part of the Egyptian-style assemblage in the Israel Museum. The remaining open form in the Egyptianized corpus was a simple bowl with flaring rim and flat base, six examples of which are in the Israel Museum (Martin 2011: 212). Two of this vessel type, called “V-shaped bowls” by Dothan, bore a white slip (2008: 134). Closed forms included drop-shaped jars, short-necked ovoid jars, funnel-necked jars, and beer jars. Three small drop-shaped jars with unmodeled rims, round or pointed bases, and decorated with red and blue vertical bands were part of the Egyptian-style assemblage. One more drop-shaped jar shown in the photograph at the beginning of the pottery section in the museum catalogue should be added to this group (Dothan 2008: 117; Martin 2011: 213, Note 293).

Two short-necked jars, identified as “globular jars” by Dothan, with modeled rims and decorated with reddish-brown painted bands were also reported to be from the cemetery at Deir el-Balah (2008: 136). The rim-type of one of these jars was unique for this ceramic form (Martin 2011: 213, Note 294). A funnel-necked jar with an unmodeled rim, rounded base, and painted with blue and black horizontal bands was also in the Egyptian-style assemblage. Another similar vessel labeled as a “globular jar” with what appeared to be a broken rim probably also belongs in this ceramic group (Dothan 2008: 136; Martin 2011: 213). The remaining closed form in the Egyptianized corpus were beer jars, four with flat string-cut bases (designated as “beer bottles”
by Dothan), and one with a rounded base (labeled a “short-necked jar” by Dothan) (Dothan 2008: 137-138; Martin 2011: 212). 35

3.4.3 Egyptian Pottery (Dothan 2008: 138-140)

White-slipped ceramic types imported from Egypt and believed to be from the cemetery at Deir el-Balah included a tall-necked amphora, handled cups, and a pilgrim flask. Dothan identified all of these forms as locally-produced Egyptian-style vessels, but Martin has since classified them as Egyptian imports based on their form and comparisons to other Levantine sites (Dothan 2008: 138; Martin 2011: 213). One white-slipped tall-necked amphora with a globular body, round base, modeled rim, and two horizontal handles on the shoulder belongs in the Egyptian corpus, although Dothan stated that the vessel was “clearly an imitation” (2008: 138).

The assemblage also included two Egyptian white-slipped handled cups that were described as a “hybrid form: the loop handle is Canaanite and the tall neck, shape of body and white burnish are Egyptian” (Dothan 2008: 139). The remaining white-slipped ceramic form from Egypt in the Israel Museum was a lentoid flask painted with red concentric circles on both sides (Martin 2011: 213). Three more similar vessels were identified by Dothan as also having Egyptian features, but were not identified as such by Martin (Dothan 2008: 140).

3.4.4 Mycenaean, Minoan, and Cypriot Pottery (Dothan 2008: 123-127, 130-131)

Imported Mycenaean pottery believed to be from the cemetery at Deir el-Balah included piriform jars, a pyxis, a three-handled jug, and stirrup jars. Five piriform jars with an ovoid or conical body, splaying torus base, and three flat vertical loop handles with incised signs were

35 Two of the photos or descriptions of these vessels were switched in the museum catalogue (Dothan 2008: 138, IMJ 82.2.806 and 82.2.794).
part of the Mycenaean corpus. These vessels are decorated with brown or orange reserved triangles on the handles, scale patterns on the shoulders, strokes on the rim, chevrons, and horizontal bands below the neck. One Mycenaean pyxis with a flat base, two opposed vertical loop handles on the shoulder, and dark painted concentric circles on the base was also part of the collection.

Another example of an imported vessel included a three-handled jug with a piriform-shaped body, high narrow stem, torus base, and orange-painted reserved triangles on the handles, bands on the body, chevrons, and flower motifs on the shoulder. The remaining three vessels in the Mycenaean corpus were stirrup jars with globular, squat, or conical bodies, flat or torus bases, and orange-painted decoration in lozenge, spiral, circular, linear, and flower designs.

Only one Minoan ceramic type was in the collection. This vessel was an oatmeal ware stirrup jar with an ovoid body, flat base, and dark brown-painted bands and palm motifs on the body. Six vessels imported from Cyprus and purported to be from the cemetery at Deir el-Balah included three White Slip II milk bowls and three White Shaved juglets.

3.4.5 Calcite Vessels (Dothan 2008: 141-143)

Twelve Egyptian calcite vessels now in the Israel Museum are believed to originally be from the cemetery at Deir el-Balah. Most of the vessels are in the shape of or decorated with marshland flora and fauna. Two of these vessels were dishes in the shape of a bird with a triangular projection marking the head and the tail on the opposite side functioning as a handle. Another bird-shaped bowl consisted of a shallow dish scooped out in the form of a trussed goose with a triangular projecting tail, folded legs, and a turned-back head. A hole was drilled below the rim on one side, probably in order to attach a lid, which might have also been sealed with a
resinous material still present in traces on the rim. The bird-theme continues with a composite jar made up of three parts (neck, shoulder, and body) with two vertical duck-headed handles, a high and wide neck, and ovoid body.

A Tilapia fish-shaped bowl similar to the two duck-shaped dishes above had an elongated body, triangular head, and short wide tail. Traces of burn marks were present inside of the bowl. Marshland fauna among the calcite vessels included a goblet in the shape of a white lotus flower with an egg-shaped cup and straight stem ending in a peg. The petals of the lotus flower were painted in black and red. A calcite loop-handled jar was also decorated with a frieze of reversed lotus petals outlined and framed by black lines and dotted with red color. On the back, the frieze enclosed two hanging lotus flowers with stalks bound together and on the front, a similarly painted semicircular lotus petal collar.

Other items in the calcite vessel corpus included a small tri-ridged tazza with a flat base and two small round jars. One of these jars was described as having a squat baggy-shaped body with a flat base and wide and flat rim, however, the vessel pictured does not match that description as it is completely lacking a rim (Dothan 2008: 143, IMJ 82.2.327). On the other hand, a different small calcite jar present in the photograph of the calcite assemblage does fit the description (Dothan 2008: 141). This means that another small bag-shaped calcite jar should be added to the assemblage. A third small globular jar had a tiny round stopper placed in the aperture.

3.4.6 Bronze Objects (Dothan 2008: 144-145)

Bronze objects in the Israel Museum reported to have been illicitly removed from the cemetery at Deir el-Balah include five mirrors and one knife. All five of the mirrors had been
cast in one piece and were elliptical-shaped with tanged handles. The tangs would have been inserted into a handle made of bronze, bone, wood, ivory, or alabaster. The handles of four of the mirrors were not preserved, but the tang of the fifth mirror had been inserted into a bronze handle in the shape of a naked woman and fastened with a nail. The woman was wearing a headdress in the shape of a lotus over a wig and was standing on a small platform with the left arm extended downward and the right arm in offering-posture. One bronze cut-out knife with a drawn top point and a projecting butt edge was also present in the collection.

3.4.7 *Figurines* (Dothan 2008: 146-149)

Three stone and two ceramic figurines theorized to originally be from the cemetery at Deir el-Balah are now in the Israel Museum. All three of the Egyptian-style stone figurines feature nude women in a supine position with stiff arms and legs reclining on a bed with a footrest. One of these plaques was roughly rectangular-shaped with a rounded head and flat on the reverse. The woman on the bed had been painted with red skin and wore a long black Egyptian-style wig and black necklace. The pubic triangle had also been painted black. Another rectangular-shaped plaque featured a woman with round features and a short rounded Egyptian-style wig. The third stone female figurine was broken at the ankles and incised on the reverse with a quadruped with pointed ears and a flat snout, likely a cat or dog.

Another Egyptian-style figurine in the assemblage consisted of a ceramic *shabti*. The *shabti* was in the typical mummiiform pose with the arms crossed on the chest below a long wig. The figurine was manufactured using the open mold technique and traces of the join between the two parts was visible. An undescribed and unillustrated “potter’s mark” was incised on the back of the *shabti* (Dothan 2008: 148). The second ceramic figurine depicted a nude upright woman
in the Cypriot style with an angular head, rounded incised eyes, protruding nose and ears, black-painted hair, and pubic triangle emphasized with incisions and black paint. The hands of the woman were supporting the breasts and black and red painted bands at the neck probably represented a necklace.

3.4.8 Jewelry (Dothan 2008: 150-154)

Jewelry in the Israel Museum believed to have been illicitly removed from the cemetery at Deir el-Balah included carnelian and gold beads, amulets, scarabs, and earrings. Hundreds of carnelian beads in many different shapes and sizes were part of the collection. Bead types are comprised of short and elongated biconical, globular, and spacer forms. The most common pendant was the closed lotus-seed bud, which also numbered in the hundreds. At least three wDAṯ amulets and three scarabs were also part of the carnelian jewelry corpus. A few dozen gold beads in similar shapes as the carnelian examples were also in the collection. Four of the gold beads were long hollow tubular beads and there were also several examples of fluted melon-shaped beads. The gold beads were composed of two sheets halves formed into a doming block and then joined together.

Gold pendants in the Israel Museum included a horn-shaped amulet and a Hathor plaque. The gold horn-shaped pendant was comprised of a ribbed tube made of sheet gold and decorated in repoussé attached to a large oval open-ended ring. The face of Hathor on the plaque had been produced using the repoussé technique by impressing sheet gold with a pointed tool from the back into a shallow mold or soft surface. The two edges of the sheet were then rolled back to form tubes through which threads were strung. The remaining gold jewelry from the Israel Museum included a pair of solid-gold lunate hoop earrings and a pair of drop-shaped earrings.
with a fluted pendant in the shape of a flower bud and constructed of formed sheet gold and hung from a hoop of twisted and braided gold wires.

3.4.9 Stelae (Dothan 2008: 155-157)

Five stelae with Egyptian motifs and texts are also believed to have come from the cemetery at Deir el-Balah. Four of these were originally in Dayan’s personal collection, and three of them are now located in the Israel Museum, while the present location of the fourth is unknown (Dothan 2008: 23, 155-157; 2010: XXVII; Ventura 1987: 105). These four kurkar stela were originally published by Ventura in 1987 and then also later in the museum catalogue (Ventura 1987). A fifth limestone stela was also published by Dothan in the museum catalogue, but absolutely no information was provided about the provenance of the piece or how it came to be in the Israel Museum’s collection (2008: 157). As for the context of the stelae, one of the examples from Dayan’s collection was reported to have come from a coffin-less burial pit, where it lay near the head of a skeleton, but Ventura dismissed this account as “hearsay” (1987: 115).

In 1979, one of these four stelae was also published as being excavated from a tomb lined with rough stones, where it was discovered embedded in the lining (Dothan 1979: 1). It is unclear exactly which stela is referenced, or in which tomb the stela was found, as only one tomb (1405) with any sort of lining was ever published, and this burial was not discovered until sometime during 1980-1982 (Dothan 2010: XXVIII; Lipton 2010: 4, 6, 39-40). The description of Tomb 1405 also lacks any reference to a stela (Lipton 2010: 39-40). This enigmatic stela may be the same one identified as being found “in situ” in the 1993 encyclopedia article on Deir el-Balah by Dothan, but again, there is absolutely no other information provided about the stela or where it was discovered (1993: 347).
In the final report published in 2010, Lipton wrote that “one funerary stela (Ventura 1987: n. 5), anthropoid fragments and a damaged stone sarcophagus, Tomb 111 (Beit-Arieh 1985: n. 4), were recovered from the disturbed area” (2010: 3). Again it is unclear which stela is referenced, as there were only four stelae published by Ventura and therefore there is no “n. 5” as cited (Ventura 1987). The provenance of this stela is also unclear, and although Tomb 111 is referred to in the same sentence, no stelae were ever reported as being discovered in this burial (Beit-Arieh 1985: 47-48; Dothan 1979: 3). It is also worthy to note that Ventura stated that none of the four stelae from Dayan’s collection were found during excavation, and that “the systematic effort to excavate the cemetery of Deir el-Balah has failed to produce additional stelae of this or any other type” (1987: 105, 115).

The five stelae published in the museum catalogue included four kurkar examples and one limestone example, only one of which was complete and almost all of which were picket-shaped with a rounded or pointed top and squared base. The stelae range in height from 37 cm (broken) to 67.5 cm (complete) with widths between 23.5 cm and 30 cm and varying in thickness from 4.5 cm to 15 cm. The stelae were believed to be free-standing, as most feature an uninscribed lower portion that would have been embedded in the ground. At least one deity was depicted on each stela and three also illustrate the deceased along with the names and epithets of deities, the deceased, and/or worship formulae.

Stela IMJ 82.2.1056, made of kurkar, is roughly rectangular with an unevenly rounded and most likely broken top and slightly convex reverse. The scene, which was engraved in sunken relief, shows a mummiform Osiris standing on a small platform on the left, holding the crook and the flail and wearing the Atf-crown. On the right, the figure of the deceased stands faces Osiris with the right leg forward and the hands raised in the adoration-pose. No clothing or
accoutrement is visible on this male individual. An offering stand is located in the center of the stela between the two figures. A snTr-pot sits directly on top of the stand, while a large lotus flower floats above the vessel. The left-facing name of Osiris, wsir, appears above and to the left of the deity, and the left-facing name of the deceased imn-m-wiA is situated above the offering stand in three horizontal lines. The determinative, a kneeling dignitary, for this name is located above the head of the deceased. The entire scene is enclosed in a frame following the outline of the stela.

Stela IMJ 82.2.864 is also made of kurkar and is the only completely preserved stela in the group, measuring 30 cm wide and 67.5 cm long. The stela is squared at the base and triangular-shaped at the top, with a framed scene in both raised and sunken relief. On the left, Osiris holding the crook and the flail and wearing the Atf-crown sits on a cube-shaped throne with a low back-support. The two hands and throne are carved in raised relief, while the rest is in sunken relief. On the right side, a male figure in sunken relief wears a short kilt and stands with the right leg forward and left arm raised in the adoration-pose. The right hand holds a Hs-jar, from the spout and mouth of which liquid pours in two streams into a jar set in front of Osiris. A fragmentary hieroglyphic text flanked by vertical lines was inscribed above and between the two figures. The left-facing text appears to read Hapy, which refers to the name of the deceased, along with the determinative of a kneeling dignitary.

Stela IMJ 71.79.208, made of kurkar, is the most poorly preserved of the group. The stela is topped by a triangle with a rounded tip and the base is broken. A scene depicting Osiris, the deceased, and a hieroglyphic text was carved in sunken relief on the stela. The figure of Osiris, mummiform, holding the crook and the flail, and wearing the Atf-crown, is seated on a cube-shaped throne on the left. On the right side, a figure wearing an ankle-length high-waisted
dress is standing with the right leg slightly forward and both arms raised in the adoration-pose. Although it is difficult to determine whether the figure is male or female, the clothing, stance, and inscription seem to point to the latter identification. An offering stand with a jar and lotus floating above is located between the two figures.

The text on the stela was engraved in four columns separated by three vertical lines. The right-facing name of Osiris (wsir) was inscribed in the first column, which is situated above the deity. The left-facing second column reads r dit iAiw, meaning “worshipping,” or literally “in order to give worship” (preposition of purpose-infinitive-substantive direct object). The name, Aa-pHty, of the deceased was inscribed in the left-facing third column followed by the female determinative of a seated woman. An epithet of the deceased, mAa xrw (“justified” or more literally “true of voice”) follows in the left-facing fourth column above the head of the figure.

A fourth stela made of kurkar, whose present location is unknown, is missing the bottom portion and is broken diagonally across the bottom left corner of the scene, which is carved in sunken relief. The top of the stela is rounded with a triangular-shaped projection in the center. The mumiform image of Osiris is depicted on the right side holding the crook and the flail, wearing the Atf-crown, and seated on a cube-shaped throne with a low back-support. An offering stand with a vessel and floating lotus flower above is situated in front of the deity.

The right-facing name of Osiris (wsir) is inscribed above the scene. Ventura mentioned that the first sign (st) in the name appeared to be written using the hieratic script as opposed to hieroglyphic signs (1987: 112). In reality, the entire name of Osiris is written in hieratic. What Ventura thought was the sign of a seated dignitary holding a flail, which is essentially never used as a determinative for a deity, is actually the seated god determinative in hieratic. Ventura also noted that the absence of the deceased on the stela is unusual, however, it is not uncommon for a
second scene to be present below the first (ibid). Since this stela is broken, the deceased might have been depicted in the bottom missing section.

The fifth stela published in the museum catalogue was the only example made of limestone and the only stela not previously published. The stela is completely rectangular-shaped, but appears to be broken on the top and base. A scene was engraved in raised relief showing two figures. On the left side, the ram-headed god Khnum (misidentified as “Horus” by Dothan) stands with one leg extended forward and holding a $w\dot{a}s$-scepter in the left hand (Dothan 2008: 157). The deity wears a short kilt, tri-partite wig, and the $A\dot{t}f$-crown, which is situated above two horizontal undulating ram horns.

On the left side of the stela a goddess wearing an ankle-length tight-fitting dress stands with the left arm hanging downward and the left hand probably holding an anx-emblem. The right arm is extended slightly forward and appears to be bent at the elbow, with the right hand most likely grasping a $w\dot{a}s$-scepter like that of Khnum, or a papyrus staff or sistrum, which are commonly held by female deities. The goddess wears a long wig, which is crowned by a sun disk between two outward curving cow horns fronted by a uraeus. Without an inscription, it is almost impossible to determine whether this deity is Hathor or Isis.

3.5 SUMMARY AND CONCLUSION

In this chapter, a complete descriptive analysis of every known Late Bronze Age and early Iron Age burial in the two necropoleis at Beth-Shean and Deir el-Balah was presented. These mortuary contexts comprise the data set for the first case study of this project, and therefore, a comprehensive discussion of the excavation and publication history, chronology, contemporary settlement stratigraphy, and anthropoid sarcophagi was required for each
cemetery. Since one of the foremost goals of this project was to examine every context thoroughly, a detailed account of each individual tomb at Beth-Shean and Deir el-Balah, including the location, date, type, dimensions, orientation, layout, shape, construction, materials, shelves, niches, human remains, and all pottery and objects discovered inside was also included in this chapter. Much of the descriptive process incorporated a personal translation and identification of the material, as well as other scholars’ interpretations, and updated information. This chapter not only provided a comprehensive, collated, accurate, and updated discussion of the data employed in the first case study, but also set the stage for the second portion of the study on mortuary contexts that follows in the subsequent chapter, which examines the elements and features of the cemeteries and graves at Beth-Shean and Deir el-Balah from an Egyptian perspective and under the lens of cultural identity theory.
CHAPTER FOUR. AN EGYPTIAN PERSPECTIVE OF THE MORTUARY CONTEXTS AT BETH-SHEAN AND DEIR EL-BALAH

4.1 INTRODUCTION

This chapter represents the second portion of the study on mortuary contexts, where the elements and features of the cemeteries and graves at Beth-Shean and Deir el-Balah presented in the previous chapter will be examined entirely from an Egyptian perspective and through the framework of cultural identity theory. First, the intellectual history of previous scholarship on the identity of the occupants of the two Levantine necropoleis is provided, which includes aspects of ethnicity, status, gender, age, and occupation. Following this section, a thorough discussion of the Egyptian funerary process of the New Kingdom occurs, beginning in life and continuing beyond death into the afterlife, followed by close analyses of the necropoleis and tombs at Beth-Shean and Deir el-Balah in light of Egyptian mortuary dogma and praxis. The aspects of the New Kingdom Egyptian mortuary process are divided into three sections, beginning with the preparations for burial that occurred during life, followed by the subsequent construction of the tomb, and concluding with the assemblage of equipment provisioned for the grave. The research presented in this chapter not only provides the detailed analyses of the New Kingdom Egyptian and Late Bronze Age and early Iron Age Levantine data sets, but also incorporates a progressing account of the implications and results of these analyses.

4.2 PREVIOUS SCHOLARSHIP

Since the initial discovery and excavation of the Northern Cemetery at Beth-Shean in 1922 and the cemetery at Deir el-Balah in 1972, authors have frequently speculated about the identities of the individuals buried in the tombs. The focus of these designations usually centers
on the ethnic identity of the deceased, with some comments also related to occupational roles, which typically go along with an assumed male gender. The occupations of those buried in the cemeteries is generally described in an administrative (officials, dignitaries, chieftains, etc.) or martial (troops, soldiers, mercenaries, etc.) sense, although the latter designation has been challenged due to the lack of weapons in the tombs (Dothan 2008: 50). As regards ethnic identity, the cemeteries at Beth-Shean and Deir el-Balah have consistently been analyzed as belonging to one or more of three ethnic groups: the Sea Peoples, the Egyptians, and the Canaanites. These designations are typically based directly on the inclusion (or exclusion) of certain objects in the tombs, especially anthropoid coffins and pottery. The majority of ethnic identity labels are assigned only to the inhabitants of the anthropoid coffins, with the remainder of the tombs rarely mentioned, but also apparently identified through association.

In the years following the discovery of the Northern Cemetery at Beth-Shean, the excavators and other scholars began to speculate about the ethnic identity and employment of the occupants, concluding that the anthropoid coffins in the burials belonged to “Egyptian mercenaries who came from the seacoasts and islands of the eastern Mediterranean” (Fisher 1923: 236; Rowe 1927a: 40-41; 1930: 2, 23, 39; Vincent 1923: 437-441). Trude Dothan furthered this association by examining the headgear on the grotesque-style sarcophagi, which she matched with the feathered cap worn by the Sea Peoples in the reliefs at Medinet Habu in Egypt, specifically referring to the Philistines (1957: 151-164; 1958: 55-66; 1967: 211-250; 1973: 143-144; 1976: 30-31; 1979: 102; 1982: 252-279; 1985a: 66).

Eliezer Oren also examined the headdresses of the grotesque-style coffins and agreed that they paralleled those shown on the Sea Peoples at Medinet Habu; not only in terms of the headgear of the Philistines, but also the Tjekker and the Denyen (1973: 103, 135, 138).
However, he realized that the Tjekker were always illustrated with beards, and since facial hair was absent on the sarcophagi from Beth-Shean, this excluded them as possible candidates. Furthermore, the complete absence of Philistine pottery in the Northern Cemetery also disqualified the Philistines as owners of the coffins, and therefore, the grotesque-style coffins must have belonged to the one remaining viable group, the Denyen. Oren connected the naturalistic-style sarcophagi with Egyptian parallels, asserting that the tombs in which they were discovered were the burials of Egyptian garrison troops stationed at Beth-Shean by the Egyptian king (1973: 139-140). Frances James had implied a similar association seven years earlier when she also noticed the lack of Philistine pottery at the site and stated that “there is so much in the way of Egyptianizing pottery both on the tell and with these burials that, were it not for the feathered headdresses of the chieftains, one would be inclined to suggest that these burials represented the interments of Egyptians rather than their Aegean mercenaries” (1966: 137).36

After the discovery and excavation of the cem etery at Deir el-Balah, where burials with anthropoid coffins were found in tombs pre-dating the presence of the Philistines in the Levant, Dothan concluded that there were actually two different chronological and ethnic groups of sarcophagi (1972: 72; 1973: 142; 1979: 102-104; 1982: 252-279; Dothan and Dothan 1992: 208). The earlier group dates to the 14th and 13th centuries BCE and includes the naturalistic-style coffins of Deir el-Balah and Beth-Shean, which were attributed to Egyptian officials or garrisons stationed in Canaan; whereas the later group dates to the 12th and 11th centuries BCE and includes the grotesque-style sarcophagi of both sites, which were attributed to the Philistines.37 The Philistines were viewed as adopting the burial customs of the Egyptians, and Dothan’s

36 For recent information about pottery with Philistine, Cypriot, and Aegean affinities from the settlement of Beth-Shean, see Zukerman 2009.
37 For a description and discussion of the anthropoid sarcophagi at Beth-Shean and Deir el-Balah, and the designations of “naturalistic” and “grotesque,” see chapter three.

There are, however, many other scholars who either dispute Dothan’s theory or entirely do not mention the Sea Peoples in their discussion of the cemeteries and anthropoid coffins at Deir el-Balah and Beth-Shean (Ben-Shlomo 2010: 96-97, Note 1; Bietak 1993: 299-300; Finkelstein 1996: 177; Gonen 1992: 28-29; Lipton 2010: 45; Mazar 1992: 279-280; 2011: 180; Stager 1995: 341-342; Wood 1991: 51-52). The latter practice also applies to the two most recent publications by Dothan on the burials and objects excavated and plundered from the cemetery at Deir el-Balah (Dothan 2008: 50; Lipton 2010: 45). The only ethnic group Gary Lipton associated with the cemetery were the Egyptians, for which he further provides evidence from the earlier osteological report on the human remains, citing that “the interred had large crania and were long-faced, characteristics associated with the Lower Egyptian population of the XVIIIth-XIXth Dynasties” (Arensburg and Smith 1979: 96; Lipton 2010: 45).

The indigenous inhabitants of Canaan are only mentioned a few times regarding their relationship with the tombs in the cemeteries at Beth-Shean and Deir el-Balah. Dothan has always included the possibility that some of the burials might have belonged to “Canaanite rulers or dignitaries steeped in Egyptian culture” and Mario Martin has also posited this conclusion regarding the Northern Cemetery at Beth-Shean, based on the lack of imported Egyptian pottery (Dothan 1972: 72; 1979: 104; 2008: 50; Martin 2011: 134). Robert Mullins had also noted the lack of Egyptian and Egyptianized pottery in the tombs at Beth-Shean and theorized that Egyptians might not have been buried there at all, an idea also later advanced by Martin (Martin 2011: 134; Mullins 2002: 325, 345). On the other hand, it has been acknowledged that the lack
of Late Bronze Age burials in the cemetery most likely illustrate that the inhabitants of Beth-
Shean in this period were buried elsewhere in an undiscovered location (Mullins 2002: 300; Oren

The intellectual history regarding the perceived identities of those interred in the
cemeteries at Beth-Shean and Deir el-Balah illustrates the complexities in determining or
defining the ethnic identity of those in mortuary complexes through a small number of items left
in the grave. However, while the *ethnic* identity of the deceased in the cemeteries at Beth-Shean
and Deir el-Balah may be ambiguous, it is evident that the occupants desired to at least partially
display an Egyptian *cultural* identity associated with certain objects they (or their inhumants)
chose to place in the tomb.

However, in order to establish exactly if and how the burials are representative of
Egyptian cultural identity, more than just a few types of burial goods must be taken into
consideration. The Egyptian concept of identity included an essential supernatural facet, and for
an Egyptian to survive the complicated transition from life to death, all six aspects that
constituted an individual in Egypt, the life force (*kA*), manifestation (*bA*), heart (*ib*), name (*rn*),
shadow (*Swt*), and body (*XAt*), must be carefully prepared, preserved, and provisioned. The
entire funerary process, which began in life and continued beyond death into the afterlife, must
be examined in light of this interpretation.

4.3 LIFE: PREPARATION FOR DEATH

The Egyptians of the New Kingdom began preparing for death during life. The broad
norm for elite male mortuary practices included constructing a tomb as an everlasting memorial,
and these monuments began to be built soon after an individual reached the zenith of their
careers (Baines and Lacovara 2002: 10-11). The Egyptians invested vast amounts of resources in funerary monuments, and as most expenditure occurred before death, the pecuniary results of almost an entire lifetime’s vocation was necessary (Assmann 2005: 409). This applies, of course, not only to the royal family and upper elite of society, but also to the sub-elite and lower socio-economic levels, who would have also dedicated an excessive amount to funerary expenses in proportion to their overall lifetime allowance.

Many scholars have noted the small number or lack of Egyptian-style graves in the cemeteries at Beth-Shean and Deir el-Balah, especially in relation to the estimated Egyptian demography of the associated settlements (James and McGovern 1993: 239; Martin 2011: 134; Mullins 2002: 300; Oren 1973: 68). While it is possible that these burials are in an undiscovered location, as mentioned above, another reason might be related to the typical timeline of Egyptian tomb construction. If the majority of Egyptians were in administrative or martial employment in the Levant, then the ages related to these positions would have been affected the necessity of building a tomb abroad. The largest group in the Egyptian military, the soldiers, would have been adolescents and not yet reached a peak in their careers, and therefore would not have yet began to construct a tomb (James and McGovern 1993: 239). In effect, one of the two major terms employed for both the foot-soldiers and sailors in the Egyptian military was the word “youths” (Hwnw) (Spalinger 2005: 5). By the time these individuals, as well as more advanced officials and military personnel, had enough capital to invest in a tomb, they might have either already returned to Egypt or most likely would have secured a burial in the homeland while living abroad.
4.4 TOMB LOCATION

4.4.1 Tomb Location: Egypt or Abroad

Before an individual could begin constructing a tomb, a location for the grave would have to be procured. For Egyptians residing or working abroad, the issue of also dying abroad would have been relevant, as would the decision to begin building a tomb in the Egyptian homeland or in the foreign land where the individual was deployed. The majority of Egyptians, who had the choice and wealth to do so, would most likely have preferred to construct a tomb in Egypt. Several Egyptian texts lay emphasis on the undesirability of a burial outside of Egypt. In the “Tale of Sinuhe” from the Middle Kingdom, the protagonist of the story queries “what can be more important than joining my dead body to the land where I was born?” (Simpson 2003: 60). The king also urges Sinuhe to return to Egypt before his death, explaining that if the Amu (“Asiatics”) inter him, he might receive a ram’s skin for a coffin and not receive a proper burial and funerary process (Simpson 2003: 62; Taylor 2001: 40).

The threat of a foreign-style grave was not the only impetus for a burial in Egypt, but also the potential prodigious distance of family members, who would have been tasked with completing an unfinished tomb, conducting the funeral, and administering the mortuary cult (Baines and Lacovara 2002: 11). The eldest son of the deceased played a key role as a sem-priest, representing Horus, in performing funerary ceremonies like the “Opening of the Mouth” and the “Daily Offering Ritual” (Assmann 1976: 30-33; Seidlmayer 2001: 510).38 Death and internment abroad might mean that these important kinship responsibilities had to be fulfilled by unrelated and indifferent Egyptians, strangers, foreigners, or in the worst case scenario, no one.

38 The eldest son received double the portion of the inheritance that his siblings were given because of the responsibilities related to the burial of his parents (Janssen and Pestman 1968).
Other reasons for desiring a burial in Egypt are more spatiality-based. Constructing a tomb in close proximity to a king’s grave, royal residence, mortuary temple, festival route, divine temple, or ancient cemetery would provide prestige and relevant benefits through mere association (Helck 1962; Kampp-Seyfried 2003: 2). The position of the grave in relation to the Nile River was also a concern for the Egyptians. The ideal location for a tomb would be on the desert margins of the western bank of the river, so that the ceremonial riverine transport, considered by some to be the most important part of the funeral procession, could properly occur from the east bank to the west bank and the realm of the deceased and the deities (Dodson 2010: 804; Jones 1995: 29). The direction of the tomb in accordance with the flow of the Nile was also important, and “orientation to the river should be considered a type of absolute orientation, even if this was a terrestrial (riverine) form of cosmic ordering rather than a celestial (cardinal) form of alignment” (Raven 2005: 40) (Spence 1997: 74).

Nevertheless, not all expatriate Egyptians must have chosen or had the ability to be buried in Egypt, as examples of Egyptians who died beyond the frontiers of Egypt include not only those who were sent back to their homeland for burial but also those who were interred abroad. In two Old Kingdom tombs at Aswan, a man named Pepinakht boasts how he triumphantly retrieved the body of Anankhet, who was killed on the coast of the Red Sea, while an individual named Sabni records his successful mission to recover the body of his father Mekhu, who had died on an expedition to Nubia (Taylor 2001: 40). These men may have returned home for burial, but there are also many examples, beginning in the late Middle Kingdom, of Egyptians constructing and being interred in tombs in Nubia, even as far as 500 km south of the border of Egypt (Smith 2003).39

39 It should be noted, however, that one must be cautious in comparing Egyptian interactions with Nubia to those with the Levant, due to the vast differences and histories between the two areas (Morris 2005: 11-14).
While all of the aforementioned ideological reasons concerning an improper foreign-style burial, and the vast distance from family, royal and divine monuments, as well as the Nile, might compel an Egyptian to construct and be interred in a tomb in Egypt, many of these complaints would have or could have been mediated and rationalized in order to attain an appropriate burial abroad in Nubia or the Levant. The issue surrounding an improper foreign-style burial with a ram-skin substitute for a coffin does seem to apply to the graves in the cemeteries of Beth-Shean and Deir el-Balah, where 106 clay anthropoid sarcophagi, a type also commonly deposited in New Kingdom Egyptian graves, were discovered. There might also be evidence of mummification or wrapping at these necropoleis, and this possibility will be described in further detail in the section on “Tomb Equipment” below.

A wealth of grave goods and possible evidence of mortuary rituals, which will be discussed later in this chapter as well, also show that family members were either able to facilitate their deceased kinsmen or that these roles were successfully performed by other individuals. Furthermore, the presence of women and children in the graves at Beth-Shean and Deir el-Balah show that some of the deceased were indeed accompanied by their families, who would have been the prime instigators in the funerary process. Since occupations were generally transferred from father to son in Egypt, the sons of Egyptian administrative or martial personnel might have also followed their fathers to the Levant in similar professions or as apprentices (Campagno 2009: 4; Morris 2005: 391). A government-sponsored burial and mortuary procedure for Egyptians deployed by the state and killed abroad must also be taken into consideration.

Further evidence for the presence of families, or at least a father and son, together in the Levant might be found in the inscription on a limestone stela discovered in an Egyptian-style
temple on the mound of Beth-Shean (James 1966: 171; Rowe 1928: 149-155; 1930: 14-15, Pl. 33). This object, commonly called the “Mekal Stela,” is decorated with upper and lower scenes of two men worshipping the patron god of Beth-Shean, Mekal, accompanied by an offering text above the upper scene and another adjacent to the lower. In the inscription, a man named Paraemheb states that he has manufactured the stela for the kA of his father, Amenemipet, whose profession is that of a builder (qd). Although it is possible, it seems unlikely that Paraemheb would have created and installed a dedicatory stela for his father in the temple at Beth-Shean if he had been buried in Egypt (Morris 2005: 251, Note 140).

While Egyptian royal graves and mortuary temples have yet to be documented in the Levant, the remains of several phases of an Egyptian-style divine temple have been uncovered at Beth-Shean (James 1966; James and McGovern 1993; Rowe 1940). Expatriate Egyptians residing or working in the Levant may have chosen a burial in the Northern Cemetery of Beth-Shean due to the close proximity of a large temple dedicated to syncretized Egyptian and Canaanite deities. These individuals would have also benefited from Egyptian priests performing the Daily Offering Ritual for the gods in the temple at Beth-Shean, as deceased Egyptians received a reversion of these offerings in the hereafter as part of their own perpetual mortuary cult (Lapp 1986).

40 The exact provenance of this stela is ambiguous, as Rowe reported that it was found near a stone base in the southern corridor (Locus 1330) of the Level IX (Late Bronze Age IB-IIA) temple, while the excavation records indicate that it actually came from Locus 1292 of the Level VIII (Late Bronze Age IIB) temple (Mullins 2007: 36; Rowe 1930: 11). Because another fragment of this stela was found in a room (Locus 1089) south of Level VII (Late Bronze Age IIB) temple, the Level VIII designation is more readily accepted (Albright 1938: 76-77, n. 38; James and McGovern 1993: 240; Rowe 1930: 21, Pl. 49:3; 1940: 9-10, Pl. 28:19).

41 However, see Charbit Nataf 2011 for an unconvincing argument that an Egyptian-style royal mortuary cult was adopted by Canaanites, who “linked it to the goddess Hathor” (2011: 64). The motifs (lotus flower, drinking vessels, musical instruments, and Delta papyrus marshes) that the author connects with “mortuary Hathor worship” are not necessarily tied to Hathor, as all are symbols of rebirth or related to funerary rituals in general (Charbit Nataf 2011: 52).
As for the importance of the Nile River in the position and orientation of Egyptian tombs, a burial in the Levant would mean that the tomb was eternally east of the river, a location not unheard of in Egypt, but certainly not desired (Dodson 2010: 804; Seidlmayer 2001: 507). On the other hand, the most important aspect of the Egyptian funeral procession, the ceremonial transport of the deceased from east to west across the Nile River, could have been accomplished at Beth-Shean in a substitutive fashion. The Northern Cemetery and settlement of Beth-Shean are separated by the Harod Valley, which extends almost 100 m from the base of the cemetery to the base of the mound, with the former located northwest of the latter (Arubas 2006: Figs. 2.8-2.9) (Figure 3.2). The Harod River would have flown through the bottom of this valley and separated the settlement from the cemetery, which necessitated crossing the river from the southeast to the northwest in order to reach the tombs. Although the direction of the crossing was not precisely from east to west, the river might still have played a role in the riverine transport aspect of the Egyptian funerary process.

It is also possible that the Harod River could have symbolically represented the Nile under the guise of the god Hapy, who represented both the inundation of the river and the Nile itself. In this role, Hapy is “Lord of the Fishes and Birds,” depicted with blue skin, holding or wearing fenland flora, and followed by a retinue of frog and crocodile deities (Wilkinson 2003: 106-107). Although cult centers dedicated to Hapy were located in southern Egypt near the cataracts of the Nile, the deity is described in the “Hymn to Hapy” as spatially limitless, dwelling in the netherworld or an unknown location, having no shrines, and as dew descending from the sky, providing some substantiation that the Egyptians might have equated Hapy with all fresh
waters, whether in Egypt or abroad.42 It is also likely that the Egyptians at Beth-Shean could have equated Hapy with the nearby Jordan River, which had even more similarities than the Harod with the Nile River in terms of size and orientation.43

Even more support for these theories might be found in a hieroglyphic inscription on a section of a doorjamb discovered north of the Late Level VI (Iron Age IB) temple at Beth-Shean, and believed to originally have been part of the Egyptian Level VI (Iron Age IA) temple (James 1966: 7, Figs. 98:1, 99:1, No. D-1; Ward 1966: 163, 171-172). Two incomplete columns of hieroglyphs are featured, which read …\textit{aw n=k p\textit{A an Xry nHH}}… \textit{i[Aw n]=k p\textit{A Hapy}}…, translated as “…praises to you, oh beautiful one, possessor of eternity…praises to you, oh Hapy….” While the epithets in the first column almost certainly refer to the sun god, the mention of Hapy in the second column shows that the deity retained a presence in the Egypto-Canaanite temple at Beth-Shean, which was located an immense distance from the Nile River and Egypt. Since terrestrial transport also played a major role in the mortuary procession, the location of the cemetery at Deir el-Balah on low and relatively even ground would have facilitated this aspect of the funeral (Hays 2010: 2).

4.4.2 \textit{Tomb Location: Proximity to a City}

Many Egyptians in the New Kingdom, across different socio-economic strata, also chose to construct tombs either near their town of residence or close to the area of their employment, which was not always in the same location (Roth 1995; Taylor 2010: 224, 226). Officials and other administrative employees especially desired to build a tomb in the rock cliffs overlooking…

42 For a translation and description of the “Hymn to Hapy,” see Lichtheim 1975: 204-210. Although all extant copies of the hymn date to the New Kingdom, the text was believed to have been originally composed in the Middle Kingdom (Lichtheim 1975: 205).

43 I would like to thank R. Mullins for making this insightful suggestion.
their place of occupation (Seidlmayer 2001: 507). Several autobiographical texts and narratives, like that of the Middle Kingdom “Tale of the Shipwrecked Sailor,” describe wanting to die or be interred in their “town,” which typically employs the generalized word nwt without referring to a specific city or place (Simpson 2003: 50, 424). Some Egyptian officials and generals that were deployed in the Levant for extended periods of time, as long as six years in some cases, might have eventually viewed their station abroad as their “town” (Morris 2005: 391). This may have been the situation for the Egyptians living and working in the cities of Beth-Shean and Deir el-Balah, which might also suggest that they were buried in their correlated “town.”

The bottom portion of a funerary stela discovered in a secondary context near the west end of the Level V (Iron Age IB) temple on the mound of Beth-Shean might be related to this possessive “town” phenomenon (James 1966: 16-17, 39; Rowe 1930: 37-38, Pl. 49:1; 1940: 18, 28; Ward 1966: 171). The stela depicts a man kneeling with both arms raised in the adoration-pose surrounded by thirteen columns of hieroglyphic text. The stela is broken and missing a few sections of text, but provides the name of a man that ends in -ipt and the titles of “Overseer of the Two Granaries of the Lord of the Two Lands” and “Steward,” although it is not known whether the name and the titles go together, or if they belong to the deceased and/or the dedicator of the stela. The offering formula on the stela includes a request for “a good funeral and burial in the cemetery of my town.” It is likely that the owner desired to be interred in his (home-?) “town” in Egypt, but if he had been living and working in Beth-Shean long enough to commission a stela for the local Egyptianized temple, it is also plausible that he was referring to his (adopted) “town” of Beth-Shean.

There are, however, cases where loyalty to a local official or ruler could overwrite residential or professional association with a town in dictating the place of burial for an Egyptian
in the New Kingdom (Bács 2011: 9; Fakhry 1934; Kampp 1996: 496-498, 514-515). In Egypt, groups of tombs spanning several generations typically included earlier burials of a significant person, either the patriarch of a family or a leading local figure, surrounded by clusters of later burials (Baines and Lacovara 2002: 9). Texts, inscribed stone door-jambs, lintels, stelae, and other objects from Beth-Shean and Deir el-Balah illustrate that important Egyptian officials were present in these areas. If they were interred in the cemeteries associated with these towns, then Egyptians might have chosen to be buried in close proximity to a revered leader.

In Egypt, ancestral or familial association with a cemetery could be even more powerful than loyalty to an esteemed official, because these associations formed a major principle in cemetery formation, as well as the social status of the deceased (Taylor 2010: 226). In the New Kingdom, especially during the Ramesside Period, cemeteries were marked by a “continuity with the past and emphasis of locality,” which were “defined and bounded by strong familial interests and ancestry” (Bács 2011: 8). In the same necropolis, groupings of tombs display several generations of family relations, where sons openly remarked that they chose to be buried next to or inside of their father’s or ancestor’s tomb (Brovarski 2001; Kampp 1996: 570-571; O’Connor 1974: 19-27; Reisner 1932: 174-190).

This shift to lineage-based burial was centered in a changing social awareness that realized the augmentation of opportunities through kinship associations with the deceased members of a community (Meskell 1999: 192). Ancestral proximity might also not have been the result of personal agency, but rather an aspect of the late New Kingdom practice of the Egyptian state assigning the tombs of forbears a few generations old for reuse (McDowell 1999: 68-69). The construction or reuse of a tomb in a familial area of a necropolis also allowed the owner the occasion to repair and restore earlier ancestral structures, which would bring the
individual prestige and was one of the key tenets of the Egyptian dogma concerning the maintenance of *mAat* (“truth, order, justice”) in the land (Dreyer et al. 1998: 141-142; Kemp 1975: 36-37; Leahy 1977).

Evidence for proximity-burials, whether based on professional, loyal, or familial associations, is manifest in the cemeteries at Beth-Shean and Deir el-Balah. All 13 of the cavernous rock-cut tombs in the Northern Cemetery of Beth-Shean contained multiple internments, which is demonstrated by an assortment of human remains and the presence of at least 56 anthropoid coffins spread throughout 11 of the tombs (Figure 3.1). The chronology of these burials spans over 250 years, from the Late Bronze Age I to the Iron Age I, with eight of the tombs each containing several graves of multiple periods. Over ten generations of individuals could be represented in the Late Bronze and Iron Age burials of the Northern Cemetery of Beth-Shean.

In Area 600 of the cemetery of Deir el-Balah, 17 graves were organized in five orderly rows, an arrangement that the excavators suggested might represent family groups of burials (Dothan 2008: 49; Lipton 2010: 45) (Figure 3.5). The tombs in Area 1400 also reflect this linear pattern, with eight graves lined up in one or two rows (Figure 3.6). Elsewhere in the cemetery, in Areas 100 (Figure 3.3) and 300 (Figure 3.4), the burials were arranged in clusters

44 These tombs include: 7, 27, 29, 60, 66, 69, 90, 107, 202, 219, 221, 227, and 241. These burials at Beth-Shean, as well as those at Deir el-Balah, were described in detail in the preceding chapter.

45 It must be noted, however, that all but one of the Late Bronze and Iron Age tombs in the cemetery had originally been constructed in the Early Bronze Age (but not used again until the Late Bronze or Iron Age), and six of the graves had been re-used in the Roman and Byzantine Periods, and therefore, the human remains most likely represent a mix of all of these periods.

46 The summation of graves provided here is comprised of all numbers in the 600 series, including Loci 610 and 614, which should be considered burials in their own right, and excluding Loci 615 and 616, which are most likely tomb markers, as well as Tomb 620, which is not located in Area 600.

47 The summation of graves provided here is comprised of all numbers in the 1400 series, with Tomb 1400/1401 representing one example, and including Tombs 1407 and 1408, which were not excavated but appear on the map of Area 1400.
of three or more, which were comprised of anthropoid sarcophagi tombs about three to four meters apart, with coffin-less burials between them (Dothan 1979: 1, 3; Lipton 2010: 6). This pattern mimics the aforementioned collectives of smaller burials clustered around larger tombs commonly discovered in New Kingdom necropoleis in Egypt, as well as those cemeteries of expatriate Egyptians interred in Nubia (Smith 2003: 138).

The existence of familial or ancestral crypts or burial groups in Egypt is also linked to the favorability of a tomb in an ancient cemetery, even where true kinship links had long been erased over the centuries (Bács 2011: 7). The Egyptians created specialized “mortuary landscapes,” which became hallowed through millennia of repeated exploitation (Baines and Lacovara 2002: 10; Taylor 2010: 222). These sacred spaces were sometimes designated by the names of important individuals interred nearby, for example, “the quarter of Nefertari” (tA-spAt nfr-tiry) that is mentioned in Ramesside texts refers to the area of Dra Abu el-Naga where Queen Ahmose-Nefertari had been buried over 300 years earlier (Peet 1930: 61, Note 9, Pl. 6; Seyfried 1990: 50, Text 22). The ability to reuse ancient building materials also added an intrinsic numinous quality to an individual’s tomb (Goedicke 1971: 1-7).

While the characteristics of an ancient sacred space might not apply to the cemetery of Deir el-Balah, where all of the tombs were believed to have been constructed within a few generations, almost all of the Late Bronze and Iron Age graves in the Northern Cemetery of Beth-Shean were examples of secondary burials. Twelve of these tombs (7, 27, 29, 60, 66, 90, 107, 202, 227, 219, 221, and 241) had been originally built in the Early Bronze Age IV, which is attested by the pottery and other objects in the burials dating to this earlier period (Oren 1973: 102) (Figure 3.1).48 Half of the reused tombs (7, 27, 29, 227, 219, and 241) were not

48 For references and information about individual tombs and objects in this chapter, see chapter three.
architecturally modified by the usurpers, but the other half (60, 66, 90, 107, 202, and 221) underwent partial adjustments or were supplemented in order to accommodate anthropoid coffin burials, as will be discussed below.

Individuals living and working in the settlement at Beth-Shean would have certainly been aware of the ancient tombs located in the cliffs across the Harod Valley to the northwest. The Northern Cemetery is clearly visible from the summit and northern terrace of the mound, which sat about 30 m above the highest point of the cemetery in the Late Bronze Age and Iron Age (Arubas 2006: Fig. 2.9) (Figure 3.2). The deliberate choice to reuse and modify these tombs for new burials in the Late Bronze Age might have been related to the ancient nature of the cemetery. Of course, the reuse of tombs is often attributed to deficient economic conditions or unstable political situations, but the wealth observed in the graves, as well as the expenditure and effort undertaken to recut certain areas and carve new chambers in some of the earlier rock tombs, and the addition of at least one new tomb, show that these were probably not the burials of individuals under economic or political distress.49

Although the Northern Cemetery might have carried the positive connotations associated with an ancient burial ground and may have even been viewed as sacred space, it was still a cemetery of foreigners in a foreign land. According to the nature of Egyptian texts and iconography, the ethnocentrism of the Egyptians, along with the required continual subjugation of the enemies of Egypt in order to sustain mAAat, would most likely have made it difficult for the Egyptians to be buried in the same tomb as a “vile Asiatic.” However, the negative connotations associated with foreigners most likely did not reflect the reality of daily life in Egypt, where Egyptians and Canaanites were living and working together, and Canaanites could reach

49 Other issues related to reuse will be discussed below in the section on Tomb Construction.
positions of high status (W. Wendrich 2013, pers. comm., 18 May). If there was indeed a negative stigma in place, since the cemetery at Beth-Shean appears to have fallen out of use after its initial construction in the Early Bronze Age IV, the vast amount of lapsed time (at least 550 years) since the cemetery was last in use might have lessened the negative foreign aspects of the Northern Cemetery.50

The numerous reasons why or why not Egyptians in the New Kingdom would choose a specific burial ground for their tomb cannot obscure the reality that personal preference was not always a viable option regarding tomb location. Egyptian necropoleis fell under the auspices of the civil administration and were controlled by a local authority (Wada 2007: 368). Individuals were required to work closely with several necropolis officials, the highest of which was the overseer of the cemetery and chief of the necropolis police (Seidlmayer 2001: 510). In some cases the king or an official would assign a certain tomb to the attendants or individuals employed under their authority, as well as cover various expenses related to tomb construction and furnishings (Seidlmayer 2001: 510). Governmentally-based tomb assignments might also be founded on familial links, as mentioned above, or due to the institutionalized management of existing tombs as communal burial places, a practice that was especially prevalent toward the end of the New Kingdom and the Third Intermediate Period (Pestman 1993; Thompson 1988: 155-189).

Because the majority of Egyptians residing in the Levant were most likely employed by the Egyptian government, it is possible that some of the related burials were state-issued. This applied not only to the elite officials in the area, who were provided with objects from the royal

50 Only three tombs in the cemetery might have been used in the interim period. Oren dated three tombs (42, 59, and 303) in the Northern Cemetery to the Late Bronze Age I, but these tombs have since been re-dated to the Middle Bronze Age II or Middle Bronze Age II/Late Bronze Age I transition (Maeir 1997: 83-84; Mullins 2002: 297-299; Oren 1973: 7-9, 18, 98-99).
treasury, but also to more minor positions, like that of a foot-soldier, who might have been killed on the battlefield and was too young or too poor to have properly set up a tomb prior to death or be sent back to Egypt for burial. The graves in the cemeteries at Beth-Shean and Deir el-Balah might reflect some of these state-sponsored burials. The communal burials in the Northern Cemetery at Beth-Shean could be attributed to the aforementioned institutional control of older tombs for new graves, especially since nine (7, 66, 69, 90, 107, 202, 219, 221, and 227) out of the 13 tombs contained burials dating to the Iron Age IA, when this was a common practice in Egypt (Figure 3.1).

Many of the high status and costly items in the graves at Beth-Shean and Deir el-Balah might have also been gifts from the Egyptian king or the elite, especially the seals and scarabs engraved with royal names, many of which were set into high-value gold or silver mounts (Bianchi 2001: 180). Examples of royal scarabs and seals from the Northern Cemetery include a steatite seal with the name of Thutmose III in Tomb 27, a steatite scarab of Thutmose III and a steatite seal of Ramses III in Tomb 66, and a steatite scarab of Thutmose III, steatite scarab of Ramses II, and faience scarab of Ramses II in Tomb 219.51 Three royal scarabs were also discovered in two tombs at Deir el-Balah, including a carnelian example inscribed with the name of Ramses II in Tomb 114, and two steatite examples of Thutmose III in Tomb 118.52

While royal scarabs can characteristically be used as evidence of gifts from the king to officials in Egypt and abroad, caution must be applied in using the royal names to date the tombs, or even to date the scarabs, as these objects, especially those with the name of Thutmose III, were commonly heirlooms, inheritance pieces, or were produced long after the pharaoh had

51 Oren believed that a fourth scarab in Tomb 219 also recorded a royal name, that of Amenhotep III (1973: 127). As discussed in the preceding chapter, the hieroglyphs on the scarab are probably a rebus for imn (Amun).
52 Brandl identified a third scarab in Tomb 118 as containing the name of Thutmoses III, but this particular form of the name flanked by mAat-feathers is actually a common spelling of imn (Amun) (1979: 85).
died (Hornung and Staehelin 1976: 26-29, 41-87; Jaeger 1982: 94, 184-253; Teeter 2003: 14). On the other hand, since the tombs of Beth-Shean and Deir el-Balah have not been dated using the royal scarabs, it is possible that the Thutmose III scarab in Tomb 27 at Beth-Shean might be contemporary with the reign of that king as the tomb dates to the Late Bronze Age IA to IIB.53 The same might be true for the Ramses II and III scarabs in Tombs 66 (Iron Age IA) and 219 (Late Bronze Age II to Iron Age IA) at Beth-Shean and in Tomb 114 (Late Bronze Age IIB) at Deir el-Balah. The scarabs with the name of Thutmose III in Tombs 66 (Iron Age IA) and 219 (Late Bronze Age II to Iron Age IA) at Beth-Shean and Tomb 118 (Late Bronze Age IIB) must either be heirlooms or later productions.

4.4.3 Tomb Location: Layout of a Necropolis

Political tutelage was not the only factor in regulated tomb assignment in Egypt, as particular explicit or implicit conventions of decorum in Egyptian society required that social identities like status, gender, and age also play major roles. The necropolis was an “image of the ordered world” for the Egyptians, and “they aimed to emulate its fixed pattern during rituals connected with liminal processes such as birth and death, as well as when creating their own ritual landscape of tombs” (Raven 2005: 37) (Török 2002). Therefore, it is not surprising that the spatial analyses of cemeteries, including the distribution of graves, and quantitative and qualitative analysis of grave goods, demonstrates strong connections with Egyptian socio-economic status, gender, age, and cultural identity (Bard 1994; Meskell 1999; Richards 2005; Seidlmayer 1990).

53 For more information on the dating of this tomb and the following examples, see the descriptions of the individual tombs in the preceding chapter.
Depending on the period, Egyptian necropoleis were habitually relegated according to the status of an individual, with various cemeteries reflecting “the hierarchy of the living” (Taylor 2010: 226). Prominent sections of burial grounds, such as high rock cliffs or desert plateaus, tended to be used by the elite, whereas the graves of individuals in lower social strata were located near the bottom of the hillside in flat trough areas (Seidlmayer 2001: 508; Wada 2007: 349, 352, 368). In the Old and Middle Kingdoms, subordinates often chose to be buried in subsidiary graves “at the feet of their lord,” as claimed on funerary stelae (Taylor 2010: 226). One of the best examples of status-oriented graves appears in the cemeteries associated with the New Kingdom site of Deir el-Medina. Burials in the Eastern Necropolis, located on a hill adjacent to the village, were confined to the lower socio-economic levels of the 18th Dynasty, whereas the Western Necropolis held the graves of the wealthy in the same period (Meskell 1999: 181, 184). Later, in the Ramesside Period, tombs from all levels of socio-economic strata were located together in the Western Necropolis (Meskell 1999: 181, 184).

The socio-economic status of individuals buried in the tombs at Beth-Shean and Deir el-Balah were probably also related to the position of graves in these cemeteries. Although the settlement and cemeteries of Deir el-Medina are often touted as unique and unrepresentative, and therefore cannot be used in comparison with other sites, a few similarities, beyond obvious chronological parallels, exist between Deir el-Medina, Beth-Shean, and Deir el-Balah. The majority of Egyptians residing and employed at all three of these sites most likely worked under the auspices of the Egyptian government. All three settlements also contained communities of craftsmen who worked in major industrial zones, where Egyptian and Egyptian-style pottery and other objects were specifically produced for the associated necropoleis (Dothan 2010c: 317; Mazar 2010: 256; Meskell 1999: 181, 193).
Taking these similarities into consideration, it is relevant to compare the characteristics of the cemeteries at Deir el-Medina with those from Beth-Shean and Deir el-Balah. In terms of status and burials, both sites appear to reflect the Ramesside Period practices in the Western Necropolis at Deir el-Medina. At Deir el-Balah, graves illustrating different levels of wealth expenditure were found mixed together, some of which were in cluster patterns that might be status-orientated, as previously suggested by Dothan, who stated that “the idea of elaborate multiple burials in clusters, surrounded by simple single burials probably reflected certain social patterns or the social hierarchy of the times” (2008: 49) (Figure 3.3). Furthermore, she suggested that the anthropoid sarcophagi burials belonged to wealthy families, whereas those small graves without coffins belonged to servants (Dothan 2008: 49). Although the wealth expenditure of each burial in the large communal tombs of the Northern Cemetery at Beth-Shean cannot be individually isolated, the mere fact that these graves are communal tombs with many different burials parallels that of the Western Necropolis at Deir el-Medina in the Ramesside Period (Figure 3.1).

Gender and age also played a role regarding in which cemetery a tomb was located in Egypt. Up to this point, almost every reason related above regarding Egyptian tomb choice or assignment only applies to males, and occasionally only to those members of the upper socio-economic strata. While the choice of a necropolis for males might be highly influenced by status, this facet only played a secondary role for females, with the foremost being marriage. In 18th Dynasty Deir el-Medina, wives of private Egyptians were typically buried with their husbands in the same tomb in both cemeteries, whereas single women were only located among the lower status burials of the Eastern Necropolis, albeit with an equanimity in cost expenditure for the tomb and objects between both genders (Meskell 1999: 181, 184). In the Ramesside
Period, individual tombs in Deir el-Medina are rare, with the majority in multi-generational tombs in the Western Necropolis (Meskell 1999: 181, 184).

The same appears to be true for the children inhumed at Deir el-Medina. If a young child or adolescent was not interred with an adult, they were buried individually in the Eastern Necropolis among the lower status and single female burials of the 18th Dynasty (Meskell 1999). Furthermore, the wealth expenditure of the graves of children equaled that of the other burials in the Eastern Necropolis, without distinction among gender or age (Meskell 1994: 35-45). The data for cemeteries in other parts of Egypt rarely include a lot of information regarding children, due to inadequate recording and a general tendency to overlook or ignore simpler and fragile burials (Baines and Lacovara 2002: 14). However, children are known to have been buried in private and secluded cemeteries, and the very youngest were sometimes placed inside large jars in the foundations or under the floors of houses in settlements, like that of Abydos in the late New Kingdom (Mariette 1880: 442; Seidlmayer 2001: 508). Since the Egyptians did not customarily perform intramural burials, this practice probably signifies special beliefs associated with the custom (Baines and Lacovara 2002: 14; Seidlmayer 2001: 507). For example, babies interred under the floors of Egyptian houses in the 1920s were believed to assist in the mother conceiving again (Blackman 1927: 101).

Although not all of the human remains were identified according to gender and age in the cemetery at Deir el-Balah, and no description of the remains in the Northern Cemetery at Beth-Shean has been published, some analysis can be attempted in light of New Kingdom Egyptian burial practices at Deir el-Medina. Even though details about the gender of the human remains at Beth-Shean are not available, female gendered objects, which will be described below, are
present in the graves, and the mere fact that these tombs are communal burials with numerous individuals parallels that of the Western Necropolis at Deir el-Medina in the Ramesside Period.

Four females were discovered in four graves (114, 116, 118, and 301) in the necropolis at Deir el-Balah (Figures 3.3 and 3.4). All four of the tombs contained several high status objects and anthropoid sarcophagi with the remains of at least two individuals each. In Tomb 118, one adult male aged 35 to 40 years old was interred with an adult female 25 to 30 years old. Tombs 116 and 301 each contained three individuals, with an adult male, adolescent female (12 or 13 years old), and another unidentified adult in the former, and two adult males (one 18 or 19 years old) and a young adult female in the latter. The remaining grave (114) with an identified young female also contained a mature adult male, 3 or 4 year-old child, and another unidentified adult.

These gendered burial characteristics are similar to those found in the necropoleis at Deir el-Medina. Of the small number of examples of known females at Deir el-Balah, all were interred with at least one adult male in a wealthy burial, as in the 18th Dynasty Western Necropolis at Deir el-Medina, and all but one were also communal tombs with multiple burials, as in the Ramesside Period at the Western Necropolis. As for children in the cemetery at Deir el-Balah, 11 were identified in ten tombs (100, 110, 301, 304, 305, 601, 604, 611, 612, and 619) and with two exceptions, all were interred alone in small graves with six accompanied by few vessels and jewelry, and four with no objects at all (Figures 3.3-3.5). The remaining two tombs with children included one tomb (611) with two children buried in separate compartments, one a young male and the other aged 4 or 5 years old, and the other included the 3 or 4 year old child in Tomb 301, which was a wealthy burial with multiple internments. These characteristics are similar to the child burials in the necropoleis at Deir el-Medina, where children were either
buried in wealthy tombs with other individuals or singularly in small graves with few or no objects.

Even if the Egyptians residing and working in the Levant desired to mimic the status, gender, and age dynamics of cemeteries in the homeland, the idea of a collective cultural identity might have been a far more powerful factor in choosing or regulating a cemetery. In social terms, this means that individuals of varying socio-economic levels, genders, and ages were all interred in the same cemetery based on a common Egyptian cultural identity, which tied them all together in the necropolis, which was truly “a community in death” (Baines and Lacovara 2002: 9). A similar situation can be recognized in Egyptian-style cemeteries abroad in Nubia, where “the emphasis on Egyptian ethnicity through a strict adherence to burial practice promoted in-group solidarity in the face of a perceived or real Kerman threat” (Smith 2003: 196). It has even been suggested that Egyptians who died elsewhere in the Levant might have specifically been brought to Deir el-Balah in order to receive a burial “in traditional Egyptian fashion and in the company of other Egyptians” (Morris 2005: 523-524). This might be related to the local production of Egyptianized funerary items at the site, as well as the accessibility to imported Egyptian objects, and so the same theory might also apply to the Northern Cemetery at Beth-Shean.

Numerous details about the arrangement of tombs in Egyptian cemeteries have been related above, including distributional patterns related to associations with ancestors, family members, occupations, elite loyalties, state-assignments, status, gender, age, and collective

54 Although the amount of tombs in the cemetery at Deir el-Balah might not appear to not reflect this statement, the analysis of the status of the burials demonstrates that not every socio-economic level was present in the necropolis, which might indicate that individuals in other socio-economic levels were buried elsewhere, possibly in an undiscovered cemetery at the site. This premise is discussed further below.
identity. After choosing or being assigned a location to build a tomb, an Egyptian could begin constructing the tomb.

4.5 TOMB CONSTRUCTION

4.5.1 Significance and Function

The Egyptians constructed tombs in order to accomplish certain religious and social aspirations in what has been deemed a “mausoleum culture” (Baines and Lacovara 2002: 7). Because the tomb was the “central vehicle of peer competition,” individuals desired to build an everlasting memorial during their lifetime (Baines and Lacovara 2002: 10). The Egyptians invested vast amounts of resources in funerary monuments, and as most expenditure occurred before death, the fiscal results of almost an entire lifetime’s career was necessary (Assmann 2005: 409). This applies, of course, not only to the royal family and upper elite of society, but also to the sub-elite and lower socio-economic levels, who would have also dedicated an excessive amount to funerary expenses in proportion to their overall lifetime allowance.

The purpose of an Egyptian tomb was not merely to create a prominent monument that illustrated an individual’s wealth and prestige, but more importantly to prepare a “house for eternity” (Dodson and Ikram 2012: 22). In the “Instructions of Hardjedef,” which appear on several Ramesside Period ostraca, the Old Kingdom prince instructs his son to “furnish your house in the necropolis and enrich your place in the west, given that death is bitter for us, given that life exalts us, the house of death is for life.”\footnote{Author’s translation. For a full translation of the “Instructions of Hardjedef,” see Helck 1984, Posener 1952: 109-20, and Simpson 2003: 127-128.} The Egyptian concept of identity included an essential supernatural facet, and for an Egyptian to survive the complicated transition from living
in life to living in death, all six aspects that constituted an individual in Egypt, the life force (kA), manifestation (bA), heart (ib), name (rn), shadow (Swt), and body (XAt), must be carefully prepared, preserved, and provisioned, all of which required the construction of a tomb (Wendrich 2010: 201).

After death, the tomb was the official dwelling place and protector of all six aspects of an individual. The physical body (XAt) was essential for the deceased’s continued existence, and accordingly, the corpse required several forms of preservation, one of which was to be properly sheltered inside of a subterranean burial chamber in a tomb (Kanawati 2001: 20-21; Olson 2001: 214). The kA, or life-force, was the most important non-physical aspect of an individual, but lacked a concrete form and needed to reside in a body kept in a tomb, which was commonly called “the house of the kA” (Taylor 2001: 18-20). The deceased were also nourished through the continual sustenance offered to the kA, which would leave the body in the burial chamber and travel to a statue or stela in the offering place above the tomb, where the provisions were deposited.

The bA, or “manifestation,” of the deceased was represented as a human-headed bird and was much like the kA, save for the former’s ability of free and unrestricted movement away from the tomb, however, the bA was required to return to the tomb each night to reunite with the body as a physical anchor, without which it would perish (Allen 2001: 161-62). The shadow was intimately tied to the body as an agent of resurrection, and is often shown as a silhouette of the deceased emerging from the tomb (Dodson and Ikram 2012: 23). The name (rn) of an individual also needed to survive into the afterlife, and so would be inscribed on objects deposited in the tomb and pronounced at the chapel during offering rituals (Vittmann 2013: 6).
It must be noted that not every Egyptian received a “formal” burial in a cemetery (Smith and Jeffreys 1979: 19; 1980: 18). While burial in a mass grave or under the floor of a house is still recognized as an official form of internment for the Egyptians, examples of corpses left entirely exposed demonstrates that certain individuals may not have been entitled to a proper burial (Bietak 1991: 52). The practice of formal burial was a socially constrained privilege in Egypt and the majority of the deceased were probably disposed of in ways now archaeologically invisible (Morris 1987). The graves and cemeteries that are observable most likely belong to individuals not representing the lowest levels of socio-economic strata, whose graves might have consisted of a shallow pit without any grave goods or supraterrenean markers.

4.5.2 Burial Compartment

For those Egyptians receiving a formal burial in a cemetery, the ideal tomb consisted of two imperative components: a burial compartment and an offering place (Dodson 2010: 804). These two features were present in tombs across different periods, socio-economic strata, occupations, genders, and ages, and demonstrate the essential dual nature of tombs in Egypt. Egyptian mirrored the “macrocosmos” on a “microcosmos” level, with the burial apartment representing the world of the deceased and the offering chapel representing the world of the living (Raven 2005: 37-38). While canonical and indexical terminology have only previously been used to describe domestic architecture in cultural identity theory, these concepts can clearly be applied to funerary architecture as well.

The burial compartment in Egyptian tombs is an example of canonical architecture, which denotes a private and restricted space, as these chambers have only one entrance, are typically subterranean, and would have been completely closed-off after the funeral and only
officially unsealed to admit another internment (Baines and Lacovara 2002: 11). In the New Kingdom, these chambers are typically undecorated, unless the owner was an artisan himself (Kanawati 2001: 68). As long as these attributes were followed, the burial apartment itself took on different shapes and sizes, with New Kingdom tombs conforming to two basic types: the shaft tomb and the pit grave. The type of burial compartment in a grave was generally based on the two major factors of topography and socio-economic status.

4.5.2.1 **Shaft Tombs**

New Kingdom shaft tombs are defined by burial chambers that were reached through a corridor. This corridor could be vertical or horizontal, linear or curvilinear, and long or short (Olson 2001: 214; Wada 2007: 352-353). The burial compartment was located at the end of the shaft and usually consisted of one or two square or rectangular chambers, which sometimes contained pillars and could be lined or roofed with mudbricks or stone blocks (Dodson 2010: 815). The entrance to the shaft was usually, but not always, covered by a superstructure, which took the form of a chapel, pyramid, mastaba, temple, or anthropogenic cave (Badawy 1968: 407-408; Meskell 1999: 181; Taylor 2010: 224). Almost all shaft tombs belonged to the elite and sub-elite classes of Egyptian society, as they were usually located in the most ideal location and were labor-intensive to construct (Kanawati 2001: 66; Wada 2007: 352-353).

The most popular type of elite grave throughout the New Kingdom was a shaft tomb with a rock-hewn superstructure located in the faces of cliffs or the upper portions of hills in the desert just outside the Nile Valley (Dziobek 1987; Kampp 1996). These burials emulated the most ideal tomb form, that of the rock-cut royal graves in the Valley of the Kings, which sat under the natural pyramid-shaped peak of el-Qurn (Badawy 1968: 407-408; Hornung 1990: 26-
In the 18th Dynasty, the burial compartments of most shaft tombs were single-chambered, either without a superstructure or the corridor’s entrance located in a simple chapel, whereas those of the Ramesside Period were commonly multi-chambered and capped by a more complex superstructure (Dodson 2010: 815; Meskell 1999: 184, 188). In the 21st Dynasty, most shaft tombs entirely lacked a superstructure and held multiple communal burials in a single chamber (Winlock 1942: 95-97).

All 13 of the Late Bronze Age and Iron Age tombs in the Northern Cemetery at Beth-Shean are shaft tombs cut into rocky cliffs, the most popular type of formal grave throughout the New Kingdom in Egypt (Figure 3.1). The tombs are comprised of a rectangular shaft that ends in a passageway or opens up directly into the subterranean burial apartment, and all but one of the tombs at Beth-Shean were originally constructed in the Early Bronze Age IV.56 These twelve Early Bronze Age IV tombs were specifically chosen by individuals of the Late Bronze Age and Iron Age out of a total of 39 Early Bronze Age IV graves in the cemetery. The twelve early graves that were reused are categorized according to the original number of chambers, with 65% (n=8) belonging to Type A with one chamber, 21% (n=3) of Type B with two rooms, and 14% (n=1) with three or four chambers (Type C). These percentages closely follow those of the early tombs in the cemetery as a whole, with 69% of Type A, 16% of Type B, and 15% of Type C, and illustrate how the later usurpers specifically selected a broad sampling of the tombs.

On the other hand, the type of early tomb chosen does not seem to correlate with the date of the later burial, the number of internments, the area of the cemetery, or socio-economic status.

56 It is self-evident that the fact that these reused tombs were originally Early Bronze Age IV tombs in the Levant demonstrates that the “shaft tomb” was not a burial type restricted to Egypt or any one time period. In no way does this study mean to imply that every (or any) individual buried in the tombs at Beth-Shean and Deir el-Balah was Egyptian, but rather that viewing the material from an explicitly Egyptian perspective can provide insights about if and how an Egyptian would have or could have used these tombs, through detailed comparisons with material from Egypt in the New Kingdom.
of the grave. Rather, it appears that a tomb was chosen solely based on its location in the
cemetery, which was in turn influenced by socio-economic status. Although Oren stated that the
tombs in the Northern Cemetery were mixed together in a “confused manner” and that the
distribution of the Late Bronze Age and Iron Age “were not confined to a given portion of the
Northern Cemetery,” a careful plotting and individualized separation of these tombs on a
necropolis map shows a distinct pattern (1973: 3, 101).

After marking the twelve reused tombs on the map, and adding the one newly-
constructed grave, two distinct linear groupings of tombs could be distinguished, with a row of
six tombs on the highest terrace of the cliffs, and seven on the lowest part of the slope (Figure
3.1). These two groupings were analyzed according to type, period, number of internments, and
status, but only the last feature appeared to firmly correlate. The socio-economic status of each
grave was examined according to standards developed for analyzing social status in New
Kingdom Egyptian tombs, which included a prestige and cost-analysis of the burial goods based
on the research of Jac Janssen, Stuart Tyson Smith, and Lynn Meskell, with the results
illustrating that the higher row of tombs all belonged to the low to middle strata and those on the
lower slope were all of the high-middle to middle status levels (Janssen 1975a; Meskell 1999;
Smith 1992). Because objects in the tomb cannot always be assigned to a specific burial, this
does not mean that every occupant in the tomb was of the designated status, but that at least one
person in the tomb owned particular items that associated them with a certain level.

Although the necropolis at Beth-Shean was a higher status cemetery in general, with 77%
(n=10) of the burials in the high-middle or middle categories, the choice of the higher area for
lower status individuals and the lower area for the highest levels is the exact opposite of
Egyptian burial practices in the New Kingdom. If Egyptians were buried in the Northern
Cemetery, they must have rationalized this situation in some manner, perhaps for the sole reason that the lower tombs were in a prime position of being more easily approachable for the funeral procession and for individuals participating in the offering cult, but the real reason might also be lost due to a lack of preservation of the areas outside of the graves.

These shaft tombs fit the New Kingdom standards for the canonical private and restricted aspect of the burial chamber, with vertical shafts or horizontal corridors over 2 m in length and ending in a burial apartment with one or more chambers carved deep into the rocky cliffs. The bodies deposited in these deeply subterranean caverns located on the slopes of a hill and enclosed by a river below, would have adequately protected and preserved the body as a dwelling place for the kA and bA, which could also easily access the shaft leading out of the burial compartment in order to receive sustenance. Like the typical New Kingdom shaft tomb, the burial chambers of the graves at Beth-Shean were undecorated and of varied dimensions, ranging from 1 to 5 m in width and 1.7 to 12 m in length. The majority of the chambers were rectangular or square-shaped, and while a few burials were located in the original Early Bronze Age IV oval or round chambers, in most of these circular rooms, the walls had been straightened and widened to conform to a more ideal square-ish shape.

The singular tomb (69) that was not a recycled earlier tomb, but was constructed in the Iron Age IA, was in the form of a typical New Kingdom Egyptian tomb, with two square chambers measuring about 2 x 2 m, and one chamber containing a square (0.5 x 0.5 m) pillar in the center of the room (Figure 3.1). A full representation of periods in and just beyond the New Kingdom was demonstrated by the types of graves in the Northern Cemetery at Beth-Shean, where like in the 18th Dynasty and 21st Dynasty, just over half had a burial apartment with one or two rooms, whereas the remainder had three or four rooms paralleling the Ramesside Period.
The lack of a conspicuous multi-chambered superstructure above shaft tombs is also common in Egypt in the New Kingdom.

4.5.2.2 Pit Tombs

After the shaft tomb, the second type of New Kingdom tomb is generally described as a pit grave or surface burial. Both consist of shallow or deep depressions excavated through the ground surface, with the former type typically dug through layers of surface accumulation and into the bedrock, while the latter only sits in the topsoil or windblown sand layer (Wada 2007: 352-353). The burial compartment of the pit tomb could be comprised of the entire depression itself, or be situated in a subsidiary chamber, loculus, or niche off of the main depression (Olson 2001: 214). Some or all sections of the entire grave apartment were commonly lined or roofed with mudbricks or stones (Dodson 2010: 804-805, 821). Although all pit graves and surface burials were completely filled with soil, rocks, sand, or other debris, most examples were not further covered or associated with a built superstructure (Badawy 1968: 407-408). Pit burials belonged to both the upper and lower classes of the socio-economic strata, while surface graves were usually confined to the latter group (Seidlmayer 2001: 508; Wada 2007: 352-353).

The wealthier pit graves were sometimes capped by a simple superstructure and generally located in areas of Egypt where constructing a shaft tomb was impossible or impractical (Taylor 2010: 224). These sub-elite tombs were found in the flat trough of the Nile Valley, where they were cut into the desert gravel or bedrock, with burial chambers lined and roofed with mudbricks or stone (Dodson 2010: 804). Similar tombs were also constructed on the sandy mounds above

57 Again, it is self-evident that the “pit grave or surface burial” were not tomb types restricted to Egypt or any one time period. In no way does this study mean to imply that every (or any) individual buried in the tombs at Beth-Shean and Deir el-Balah was Egyptian, but rather that viewing the material from an explicitly Egyptian perspective can provide insights about if and how an Egyptian would have or could have used these tombs, through detailed comparisons with material from Egypt in the New Kingdom.
the alluvium in the Delta, with free-standing substructures lined with mudbrick and sunk into the *geziras*, where a deep shaft would be impractical due to the high water-table (Dodson 2010: 805, 821). In the 18th Dynasty, pit graves and surface burials contained single or double internments and are found on the lower slopes of hillsides below the shaft tombs cut into the rock-face above (Bruyère 1937; Kanawati 2001: 5, 66; Meskell 1999: 181). In the Ramesside Period and 21st Dynasty, these grave types could hold multiple individuals, sometimes in a single depression (Rhind 1862: 125-127; Winlock 1942: 95-97).

The 48 graves in the cemetery at Deir el-Balah fit well into the Egyptian repertoire of formal burial types (*Figures 3.3-3.7*).58 The tombs are all oval or rectangular shaped pit burials dug through the wind-blown sand, *hamra* topsoil, and *kurkar* bedrock layers, with widths ranging between 0.3-1.35 m, lengths between 0.88-2.9 m, and depths between 0.2-1 m. The graves can be divided into two basic types based on the presence or absence of a further depression at the bottom of the pit. Of the 34 tombs where the type can be determined, 47% (n=16) of the graves contained a niche that served as the burial compartment, and in 53% (n=18) of the tombs, the pit itself functioned as the burial space. Of the 16 tombs that contained a further depression, the majority (63%, n=10) of these were located on the southern side of the grave, with the remainder in the center (19%, n=3), on the northern side (6%, n=1), or one each on the northern and southern sides (13%, n=2). Just over half (54%, n=7) of the niches on the northern or southern sides were recessed, and 31% (n=5) of the tombs with a burial depression also contained an extra shelf.

58 The number of tombs provided here includes three graves (305, 610, and 614) designated only as loci by the excavators, which according to their own methodology, should be considered burials in their own right, as described in the preceding chapter. The number also includes the 10 graves (101-106, 109, 111, 113, 115, and 117) on which little or no information has been published, but excludes the three loci (302, 615, and 616) that are obviously tomb markers.
The specific shape or type of tomb does not seem to correlate with the size of the grave, quality or quantity of grave goods, or the gender, age, or number of internments. On the other hand, the position of the burial depression in the tomb does seem to be related to size in some cases, as tombs with niches in the center of the pit are some of the largest in the cemetery, while the one example of a northern depression lies in one of the smallest tombs. All four burials with clay sarcophagi are of the type without a niche and are some of the largest in the cemetery, but there are still coffin-less burials that are larger and of the same type. While the width of the grave does not seem significant, a longer grave does correlate with a higher quantity of grave goods and the older (adult) age of the interred.

The excavators of the cemetery at Deir el-Balah noted that the tombs were characterized by a diversity in architecture, yet the plans were of deliberate and recognizable types, and since no other Late Bronze Age cemeteries (apart from Gaza) on the Levantine coast contain tombs with burial recesses or raised ledges, it is believed that these burial types “represent a variation on conventional Egyptian mortuary practices” (Lipton 2010: 44). The author’s observation was correct because the tomb types and statistics provided above fit well within those generally provided for New Kingdom cemeteries with pit tombs in Egypt, and there is no need for “variation” in terms of type.

These burials conform to the Egyptian notions of canonical funerary architecture, with a restricted subterranean burial space that would have adequately protected the body as a residence for the *kA* and *bA* of the deceased, especially in those tombs where the body was placed in a further depression in the tomb, or where the body was protected even further in a recessed part of the grave. The burial compartment was restricted in the tombs at Deir el-Balah and was completely closed off by layers of fill, and as in Egypt, only officially unsealed to admit another
interment, which may have been the case for the seven tombs with multiple individuals. The tombs at Deir el-Balah were filled with light-colored sand, dark hamra (brown, stiff sand), white kurkar (calcareous sandstone), and dark clay, and aspects of the funeral or reinternments might be illustrated by the different layers and mixes of these deposits in the tombs, as well as the presence of smoothing or stamping on a few of the graves.

Not only would the depth, niches, recession, and fill adequately protect the body in accordance with Egyptian mortuary beliefs, but also the fact that one of the tombs at Deir el-Balah was lined with stones and mudbricks, both of which represent features also commonly found in tombs in Egypt. Tomb 1405, a pit burial with a central depression, was lined on the northwestern and northeastern sides with large mudbricks, while the southwestern end of the burial was edged with three kurkar fieldstones, which may have also been present at the disturbed southeastern end of the burial (Figure 3.6). The tombs in the cemetery are also in accordance with the Egyptian tradition of leaving the burial compartments of New Kingdom tombs undecorated, as well as not being covered by a superstructure, although the tombs were marked on the surface through pottery and stelae, and probably also with other objects in more perishable materials, as not one of the graves in the necropolis cut into or disturbed another tomb.

The two main factors relegating the choice or assignment of a pit tomb, as opposed to an anthropogenic cave burial, in New Kingdom Egypt are socio-economic status and topography, and this also appears to be the case at Deir el-Balah. The quantity and quality of the objects deposited in the tombs show that the individuals buried in the necropolis were spread among three out of the four main socio-economic strata of Egypt in the New Kingdom, including three tombs of the second highest level (high-middle). In Egypt, these sub-elites are typically only
buried in pit tombs in locations where constructing a shaft tomb was impossible or impractical, especially in the flat trough of the Nile Valley or on the *geziras* of the Delta, as mentioned above.

Deir el-Balah shares several characteristics with both of these locations, as the necropolis is located within the low area of a longitudinal trough, is about 1.6 km from the coast, has a high water-table, and contains layers of sandy topsoil (*hamra*) and bedrock (*kurkar*). It has been noted that topography and geology might have also played a major role in designating certain tomb types in Canaan in general, with pit graves characteristically found in areas with an absence of bedrock and natural or anthropogenic caves, such as the coast and some large valleys, while cave burials are typically discovered in the more mountainous regions (Lipton 2010: 44). However, this topographically-based view has been also been refuted for the Late Bronze Age, concluding that “because a burial not only fulfills the basic need to remove a corpse but is also a complex outcome of communal and personal needs, the geological conditions play only a minor role in the choice of the site and form of the burial” (Gonen 1992: 9).

The necropolis at Deir el-Balah also has other features in common with Egyptian burial traditions. In the New Kingdom, pit graves belonging to individuals of low socio-economic status are separated from those of the elite, which include royalty and the highest officials. According to Egyptian standards in the New Kingdom, 92% (n=34) of the tombs at Deir el-Balah would fit into the low socio-economic strata, with the remaining 8% (n=3) belonging to the middle class, and none to the highest elite level. These percentages might indicate that any royalty or upper officials working in or near Deir el-Balah were buried elsewhere, which could include an undiscovered cemetery at the site, another cemetery in the region, or even one back in the Egyptian homeland. Early New Kingdom tombs also typically contain single or double
internments, and out of the 23 tombs at Deir el-Balah with reliable skeletal data, 87% (n=20) would fall into this category.

4.5.3 Offering Place

While a subterranean burial compartment, whether reached by a shaft or part of a pit grave, was essential to an Egyptian tomb in the New Kingdom, a second part of the tomb was equally as imperative. Each grave needed to be equipped with a supraterranean offering place, where the funeral feast would occur, and where the kA of the deceased could travel to after leaving the burial chamber in order to receive replenished sustenance (Dodson and Ikram 2012: 28). This second part of the tomb consisted of a public and approachable space outside of and above the grave apartment, which belongs to the indexical form of architectural facets. The majority of the low socio-economic and sub-elite tombs in the New Kingdom had offering places that only consisted of a natural space above the burial, many of which there are little traces of beyond certain objects associated with a mortuary cult (Badawy 1968: 407-408; Taylor 2010: 222).

Most of these objects include various forms of pottery, which would have physically or symbolically been filled with food and drink offerings for the deceased (Baines and Lacovara 2002: 16; Charvát 1981: 149-151). Other evidence for a cultic space above the tomb includes the presence of a stela or statue, upon which the representation and name of the deceased were located, and where the kA would rest in order to partake of the donations (Dodson and Ikram 2012: 25; Kanawati 2001: 67; O’Connor 2000). Other items, such Letters to the Dead, also mark the location of a funerary cult (Wente 2001: 313-314). While the majority of New Kingdom pit and surface burials, and some shaft tombs, lacked a highly visible offering space, numerous shaft
burials of the elite were fronted by large and complex superstructures. These superstructures were built of mudbrick or stone and ranged from a simple single-chambered chapel to a quadruple-chambered monument in the shape of a mastaba, pyramid, or temple (Arnold 2003: 138-140, 242-243; Meskell 1999: 181).

One chamber in the superstructure, usually in the room farthest from the entrance, was generally reserved for the mortuary cult, and a representation of the deceased would have been located on or near the western wall of this room as a “cult target” (Roth 1988: 54-55; Taylor 2010: 222). Similar cult targets could also be free-standing in the natural space located above the burial chamber. Sub-elite tombs in the 18th Dynasty used stelae or other objects to mark an offering place, but independent chapels are rare and generally consist of a room cut into the face of the cliff or hill, a simple rock ledge in front of the tomb, or a single chamber of mudbrick or stone (Badawy 1968: 407-408; Dodson 2010: 804-805).

In the Ramesside Period, superstructures become monumental and typically conform to a T-shaped pattern, with a rectangular courtyard at the front, followed by a wide crosshall and a long transverse hallway leading to a square cult chamber in the back, where the shaft to the burial compartment was located (Kanawati 2001; Meskell 1999: 184, 188). The superstructure of tombs in this period often consisted of a pyramid or pyramidion, a type which had previously been restricted to royalty, but had been appropriated by private citizens at the end of the 18th Dynasty (Arnold 2003: 202). In the 21st Dynasty, monumental superstructures disappear and chapels are either small and simple or unobservable (Dodson 2010: 822).

At first glance, the cemeteries at Beth-Shean and Deir el-Balah do not appear to have conspicuous offering places in association with the tombs, however, there are hints as to a funerary cult having taken place in both of these necropoleis or at the associated settlements. At
least 23 of the tombs at Deir el-Balah contained one or more ceramic vessels that would have protruded above the fill line of the tomb, hence their generalized designation as “tomb markers (Figure 3.7).”59 The majority of these tomb markers consisted of a large Canaanite storage jar with a dipper juglet inside, capped by an upturned Egyptianized simple bowl and situated on a small platform inside the burial compartment.

The storage jar was substituted by an Egyptianized beer jar in three of the tombs, an additional storage jar as part of the tomb marker occurred in two tombs, and in one tomb a Cypriot milk bowl was used as a lid. In 91% (n=21) of the tombs, these ceramics were placed only at the head of the burial, while the remaining 9% (n=2) contained tomb markers both at the head and at the foot. Instead of a storage jar, juglet, and bowl, other variations consisted of two, and in one instance three, jars positioned together. Vessel types employed in these variations included a Canaanite storage jar, a Canaanite jug, an Egyptianized beer jar, an Egyptianized short-necked ovoid jar, an Egyptianized broad ovoid jar, an Egyptian slender amphora, Mycenaean piriform jars, a Mycenaean stirrup jar, and a Cypriot Base-Ring II jug.

Although the primary function of these ceramic assemblages has commonly been interpreted as marking the head or foot of a burial, it has been suggested that they might also be connected with some sort of libation ritual (Dothan 1979: 3; Lipton 2010: 45). It could, therefore, be possible to further associate these vessels with the funerary offerings and feasting that would have been part of a mortuary cult for the deceased. These ceramic assemblages could then represent the imperative indexical part of an Egyptian tomb, the offering place, with the

59 These tombs include: 100, 110, 112, 114, 115, 116, 118, 301, 302, 303, 306, 605-609, 614-617, 1403, 1405, and 1406. The list provided here includes all tombs with at least one jar that would have been visible above the tomb line, as well as those loci (302, 615, and 616) with the same characteristic, even if they were not associated with a known burial. Tomb 605 is also included in the amount, as the platform for the tomb marker was present in the burial, but the vessels were missing from the disturbed grave. The actual list is probably much longer, as at least 43 vessels in the Israel Museum believed to have been looted from the cemetery at Deir el-Balah are among the types used as tomb markers.
related characteristics of being public, approachable, and near to the burial chamber. The \(kA \) of the deceased could easily travel from the body in the burial compartment to the vessels that protruded above the grave, and since these vessels were both inside and outside the tomb, they could literally provide a physical conduit for the deceased to interact with the living and for the \(kA \) to partake of offerings.

Other aspects of the tomb markers would have fit well into the Egyptian standards of an offering place, including the presence of a natural space without a built superstructure, which was common for low status and sub-elite burials in both the 18th Dynasty and the 21st Dynasty in Egypt. The fact that all of the known tomb markers in the necropolis were located east or northeast of the associated burial is complementary to the Egyptian ideal placement of the “cult target” in the western part of the offering place, so that individuals in the world of the living (from the east) could interact with the deceased in the netherworld (to the west). One of the last steps of the funerary process in Egypt in the New Kingdom consisted of a funeral feast in the offering place of the tomb, where both the living and the deceased would partake of fresh food and drink.

These provisions could have been deposited in the jars, juglets, and bowls of these tomb-marker assemblages, and after the \(kA \) had symbolically absorbed the food and drink, they would then be reverted to the living. Family members would have returned to the offering place in the future to continue the mortuary rituals, especially during religious festivals. It is important to note that the three tombs with more than one tomb marker assemblage also contained more than one internment, whereas those with one assemblage contained only one individual. These multiple vessel-groupings may represent multiple funeral feasts and offerings for multiple individuals. While the lower levels of the socio-economic strata might have had to share and
reuse one set of mortuary vessels per communal tomb, the middle and higher levels could certainly have afforded one personal set per individual.

Other objects believed to have been from the cemetery at Deir el-Balah might also have been situated within or represented offering places for the tombs, including five stone stelae with Egyptian motifs and texts, four of which are in the Israel Museum. Although two of the stelae are broken at the top, three are capped by triangular projections, and all feature square-off bases. All five are examples of typical Egyptian funerary stelae of the New Kingdom, with at least one deity (Osiris, Khnum, or Hathor/Isis) depicted in a vignette, with three also illustrating the deceased, as well as the names and epithets of deities, the deceased, and/or worship formulae. These stelae would not only have provided a place of rest for the kA to receive offerings, but those stelae with texts would have also perpetuated the imperative survival of the name (rn), and subsequent identity, of the deceased.

As most of the stelae were illicitly excavated, the precise context of each cannot be determined, but there are hints as to their original placement. One example was reported by a looter to have come from a coffin-less burial pit, where it lay near the head of a skeleton (Ventura 1987: 115). One of the stelae was also published as being excavated from a tomb lined with rough stones, where it was discovered embedded in the lining (Dothan 1979: 1). It is unclear exactly which stela is referenced, or in which tomb the stela was found, as only one tomb (1405) with any sort of lining was ever published, and this burial was not discovered until

60 The location of the fifth is now unknown.
61 For a full and detailed description of these stelae, including corrections regarding the identification of deities and the translation of the texts, see the section on stelae in the Israel Museum in chapter three.
62 This enigmatic stela may be the same one identified as being found “in situ” in the 1993 encyclopedia article on Deir el-Balah by Dothan, but again, there is absolutely no other information provided about the stela or where it was discovered (1993: 347).
sometime during 1980-1982 (Dothan 2010a: XXVIII; Lipton 2010: 4, 6, 39-40). In any case, the stelae were believed to be free-standing, as most feature an uninscribed lower portion that would have been embedded in the ground.

It has already been suggested that the stelae believed to be from Deir el-Balah could have served as substitutes for the more elaborate superstructures built above Ramesside Egyptian tombs (Ventura 1987: 114; Dothan 2008: 155). The triangular shape of the upper portion of the stelae might also represent a pyramid-shaped or pyramidion-topped cult chapel, which was the most popular form of superstructure in the Ramesside Period and would have been unaffordable to individuals in some of the middle and lower socio-economic strata. These triangle-topped stelae would have therefore served the combined purposes of a pyramid, offering chapel, and cult-target. Similar stelae at Deir el-Medina were also believed to fulfill all three roles: “une stèle dont le sommet est taillé en forme de pyramide pouvait se dresser isolée et indépendante sur un puits comble et tenir lieu, pour les morts de classe modeste, d'un monument complet avec chapelle et pyramide réelle en briques ou en pierres; ainsi se trouvait résumée en ses organes essentiels stèle et pyramide, la partie apparente de la tombe” (Bruyère 1926: 7).

Traces of offering places might also be present in the Northern Cemetery of Beth-Shean. Several of the tombs still contained an extant shaft that emptied out onto a stone ledge above the burial apartment (Figure 3.1). Although no information has been published about these ledges, they may have functioned as a platform for the performance of the mortuary cult. Several other areas in the cemetery generally categorized as uncompleted tombs, empty burials, or “shapeless rock cuttings” might also be examples of single- or multi-chambered rock-cut cult chapels (Oren 1973: 2).

63 The description of Tomb 1405 also lacks any reference to a stela (Lipton 2004: 39-40).
These features would fit well into the New Kingdom traditions surrounding sub-elite tombs, where in the 18th Dynasty, many independent chapels consisted of a simple rock ledge in front of or above the tomb, or a single room cut into the face of a cliff or hill, a layout that grew into the complex multi-chambered structures of the Ramesside Period. The stone ledges and rock-cut chambers in the Northern Cemetery at Beth-Shean would have been in harmony with the Egyptian indexical form of architecture through their public, approachable, and supraterraneane nature. The close proximity of the offering place and shaft leading to the burial chamber is also significant, as the kA and hA of the deceased would need to travel through the shaft in order to reach the mortuary offerings, a journey that has been depicted literally in Egyptian representations of the tomb (Kanawati 2001: Fig. 11).

Although the stone ledges and rock-cut chambers might have been public and approachable, they were almost certainly not easily accessible. For this reason, Egyptians living and working at Beth-Shean might have chosen to locate their cult-target in a more convenient location. Egyptians of middle and higher socio-economic statuses commonly placed statues and stelae inscribed with funerary formula in the public areas of divine temples so they could partake in a reversion of the offerings presented to the deities in the temple (Baines and Lacovara 2002: 8, 12, 21). Not only did this include the provisions offered to the deities by priests performing the Daily Offering Ritual within the sanctuary, but also the votive objects and foodstuffs left by devotees visiting the public areas of the temple. These individuals would have also visited the statues and stelae of their deceased relatives and left offerings for the gods on behalf of their dead. This practice was so common in New Kingdom Egypt that “much relevant cult activity was sited in temples rather than in the necropolis” (Baines and Lacovara 2002: 16).
Six votive funerary stelae were discovered in or near Egyptian-style divine temples in the settlement on the mound of Beth-Shean. Two of these have already been mentioned above in relation to the presence of families at Beth-Shean and in discussing issues related to the “town” phenomenon. The former stela, also known as the “Mekal Stela,” was discovered near the eastern wall of the southeastern room of the Level VIII (Late Bronze Age IIB) temple, and depicts a man named Paraemheb and his father Amenemipet worshipping Mekal, the patron god of Beth-Shean (Rowe 1928: 149-155; 1930: 14-15, Pl. 33). The accompanying inscription includes the typical offering formula, where Paraemheb states that he manufactured the stela for the kA of his deceased father, and that the king presented it as a gift to Mekal so that the deity would then in turn provide for Amenemipet.

The other aforementioned stela was discovered in a secondary context near the west end of the Level V (Iron Age IB) temple on the mound of Beth-Shean, but is believed to have originally been situated in Level VII (Late Bronze Age IIB) or VI (Iron Age IA) (James 1966: 16-17, 39; Rowe 1930: 37-38, Pl. 49:1; 1940: 18, 28; Ward 1966: 171). The stela depicts a man kneeling with both arms raised in the adoration-pose, surrounded by thirteen columns of hieroglyphic text. The stela is broken and missing a few sections of the text, but provides the name of a man that ends in -ipt and the titles of “Overseer of the Two Granaries of the Lord of the Two Lands” and “Steward,” but it is not known whether the name and the titles go together, or if they belong to the deceased and/or the dedicator of the stela. The offering formula on the stela is dedicated to the deities Re-Harmachis, Atum, Horus, Khepri, Thoth, Shu, Tefnut, and

64 The exact provenance of this stela is ambiguous, as Rowe reported that it was found near a stone base in the southern corridor (Locus 1330) of the Level IX (Late Bronze Age IIB-IIA) temple, while the excavation records indicate that it actually came from Locus 1292 of the Level VIII (Late Bronze Age IIB) temple (Mazar 2011: Note 25; Mullins 2007: 36; Rowe 1930: 11). Because another fragment of this stela was found in a room (Locus 1089) south of Level VII (Late Bronze Age IIB) temple, the Level VIII designation is more readily accepted (Albright 1938: 76-77, n. 38; James and McGovern 1993: 240; Rowe 1930: 21, Pl. 49:3; 1940: 9-10, Pl. 28:19).
Osiris, and the owner once again asks that his (or his father’s) kA be provisioned by these deities in the temple.

Two more private stelae are each dedicated to the goddesses Anat and Ashtarte. On the Anat stela, the deity is invoked to sustain the kA of a man named Hesinakht, who is pictured on the stela adoring the goddess (James 1966: 34, 39; Rowe 1930: 32-33, Pl. 50.2; 1940: 33-34, Pl. 65A:1; Ward 1966: 171). This basalt stela was discovered below a Lower Level V (Iron Age IB) floor, but is believed to have originally been set up in the temple of Level VII (Late Bronze Age IIB) or Level VI (Iron Age IA). The Ashtarte stela was discovered near a receptacle on the west side of the court of the Level VII temple, and shows a female worshipper in front of the goddess (Rowe 1930: 19-21, Pl. 48:2; 1940: 8, 31, Pl. 35.5, 49A:1; Ward 1966: 171). Rowe reports that a hieroglyphic text was painted above the figures, reading “Ashtoreth of the Two Horns(?),” but this writing is now entirely illegible (1930: Pl. 48:2).65 Several fragments of similar votive stelae have also been discovered at Beth-Shean (Rowe 1930: 21, Pl. 49).

Some or all of these stelae might represent individuals buried in the Northern Cemetery at Beth-Shean, who placed them in divine temples in the settlement, either on behalf of themselves or their deceased relatives. It is interesting to note that the stelae were discovered in rooms or courts on the fringe of the temples or inside the sacred precinct walls, but not inside the temple itself. This placement allowed living family members to visit the stelae and provision the Egyptian and Canaanite deities of the temple and invoke the reversion of offerings for their deceased relations. Another stela discovered in a secondary context at Beth-Shean shows a male seated before an offering table with a female figure on the right side (James 1966: 7, Figs. 94:2, 95:2; Ward 1966: 170-171. This stela appears to be a strictly funerary type, as it lacks the divine

65 The goddess on the stela has also been identified as Hathor or Anat, but because the deity wears the Atf-crown with horizontal horns and a long streamer, the goddess most likely represents Astarte, as Rowe originally reported (pace Mazar 2011: 163 and Morris 2005: 491).
figures necessary for votive stelae, and may have originally come from an offering place associated with a tomb in the Northern Cemetery.

4.5.4 Reuse

Even though the ideal tomb, burial chamber, and offering place in the New Kingdom would have been constructed in virgin territory, out of original materials, and equipped with brand-new furnishings, in reality, the recycling of funerary monuments and objects was a common occurrence in Egypt (Baines and Lacovara 2002: 18). In the First Intermediate Period grave of Ankhtifi at Mo’alla, the tomb owner relates how he had personally acquired or commissioned every element of his own burial, which resulted in “no usurped door or usurped column in this tomb,” while in New Kingdom copies of the “Instructions for King Merikare,” the king’s father cautions his son with an Egyptian version of *karma*, imploring him to “not build your tomb out of ruins, for as you do, so it will be done to you.”66 On the other hand, there were several permissible and beneficial reasons for appropriating a burial with familial, ancestral, or ancient links, as related above.

Recycling a tomb might not just have been the result of personal agency, but rather an aspect of the late New Kingdom practice of the Egyptian state assigning the tombs of forbears a few generations old for repossession (McDowell 1999: 68-69). Reusing a tomb in an ancient cemetery was also sometimes considered to be favorable, as it allowed the owner the occasion to repair and restore earlier structures, which would bring the individual prestige and was one of the key tenets related to the perpetuation of *mAat* in the land (Bács 2011: 7; Dreyer et al. 1998: 141-

142; Kemp 1975: 36-37; Leahy 1977). The ability to recycle any ancient building materials also added an intrinsic numinous quality to an individual’s tomb (Goedicke 1971: 1-7).

However, the enhancements from ancestral and ancient connections were not always the solitary, or even primary, cause of funerary monument usurpation in the New Kingdom. Fiscal, temporal, and spatial pressures also drove individuals to seek out burials that consumed fewer resources, were less labor-intensive, and occupied a space in a desired, yet overcrowded, necropolis (Bács 2011: 9; Meskell 1999: 192). In the decision to reuse instead of build anew, locality was a key concept, and specific types of graves were targeted, especially those that were unfinished, abandoned, dilapidated, or millennia-old, although tombs belonging to the previous generation were also reclaimed (Martin 1978; 1991: 88-98; Stadelmann 1997: 29-40). In many cases, only building materials or tomb furniture were appropriated, and the reuse and modification of anthropoid sarcophagi was especially rampant in the Ramesside Period, however, entire tomb complexes could be taken over as well (Cooney 2011).

Once a tomb was chosen for reclamation, it could either be utilized in its present condition, or altered to fit an individual’s needs. In the late Ramesside Period and 21st Dynasty, multiple internments were repeatedly and continuously added to earlier funerary monuments without any changes in the original layout (Rhind 1862: 125-127; Winlock 1942: 95-97). On the other hand, modifications to a grave could be major, like cutting new chambers, or more minor, like the addition of a mudbrick partition wall. In the Ramesside Period, the popular elite Theban necropolis was filled to capacity, and the recycling of 18th Dynasty tombs was rampant, with new tombs being created by cutting corridors into the side walls of existing courts or by carving new entrances through the façade and walling off transverse halls with mudbricks (Meskell 1999: 192; Taylor 2010: 227). No matter what adjustments were made to the tomb, the usurpers
attempted to stay within the accepted Ramesside layout and decorative program, and to conscientiously circumvent the burial apartment of the earlier grave (Bács 2011: 9-10).

Signs of reuse occur in both cemeteries at Beth-Shean and Deir el-Balah. Since both of these cemeteries may have held the remains of individuals employed by the Egyptian government, the idea of a state-sponsored burial in a communal tomb should be considered, especially for soldiers who may have been killed abroad. This practice was known to occur in Egypt; for example, 60 fallen soldiers, some with embedded arrows still intact, were discovered in a Middle Kingdom tomb at Deir el-Bahri near Luxor (Vogel 2003; Winlock 1945). At Deir el-Balah, seven graves (114, 116, 118, 301, 306, 611, and 613) with multiple internments could represent the communal recycling of a tomb and its furniture (Figures 3.3-3.5). It is possible that some of these multiple burials could have been deposited contemporaneously, but signs indicating different phases of entombment are present in most of these graves.

In two of the graves (114 and 116), two articulated and extended skeletons were discovered inside of one anthropoid coffin, while one or two fragmentary bones of other individuals were also present in the same sarcophagus (Figure 3.3). This led the physical anthropologists who examined the bones to conclude that the articulated skeletons were primary burials, whereas the fragments must have been secondary burials (Arensburg and Smith 1979: 92). On the other hand, another explanation might suggest that the original occupants of the coffin are represented by the fragmentary human remains, which were then (inadequately) removed to reuse the coffin for later internment(s), represented by the more complete skeletons. This practice closely parallels that of the Ramesside Period and Third Intermediate Period in Egypt.
A premature, unexpected, or sudden death might also have been a contributing factor to the reuse of a tomb and sarcophagus. The presence of a perforation above the right eye socket of a young adult female in a coffin in Tomb 301 might have been the result of trepanation, which could have been the cause of death for this younger individual (Figure 3.4). The two adult males placed above her in the sarcophagus would then have been interred at a later time. In Tomb 613, a “flint flake” was discovered under the forearm of an adult individual and described as an intentional burial gift (Lipton 2010: 28) (Figure 3.5). Unfortunately, this object was not described or drawn in detail, but does appear in the drawing of the tomb, peeking out from under the left forearm of one of the skeletons (Lipton 2010: Fig. 1.23). In the drawing, the lithic is squared off, with about 2.5 cm of length and width showing, and appears to illustrate parallel retouching on two edges, which distinguishes the piece as an intentional tool and not debitage.

This flint tool may not have been placed in the tomb as a burial good, especially since no other lithics were found in the cemetery and the location on top of the body would be unique in relation to other tools in the necropolis. Instead, this tool might have actually been inside the body, especially since it was found underneath the forearm that was flexed across the abdominal area of the skeleton. Perhaps this sharp implement caused the death of this individual, who is already believed to have been the second burial in the tomb for two other reasons. First, a different skeleton was located in the burial depression, while this individual had been placed on the upper shelf of the tomb, which was usually exclusively dedicated to burial goods in other graves. Second, a broken Mycenaean stirrup jar was discovered in the burial depression, with the spout on the abdomen of the skeleton and the rest of the vessel situated near the feet, which

67 It must be noted that this object was most likely not part of a weapon, as it has been determined that the use of flint in the settlement at Deir el-Balah was “restricted to mundane, everyday activities” (Rosen and Goring-Morris 2010: 276).
led Lipton to surmise that the upper burial was later and had disturbed the original lower internment.

The presence of multiple tomb marker assemblages, especially in different areas or levels of the tomb, in all of the preserved multiple burials might also illustrate reuse of the grave, as discussed above in relation to offering places. None of the graves at Deir el-Balah appear to have been modified in order to accommodate multiple or later internments. Therefore, as in Egypt in the New Kingdom, the proposed reuse of the graves is more likely related to the familial practice of communal burials, which could have resulted from a premature death caused by an illness or a wound, etc., which would have necessitated a quick burial in an already prepared tomb, or as a result of economic pressures, dictating the reuse and sharing of funerary resources.

Evidence for the reuse of tombs in the Northern Cemetery at Beth-Shean appears in all but one of the Late Bronze Age and Iron Age graves (Figure 3.1). All of the reused tombs were originally constructed in the Early Bronze Age IV, as evidenced by the presence of pottery and other objects from this period in the graves. Recycling these ancient 550 year-old graves might have added a numinous quality to the tomb, as was common in Egypt and described above. A further recycling of the graves throughout the Late Bronze Age and Iron Age can be evidenced by the existence of multiple internments and coffins in 69% (n=9) of the tombs. This characteristic shows that the owners of these tombs deliberately chose to reuse a tomb multiple times, even when at least 21 more Early Bronze Age IV burials were located in the cemetery, and yet were not disturbed in these periods.

The quantity of multiple internments and sarcophagi in the graves ranged from three to 16, with two graves containing three individuals or coffins, one with four coffins, one with five
coffins, two with seven individuals or coffins, and one grave each with eight,nine, and 16 coffins. The tombs with anthropoid sarcophagi probably held an even higher number of individuals than the total quantity of coffins, as compound burials inside a sarcophagus was a common practice in Egypt across the New Kingdom, and was also demonstrated at Deir el-Balah, and internments might have existed outside of the coffins as well. The total number (56) of sarcophagi listed in this research project is also almost certainly much lower than the original total discovered in the necropolis, as the sum was derived from a personal examination of the lists containing over 155 coffin fragments or whole sarcophagi, and plotting out how many fragments must belong to separate coffins. The resulting 56 sarcophagi is higher than the estimation of “nearly fifty” provided by Oren (1973: 132).

At least half of the recycled early tombs were modified to fit the needs of the Late Bronze Age and Iron Age usurpers. The modifications are typical for recycled tombs in the Egyptian New Kingdom and can be categorized according to three types: enlarging, supplementing, and re-shaping. None of the structural modifications in the burials seem to be related to the type, period, status, number of internments, or location of the tomb, but more to the preference for a certain shape or larger size. However, the inclusion of a sarcophagus appears to be associated with certain changes in the grave, which might also be evidenced by the fact that the two burials lacking a coffin were not altered in any way.

In three (107, 202, and 221) of the graves, one chamber had been widened and/or lengthened by removing the walls between multiple tombs or rooms, or by extending the walls further back into the tomb (Figure 3.1). In Tomb 107, the corridor had also been widened and lengthened 1 m in each direction and a series of rough steps had been added. The addition of a wider shaft in Tomb 60 and the modifications made to the corridor in Tomb 107 must be related
to the ability to include an anthropoid sarcophagus in the burial, as the initial Early Bronze Age IV entrance corridors of these graves would have been too narrow to admit a coffin. Even though Oren suggests that the alterations in Tomb 107 were made in the Roman Period, it would have been impossible to fit even the smallest known coffin through the original 0.5 m narrow shaft if that were the case (1973: 13). In Tombs 66 and 90, the graves were supplemented by the addition of two chambers, and in another two (202 and 221), some of the curved walls of the original Early Bronze Age IV chambers had been straightened. This practice resulted in square and rectangular-shaped rooms, which might be linked to a preference for the typical room shape of burial compartments in the New Kingdom in Egypt.

The catalysts behind the reuse of the Northern Cemetery at Beth-Shean, both beginning in and throughout the Late Bronze Age and Iron Age, might be related to Egyptian practices of reuse. The reuse of an ancient cemetery in Egypt was sometimes connected to the prestige and sustainment of *mAat* gained from restoring a dilapidated funerary monument, but no features related to the restoration of tombs were recorded for the necropolis. On the other hand, Oren avowed that some of the coffins had been repaired in antiquity, with the addition of a creamy plaster to shore up cracks in the clay and/or a series of small holes along the edges of larger breaks (1973: 133). These mends might be associated with the Egyptian familial recycling of coffins, where any needed repairs were performed before another individual was added to the sarcophagus.

While a few of the tombs with two or three individuals might represent communal familial burials similar to those at Deir el-Balah, the tombs with a higher number, up to 16 individuals or coffins, might have been more the consequence of economic pressures or governmental tomb assignment. Although fiscal pressures were prevalent in Egypt toward the
end of the New Kingdom, the fact that many recycled rock-cut tombs, with or without multiple
internments, were restructured or augmented, which should be considered a large scale of work
necessitating a hefty amount of labor and resources, underlines that “it is vital not to confuse
reuse with impoverishment” (Bács 2011: 10). Since chambers and corridors were enlarged,
supplemented, and reshaped in the graves at Beth-Shean, economic pressures might not have
been the primary cause of these compound burials. The five tombs with seven or more
internments might instead indicate state-sponsored and assigned burials for government
employees, especially the singular tomb with at least 16 coffins, which invokes the memory of
the aforementioned Middle Kingdom tomb of the “slain soldiers” at Deir el-Bahri in Egypt.

After a location for a tomb and offering place was chosen or assigned and the
construction of the burial began, or the reuse of a grave was granted, an Egyptian would begin to
acquire and assemble the furnishings for the tomb.

4.6 TOMB EQUIPMENT

4.6.1 Significance and Function

The provisioning of the deceased through the placement of objects in the tomb was so
ubiquitous in Egypt that it has been claimed that “death was one of the most powerful generators
of Egyptian culture” (Assmann 2000: 14-18; Metcalf and Huntington 1991: 52). For all but the
lowest socio-economic strata of society, grave goods were an essential aspect of an Egyptian
burial, and fulfilled two imperative functions in the funerary process. The accumulation of items
throughout a lifetime for a burial “acted as a visible marker of status and symbolic capital for the
tomb owner” (Meskell 1999: 187). The paradigm for the ideal quantity and quality of provisions was typically the tomb of the king, and Egyptians desired to emulate royal burial practices.

However, this ideal form of burial was intangible for most Egyptians, and like the location and construction of a tomb, the grave goods were undoubtedly associated with the identity and position of the deceased among the living, especially regarding status, gender, age, and occupation (Baines and Lacovara 2002: 11, 15). The focal point of the mortuary process was the public funeral procession of the body and the mortuary offerings of the deceased, where the grave goods were on display for the community to behold and inspect, essentially defining and cementing social roles for the deceased and their living descendants (Bard 1994: 112-113). In the case of Egyptian burials abroad in Nubia, the affluence embodied in funerary monuments and burial items did not merely reflect the socio-economic status of the deceased, but also projected an image of Egyptian cultural identity and authority outside of the homeland (Smith 2003: 197).

The second imperative function of the accumulation of wealth for the burial was related to the Egyptian concept of supernatural identities and the six physical and metaphysical aspects of the divisible self. These attributes, the body, \(kA \), \(bA \), heart, name, and shadow, required adequate protection, preservation, sustainment, and deposition through the objects placed in the grave, in order for the deceased to survive the liminal processes of death and the transition to the netherworld (Dodson and Ikram 2012: 22, 24-25). This not only included the preservation of the body and the physical nourishment of the \(kA \) and \(bA \) through food and drink offerings, but also incorporated the desired comforts of life, fulfilling associated recreational, sexual, ornamental, occupational and other wishes. The role of some funerary goods was also related to the
imperative restoration of connections that were broken at death and the deceased’s integration into the cosmos (Assmann 2005: 237-406).

The objects deposited in Egyptian funerary monuments are typically divided into two overarching categories: the world of life and the sphere of death (Meskell 1999: 184). Provisions in the former group mirror earthly existence and experience and can include anything associated with or utilized by the tomb owner in his daily activities, both in life and in death (Milde 1989: 89-95; Taylor 2010: 234). Examples include occupational equipment like palettes and weights, recreational items like musical instruments and gaming boards, and toilet objects like kohl jars and razors. On the other hand, the second category of mortuary goods served no practical purpose in quotidian contexts, but was instead intimately connected to a constellation of features surrounding death and the afterlife (Pinch 1994; Richards 2005: 85). These items include explicitly magical and ritual paraphernalia: imitations, miniatures, shabtis, canopics, papyri, statuary, funerary stelae, sledges, coffins, cartonnage, and mummification articles.

There is not always an abrupt and palpable distinction between the two categories, as some provisions, like jewelry or ceramics, may have been employed in daily life, but also exhibit distinct funerary characteristics in terms of style, decoration, and function (Bell 1987: 54-55). The most imperative and widespread objects in Egyptian tombs of the New Kingdom were containers manufactured out of various materials, items of personal adornment, and mortuary-restricted items. Many of the objects in these groups can be associated with individuals of a certain socio-economic status, gender, age, cost, and occupation, which will be outlined below.
4.6.2 Containers

Containers in Egyptian tombs of the New Kingdom include vessels of pottery, stone, metal, ivory, and faience, as well as boxes, baskets, and bags. The most common grave good throughout the entire New Kingdom in Egypt were ceramic vessels, the variety and quantity of which peaked in the 18th Dynasty and gradually declined from the beginning of the Ramesside Period until the end of the New Kingdom (Grajetzki 2003: 61, 84, 91; Meskell 1999: 184-185). Pottery was also the most common object in the tombs of the Egyptians buried abroad in Nubia during this period (Smith 2003: 152). Due to the influence and influx of foreign wares, ceramic vessels deposited in Egyptian burials of the New Kingdom were highly varied and came from a range of types and wares, including both domestic and foreign vessels, closed and open forms, plain and decorated wares, small and large sizes, and pottery used for serving, preparing, baking, presenting, and storing foodstuffs.

The function of ceramic vessels inside the tomb was mainly to store food and drink offerings, which would have fulfilled the role of physically nourishing the kA and bA of the deceased, and supplemented the provisions left in the offering place above the tomb. Pottery is one of the object types that consistently crosses the boundary between items of daily life and those restricted to the tomb. These ceramics not only “mirrored earthly existence” for the tomb owner as part of quotidian kitchenware, but through placement in a grave and employment during a mortuary ritual, “the special context of the funeral turns it into a religious object” (Grajetzki 2003: 66, Note 1; Meskell 1999: 185). Certain types of pottery also took on new funerary themes throughout the New Kingdom, and were not utilized during life, but manufactured especially for the tomb. For example, Egyptian heart-shaped amphora began to exhibit polychrome painted garlands in the New Kingdom, and this motif is connected to ideas
surrounding rebirth and rejuvenation that had earlier been restricted to objects exclusively created for funerary monuments (Bell 1987: 54-57).

The majority of the pottery in Egyptian tombs was manufactured locally in Egypt, but imports from Greece, Cyprus, Crete, and the Levant are extremely common in tombs of the earlier New Kingdom and gradually decreased throughout the Ramesside Period (Aston 1996: 83). Certain domestic and foreign vessels were commonly found together, as is the case with Egyptian amphorae and Canaanite lentoid flasks, which were “intimately connected,” perhaps because the flasks contained a commodity routinely added to the larger jar’s contents, such as a sweetening agent (Bourriau 2004: 82). A great variety of both solid and liquid comestibles were located in ceramic containers in an Egyptian tomb, and fortunately, many of these were adequately preserved so that certain commodities can be linked with certain vessel types, both of which are consequently associated with particular socio-economic statuses.

The aforementioned painted amphorae, which typically contained costly fats and oils, were restricted to the tombs of the elite and high-middle strata of Egyptian society, the former of which consisted of the royal family and the highest officials of the government, and the latter of the upper levels of lesser bureaucrats and priests, military officers, wealthy farmers, and artisans (Smith 1992: 212, 218). Undecorated amphorae containing wine, prepared meat, and grain were also found in elite tombs, while those of high-middle status contained oils, wine, or beer, and those of middle status (lower levels of the high-middle group) contained only beer (Smith 1992: 211). As many as six amphorae were deposited in the wealthier burials, while those of middle status typically had only one or two. The majority of Egyptian amphorae contained wine or beer, which was indicated by hieratic labels detailing the name, source, destination, date, dedicator, vinter, and amount of the commodities (Bourriau 2004: 78).
Amphorae imported from Canaan to Egypt were also commonly found in elite, high-middle, and middle status tombs, where the jars typically contained wine, as evidenced through residue analysis (McGovern 1997: 90-92). Beginning in the 18th Dynasty, these vessels also began to commonly carry oils and resin from the Levant to Egypt (Smith et al. 2004). Towards the end of the New Kingdom, imported amphorae greatly outnumber the types locally-produced in Egypt (Bourriau 2004: 92). The majority of tombs with amphorae belonged to various types of governmental employees, which might be connected to a state ration or supply system (Smith 1992: 211, Note 19). Cemeteries without large populations of individuals employed by the state tended to lack great quantities of amphorae, which were most likely supplied to the tomb owners as royal gifts from the palace or temple storerooms (Bourriau 2004: 83; Tallet 1998a; 1998b).

Mid- and small-sized jars, jugs, and juglets were discovered in Egyptian tombs of all but the lowest socio-economic levels, but varied in quantity with as many as 50 in the elite burials and a maximum of four in the lower class, which included soldiers, minor officials and priests, tenant farmers, peasants, and slaves (Smith 1992: 212, 219). These vessels contained a great variety of commodities, with the large examples typically holding grain, and the smaller examples with fats, oils, meats, wax, natron, gum, resin, fruits, honey, and seeds (Smith 1992: 212). Bowls and platters were ubiquitous throughout tombs of all statuses, but held a narrower range of foodstuffs, consisting of meats, breads, fruits, vegetables, and nuts (Smith 1992: 212-213).

The custom of providing real comestibles was widespread during the New Kingdom, but most likely “fulfilled a symbolic rather than a functional role,” due to the inclusion of substandard ingredients, waste products, and heavy amounts of chaff in some of the foods in burials (Taylor 2001: 92, 95). The vessels themselves could also symbolically represent food
and drink offerings, as evidenced by the presence of empty pottery or solid wooden imitations in the tombs, for example, the inclusion of ceramics related to the production of bread and beer could symbolize these two most imperative commodities of the characteristic Egyptian offering formula in the grave (Holthoer 1977: 83). Large ceramic vessels were most commonly placed outside of the coffin at the head and foot of burials in Egypt (Grajetzki 2003: 74-75).

Other types of vessels in New Kingdom burials were manufactured out of metal, stone, ivory, and faience. Like their ceramic counterparts, large versions of these vessels often contained various types of food and drink offerings for the deceased. Metal vessels were manufactured out of bronze, copper, silver, electrum, and gold in a small variety of shapes consisting of bowls, strainers, jugs, and jars. A common set of metal vessels was comprised of a bowl and jar or jug in elite and middle-high status tombs in the New Kingdom, and many times a strainer was also added to the group (Smith 1992: 210). These suites of two or three vessels have been linked to those commonly shown in Egyptian tomb paintings as part of the funerary banquet, where liquid from a jar is poured through a strainer and into a bowl (Davies 1905a: Pl. 32; Petrie 1933: 5). Metal vessels were restricted to the elite and high-middle strata of Egyptian society, as they could cost from 10 to 13 deben of copper for a medium-sized bowl or jar, which is almost equivalent to one month’s salary for an ordinary workman at Deir el-Medina in the New Kingdom (Janssen 1975a: 408-433, 460).

Stone vessels were more common and found in a wider variety of forms than the metal versions in Egyptian tombs of the New Kingdom, however, the larger stone vessels were also restricted to the elite and high-middle levels of the socio-economic strata (Smith 1992: 210). A wide variety of stones were utilized, including calcite, serpentine, diorite, gneiss, alabaster (gypsum), andesite porphyry, anhydrite, breccia, steatite, granite, and rarely limestone or marble
The most popular stone was calcite, which was probably due to a combination of availability, ease of manufacture, and visual appearance, whereas more exotic stones were reserved for social elites like the royal family and high ranking officials (Aston 1994: Fig. 21; Sparks 1998: 308, Fig. 44). Large closed stone vessels were exclusively employed for the storage of fats or oils, which may have been utilized for consumption and/or cosmetics, while the open vessels were reserved for use as fine tableware (Arnold 1977: 486). Calcite chalices and tazza, which were commonly in the shape of or decorated with the petals of a lotus, have been linked to funerary scenes depicting a tomb owner smelling a blue lotus and lifting a vessel to the mouth, which represents the refreshment and revitalization of the deceased (Nagel 1938: 199; Radwan 1983: 144-146).

Smaller closed stone vessels held ointments, perfumes, cosmetics, or kohl, and were an essential part of the Egyptian toilette kit across all socio-economic levels, in that even a low status tomb could contain up to four stone jars and bowls (Smith 1992: 210). In the early 18th Dynasty, small cosmetic vessels outnumbered those for food and storage, due to the greater availability of oils, greater wealth in Egypt in general, and a greater concern and involvement with vitality and rejuvenation during life and after death (Bourriau 1981a: 72). Small stone cosmetic dishes with a foot or small jars with a wide mouth were filled with ointment and passed around at funerary banquets in tomb scenes of the New Kingdom, again representing revitalization for both the living and the dead (Bourriau 1984: 362). On the other hand, larger stone closed and open vessels became more common in the Ramesside Period, a change that has been associated with the rise in objects produced exclusively for the tomb (Meskell 1999: 186-187).
Vessels were also manufactured out of faience, ivory, glass, and wood, but these types are much less common in New Kingdom tombs than the ceramic and small stone versions. All of these materials were used to create small cosmetic vessels that held oils, perfumes, cosmetics, or kohl and could be formed or carved to resemble various fauna connected to fertility, for example, the monkey (Kessler 2001: 429). Glass was produced in the royal workshops of the 18th Dynasty, after which the quantity declined, and was therefore restricted to the upper socio-economic levels, while faience and ivory were more accessible (Lacovara 2001: 481). Faience vessels were probably not used in daily life, as the material was too fragile, but instead were reserved as grave goods or votive offerings, of which the most common were bowls with marshland flora and fauna motifs, representing rebirth and regeneration, that were placed in tombs of the New Kingdom (Lacovara 2001: 481).

The remaining containers deposited in Egyptian burials of the New Kingdom include boxes, baskets, and bags. All three of these types of containers were employed to hold a variety of personal items of the deceased, including toilette kits, occupational objects, implements, jewelry, and linen, as well as edibles like fruits, nuts, and spices (Smith 1992: 206). Boxes were typically constructed out of wood and could feature inlays of bone or ivory, metal fittings, and small knobs of bone, ivory, or stone, while baskets were woven out of plant fibers, and bags were crafted out of leather (Lacovara 2001: 481; Veldmeijer 2008: 2; Wendrich 2000). Boxes and baskets were discovered in graves of all socio-economic levels of Egyptian society, where the elite could have up to 15 boxes while the lowest levels typically owned only one (Smith 1992: 206). Baskets tend to replace boxes as the wealth decreased in Egyptian tombs of the New Kingdom, and are therefore more common among the lower strata, which also parallels other more costly containers as well (Smith 1992: 206).
As in Egyptian tombs of the New Kingdom, pottery was the most common type of grave good in the burials at Beth-Shean and Deir el-Balah, with just over 500 vessels appearing in the 13 tombs of the former site, and 80 in the 38 graves at the latter cemetery (Figures 3.1, 3.3-3.6). The great distinction in numbers is mostly likely due to the necropolis at Beth-Shean being used for a longer period of time (Late Bronze Age I to Iron Age I), while that of Deir el-Balah was confined to a shorter time span (Late Bronze Age IIB to Iron Age I).68 Every tomb in the cemetery at Beth-Shean contained at least half a dozen pottery vessels (up to 151), while 70% (n=26) of the Deir el-Balah graves had ceramics, ranging from one to nine pieces.

The two earliest graves (27 and 29) in the Northern Cemetery at Beth-Shean contained the widest variety, as well as the third and fourth highest amounts of ceramics in the necropolis. This includes several forms, such as chalices, cooking pots, and kraters, that were completely absent in the later burials (and at Deir el-Balah), as well as the largest amount and variety of foreign vessels, including 83% (n=15) of the Cypriot ceramics of the entire cemetery. Since these two tombs date to the period contemporary with the Egyptian 18th Dynasty, these characteristics parallel the high amounts and varieties of pottery for that period in Egypt, as opposed to the later New Kingdom.69 Similarities with the Egyptian Ramesside Period also occurred in contemporaneous graves at Deir el-Balah and Beth-Shean, where only one imported vessel was discovered in the Iron Age I tombs, and the diversity of forms dropped considerably, for example, 88% of the pottery in Tomb 66 of the Iron IA belonged to only two types.

68 The amount of 13 tombs for Beth-Shean only includes those from the Late Bronze Age and Iron Age. For a full discussion of the issues related to the contested chronology of the settlement and cemetery of Deir el-Balah, see chapter three.

69 It should be noted, however, that the chronology of Tomb 27 ranges from the Late Bronze Age IA to the IIA, which includes periods that are traditionally thought to predate an Egyptian presence at the site (R. Mullins 2013, pers. comm., 16 May).
Also paralleling the Egyptian New Kingdom, several different forms of Mycenaean and Cypriot pottery were discovered in the tombs, with the amphora and lentoid flask combination occurring in four Beth-Shean graves (27, 29, 221, and 241) and two (116 and 118) at Deir el-Balah (Figures 3.1 and 3.3). The percentage of foreign vessels in the necropoleis was over twice as high for Deir el-Balah (16%) as it was for Beth-Shean (7%), which is probably due to the fact that the former site was situated on the coast and trade goods were therefore more accessible. Egyptian and Canaanite amphorae, which commonly signal elite, high-middle, and middle status tombs in Egypt, were present in similar percentages at both Beth-Shean (31%) and Deir el-Balah (37%).

Only one imported Egyptian amphora was discovered in the necropolis at Deir el-Balah, and none were recovered from the Northern Cemetery at Beth-Shean. Other Egyptian ceramic imports were also scarce at both sites, with only one handled-cup coming from the same tomb (114) as the Egyptian storage jar at Deir el-Balah, and only four examples of the same form in three tombs (219, 221, and 227) at Beth-Shean. If Egyptians were indeed buried in these cemeteries, these low numbers of imports from their homeland would initially appear to be surprising. Mario Martin has noted the dearth of both imported Egyptian and locally-produced Egyptianized ceramics in the Northern Cemetery of Beth-Shean and argues “against the Egyptian identity of the buried” concluding that “the deceased were Canaanite officials in Egyptian service, who wished to emulate certain Egyptian funerary cult practices” (2011: 134). Moreover, Martin asserts that more evidence arrives from the fact that a higher quantity of Egyptian and Egyptianized ceramics were discovered in the settlement than were discovered in the cemetery of Beth-Shean.
On the other hand, in regards to the necropolis at Deir el-Balah, Martin states that there is “no doubt that an Egyptian contingent was stationed at Deir el-Balah and that Egyptians were among the corpses buried in the cemetery” especially due to “the nature of the Egyptian assemblage” (2011: 214). Although the character of ceramic assemblages is complex and multifaceted, when the percentages of tombs with Egyptian and Egyptianized pottery from both necropoleis are compared, they are almost identical, with 23% of the tombs in the Northern Cemetery containing Egyptian and Egyptianized ceramics, and 24% at Deir el-Balah. In this sense, if 24% is considered an adequate amount to assume an Egyptian component of the cemetery at Deir el-Balah, it should also suffice for Beth-Shean.

Furthermore, when the total numbers of imported Egyptian forms are totaled for each cemetery and compared to their associated settlements, the numbers are not that dissimilar. Five amphorae and five handled-cups were discovered on the mound of Beth-Shean in strata dating from the Late Bronze Age IB to Iron Age IA, while no amphorae and four cups came from the Northern Cemetery (FitzGerald 1930: Pl. XLV:6; James and McGovern 1993: Fig. 29:5; Mullins 2002: Pl. 54:4; Panitz-Cohen and Mazar 2009: Pls. 7:1, 5, 24:13, 14, 35:4, 48:1; Yadin and Geva 1986: Fig. 33:2). Only three Egyptian amphorae and one handled-cup were discovered in the settlement at Deir el-Balah, which is almost identical to the two amphorae and one cup from the necropolis (Gould 2010: Figs. 2.6:2, 2.8:9; Yellin, Dothan, and Gould 1990: Fig. 1.1, 2). Therefore, the number of imported Egyptian ceramics in the cemeteries is similar to the numbers of those in the settlements, and cannot be used as a valid argument for a lack of an Egyptian presence in the necropoleis.

The absence of Egyptian amphorae in the Northern Cemetery at Beth-Shean might also be connected to the general lack of all types of storage jars in the tombs, where only six
Canaanite amphorae (1% of the entire ceramic assemblage) were discovered, in comparison to 17 (21% of the entire ceramic assemblage) at Deir el-Balah. The reason behind the great distinction in the quantity of these transport vessels might be related to the relative proximity of these two towns to the coast and Egypt, with Beth-Shean being a greater distance both northward and eastward, a rationale already cited regarding the similar proportion of imported ceramics at both cemeteries. An entirely different reason might be related to the function of amphorae in Egypt. Egyptian amphorae were specifically devised at the beginning of the 18th Dynasty in order to fill the void of Canaanite wine and storage jars left behind after the expulsion of the Hyksos (Bourriau 2004). Since the import of Canaanite wine and vessels was halted, Egypt began producing and bottling more wine locally, and needed to create storage jars used expressly for this purpose.

If the foremost significance of Egyptian amphorae was to transport and store Egyptian wine, it stands to reason that there was probably no great need to export wine to the Levant, where the commodity was already plentiful and considered to be of a much higher quality than that of Egypt. Once Egypt regained control of the Levant and active trading recommenced, Egyptian amphorae clearly decline in number and the Canaanite versions increase in Egypt, as there was no more need to produce and bottle Egyptian wine. This might also be the cause of the lack of Egyptian storage jars in the later tombs in the two Levantine necropoleis. Nevertheless, the presence of Egyptian, and probably also Canaanite, storage jars in the cemeteries at Beth-Shean and Deir el-Balah should be connected with the Egyptian practice of presenting these vessels as royal gifts from the palace or temple storehouses to officials and other employees of the state, which in all likelihood would have made up the majority of the Egyptian population at both Beth-Shean and Deir el-Balah.
The prevalence of mid- and small-sized closed vessel types in every tomb in the Northern Cemetery at Beth-Shean and all but one burial at Deir el-Balah parallels that of Egyptian graves in the New Kingdom, where all levels of socio-economic strata were buried with jars, jugs, and juglets. Conversely, while the presence of open forms in all but one of the tombs at Beth-Shean corresponds to the ubiquitous practices related to the same vessel types in Egypt, the absence of these forms in 12 of the burials at Deir el-Balah is in direct opposition. The lack of open forms in the graves might be related more to a deficiency of preservation than presence, as all 12 of the tombs contained large jars that were used as markers protruding aboveground, which in other tombs were always capped by upturned bowls (Figure 3.7). The exposed portion of these large jars were easily disturbed or destroyed, as evidenced by the severing of many vessels at ground level, and it is likely that bowls once covered the now-broken tomb markers in the 12 tombs at Deir el-Balah.

While no foodstuffs remained intact in the burials at Beth-Shean and Deir el-Balah, and no residue analysis has been completed for the pottery, it is likely that these vessels held various types of edibles, as they did in Egypt. It is also possible that some of the vessels were empty, as in Egypt, and fulfilled a symbolic role, which has been suggested for Egyptian flowerpots and beer-jars, of which five locally-produced versions of the latter were discovered in the graves at Deir el-Balah. If beer-jars were indeed utilized in the production of beer, then their inclusion in a tomb might represent beer as an offering to the ka and ba of the deceased.70 These jars are characterized by their rough appearance, which includes an uneven stance, unsmoothed ribbing, finger-gouges, jagged perforations, and surplus clay lumps. For this reason, the jars are typically considered to be strictly utilitarian pottery, so their presence in burials might be considered

70 For more information on how Egyptian and Egyptianized pottery in the Levant might have been utilized for the production of bread and beer, see chapter seven.
surprising, however, if they were meant to symbolize an offering of beer, then their inclusion is rational.

Perhaps these vessels were also related to the occupation of the tomb owner, who would have had the ability to brew beer for eternity in the afterlife. On the other hand, at least one of the graves with a beer-jar belonged to a child, and in all five of the burials with beer-jars, the vessels were employed as part of a tomb marker, so this ceramic type was probably a less expensive option than the larger Canaanite store-jars typically employed as markers. This theory might be further confirmed by the fact that the five tombs with Egyptianized beer-jars all contained either only a few ceramic vessels, or a mix of pottery and a few clay or faience beads, which signals a lower status in the cemetery at Deir el-Balah in comparison to the other burials.

As in Egypt, ceramics were the most common and basic grave good in the necropoleis at Beth-Shean and Deir el-Balah, most likely because it fulfilled the general role of providing sustenance for the deceased. Pottery was discovered in every tomb at Beth-Shean, but the amount of ceramics does not seem to correspond to the status of the burial, based on the inclusion of more costly and rare items, which will be described below. On the other hand, the graves at Deir el-Balah can be ranked according to the amount of pottery, which parallels the presence and amount of more luxurious objects. The majority of graves (62%, n=23) contained one to four vessels, while 30% (n=11) were completely devoid of grave goods, and the remaining 8% (n=3) had seven to nine ceramics.

The most prevalent pottery form in the Northern Cemetery at Beth-Shean were saucer lamps with a pinched rim, which made up a total of 36% of the entire ceramic assemblage, and were discovered in all but one of the tombs. In stark contrast, no lamps were found in the graves at Deir el-Balah, and this vessel type is rare in New Kingdom tombs in Egypt. However,
because this type of lamp is only rarely found in domestic contexts in Egypt, it is not surprising that it also does not appear frequently in funerary contexts (Aston 1996: 61; Rose 2007: 71). On the other hand, this does not necessarily mean that lamps were completely absent from Egyptian tombs, since the typical Egyptian lamp form was comprised of a simple bowl with a floating wick. Evidence for these bowl-lamps arrives from examples of simple bowls with burn marks, as well as New Kingdom tomb paintings illustrating similar bowls with a single flame emitting from the center (Davies 1905a: Pl. VIII; 1905b: Pl. VII; 1906: Pl. XV; Wodzińska 2010: 135, 145, 158). The majority of bowl-lamps would not be identified as such because the floating wicks would rarely leave noticeable burn marks (Robins 1939: 185). Therefore, the simple bowls deposited in tombs in Egypt, as well as those at Deir el-Balah, could have functioned as containers for edibles, symbolic representations of food offerings, and/or lamps.

It still stands to reason why such a higher quantity of lamps was discovered at Beth-Shean as opposed to Deir el-Balah, even if the simple bowls functioned as lamps. A utilitarian and symbolic rationale for this phenomenon might be associated with the type of tomb at each cemetery. Since the Northern Cemetery consisted of shaft tombs dug several meters deep into rock-cut cliffs, the need for lamps during the funerary procession would have been consistent with this grave type. Since many of the lamps bore sooty marks showing signs of use, it is conceivable that those who interred the deceased would have used these lamps during the mortuary process and then left them behind in the tombs, perhaps as a grave good, or even from the ease of utilizing the lamps each time the tomb was reentered for another internment, which occurred in at least 69% (n=9) of the burials in the necropolis.

Evidence of lamp usage in Egyptian rock-cut tombs of the New Kingdom occurs in the form of small carved niches with smoke stains in the walls of unfinished burials, whereas in a
finished tomb these niches were removed and smoothed over (Currelly 1904: 31-32). Since the burials at Deir el-Balah were of the pit variety, the need for lamps was not as strong, although this still does not rule out the possibility of bowl-lamps in the tombs. The lamps at Beth-Shean and Deir el-Balah could also have deposited in the tombs as offerings for the deceased, which would infer that the kA and bA of the deceased required illumination in order to be able to survive in the afterlife. While the presence and function of foodstuffs in Egyptian tombs is discussed frequently, the presence of lamps and the need for light in the afterlife has not been explored and remains open for further research.71

Other types of vessels that commonly appear in Egyptian tombs in the New Kingdom also appear in the burials at Beth-Shean and Deir el-Balah, including those manufactured out of metal, stone, faience, and ivory. Six bronze vessels were discovered in three tombs (7, 90, and 219) at Beth-Shean (Figure 3.1). A 3 cm deep bowl with a plain rim measuring 14 cm in diameter and a disc base had been deposited in Tomb 7, while a slightly larger bowl with a 16.5 cm diameter everted rim and height of 3.5 cm was found in Tomb 219. The remaining four vessels came from Tomb 90, which consisted of a 4.5 cm deep bowl with a plain rim (14 cm diameter) and a round base, a strainer with a 10 cm diameter, 3 cm depth, and 7 cm long handle, a 8 cm diameter and 1.8 cm high lamp, and the neck and handle portion of a jug with a 4 cm diameter.

Five bronze vessels were found in two tombs (114 and 118) at Deir el-Balah (Figure 3.3). Three had been deposited inside of a clay sarcophagus in Tomb 114, including a 9.4 cm tall jar with a 5.6 diameter rim set inside of a strainer with a ring handle, 10.8 cm diameter, and 5.6 cm depth, which were located at the feet of the deceased. The remaining vessel from Tomb 114

71 The common inclusion of oils in Egyptian tombs of the New Kingdom, which is typically relegated to comestible or cosmetic use, might also be related to the employment of lamps.
was located near the knees of the deceased and consisted of a 3.6 cm deep diameter bowl with a 15 cm rim diameter and a disc base. In Tomb 118 a 14.2 cm tall jug with an engraved handle and 9 cm diameter rim had been placed inside of a 5 cm deep platter with a 27.6 cm diameter rim and engraved handle near the hips of the deceased.

All of the vessels just described are of shapes and sizes commonly found in New Kingdom tombs in Egypt. In analyzing the forms, dimensions, decorative elements, and manufacturing process of the vessels at Deir el-Balah, Dothan concluded that they must have been created in Egypt and exported to the Levant, or manufactured locally by Egyptian craftsmen or artisans skilled in Egyptian techniques (1979: 68). The fact that the bowl and strainer from Tomb 114 at Deir el-Balah is almost identical to the bowl in Tomb 7 and the strainer in Tomb 90 at Beth-Shean, shows that if these vessels were imported, they were equally accessible by those living nearer to Egypt on the coast as those living further away and inland. If the bronze vessels were produced in the Levant, there must have been multiple Egyptian (or Egyptian-trained) craftsmen throughout the area, or there was a central manufacturer and the bronzes traveled far distances.

It is likely that the two loose bowls in Tombs 7 and 219 at Beth-Shean might have held some sort of edibles like similar examples holding foodstuffs in graves in Egypt. The other vessels in the necropoleis would probably not have held food or drink, as they were placed inside of the coffin on top of or next to and touching the bodies of the deceased. These vessels, which include a jar, bowl, and strainer in Tomb 114, a jug and platter in Tomb 118, and a jug, bowl, and strainer in Tomb 90, are perfect examples of the bronze drinking sets in New Kingdom Egyptian burials. As they are believed to have functioned in Egypt, these bronze sets might be further evidence for a funerary banquet performed for the deceased, which is an imperative
aspect of the Egyptian mortuary process that took place at the end of the funeral outside of the
tomb in the offering place.72 Furthermore, more evidence might arrive from the jug and platter at
Deir el-Balah, of which the handles of both were engraved with lotus petals, and the lotus and
other marshland motifs were intimately tied to Egyptian ideas of rebirth and rejuvenation, and
were typically confined to funerary goods and rituals.

Metal vessels were only discovered in tombs belonging to the elite and high-middle
levels of Egyptian society. The costliness of bronze vessels is especially confirmed by the values
listed on ostraca from Deir el-Medina, which generally only include transactions involving high-
value goods (Janssen 1975a: 408-433). On these ostraca, the vessels, which include jars, jugs,
bowls, and strainers, and their bronze material are identified in detail, and the worth of each
vessel is essentially linked with the form and size. Large jars or jugs range from 20-35 deben,
with medium versions between 10-12 deben, and small closed vessels from 4-5 deben. Large
open vessels can be slightly less (20-28 deben) than the closed versions, the medium sizes are
about the same (10-13 deben), as are the small examples (2-7 deben). Only two prices, 1 and 3
deben, were provided for a strainer, and Janssen remarks that these must have been very small
examples to be worth such a small amount (1975a: 431-432).

If the value of the bronze vessels in the burials at Beth-Shean and Deir el-Balah are
calculated according to these amounts, the three in Tomb 114 would have cost between 15-21
deben, the two in Tomb 118 would have been between 30-40 deben, the four in Tomb 90 would
have been between 17-28 deben, and the two bowls in Tombs 7 and 219 would have been
between 10-13 deben each. Since the ostraca also detail how adding decorative elements to a

72 Similar bronze sets have also been discovered at other sites in the Levant, including Tell el-Far‘ah (S), Tell el-
Ajul, Megiddo, and Tell es-Sa‘idiyeh, where Pritchard compared the set to a flask and bowl shown in a drinking
scene carved on an ivory box from Tell el-Far‘ah (S) (Loud 1948: 33, 150, PIs. 189-190, Fig. 410; Petrie 1930: PIs.
bronze vessel required that one more *deben* be added to the total price, two *deben* should added to amount given for Tomb 118 (Janssen 1975a: 423-425). These quantities show how incredibly expensive these vessel sets would have been for an ordinary state-employed workman, who, for example, received monthly wages equaling about 11 *deben* at Deir el-Medina in the New Kingdom (Janssen 1975a: 460). Even the solitary vessels in the tombs at Beth-Shean would have cost more than one month’s worth of wages, and those in Tomb 118 at Deir el-Balah would have been at least three month’s worth.

Stone vessels were also discovered in the tombs in the Northern Cemetery at Beth-Shean and the necropolis at Deir el-Balah. One calcite tazza (or goblet) consisting of two parts, a cup and a base, and the cup of another serpentine tazza were discovered in Tomb 29 at Beth-Shean, while a calcite vase and a gypsum two-handled jar were found in Tomb 90 (*Figure 3.1*). Stone vessels at Deir el-Balah include the cup of a calcite goblet in Tomb 114, a three-part (cup, joiner, and base) calcite goblet in Tomb 118, and the cup of a calcite tazza and calcite simple bowl with a rounded base in Tomb 620 (*Figures 3.3 and 3.5*).73 The majority of these vessels were manufactured out of calcite, also known as Egyptian alabaster or travertine, which is the most common material for stone vessels in the New Kingdom in Egypt. Calcite was not a stone that was native to the Levant, and therefore, these six vessels, or their raw materials, must have been imported from Egypt.

Beginning in the Middle Bronze Age or Late Bronze Age, workshops in the Levant began manufacturing Egyptian-style vessels out of gypsum, a naturally-occurring stone in the region (Ben-Dor 1945: 111; Lilyquist 1996). Because the two stones have a similar appearance, it can be difficult to distinguish between calcite and gypsum based on the façade alone, however,

73 Twelve more stone vessels believed to have originally been from Deir el-Balah are in the Israel Museum. These vessels include four bowls, one tazza, one goblet, two two-handled jars, and four small globular jars.
they can be differentiated otherwise through the shape, decoration, and manufacturing technology (Sparks 2003: 40). The vase, bowl, and tazza are all common Egyptian forms, and the latter are especially recognizable as Egyptian if they are constructed out of two or more parts, while the gypsum imitations were most commonly of one solid piece (Ben-Dor 1945: 105). On the other hand, the ovoid jar with two loop handles is not a typical Egyptian form, and the manner in which the interior of the vessel was hollowed out, without following the outline of the jar, demonstrates that it was a local imitation produced out of gypsum (Ben-Dor 1945: 111).

Although the small calcite vase and bowl were types generally found in tombs of all but the lowest socio-economic levels of Egyptian society, the tazza and goblets are only in the burials of individuals belonging to the elite or high-mid status strata. The four tombs with this type of calcite vessel at Beth-Shean and Deir el-Balah also contained other items considered high status in Egypt, such as the amphorae and metal vessels described above. The one tazza manufactured out of serpentine from Tomb 29 at Beth-Shean would have even been more costly than the calcite versions, as the stone was exotic and restricted to elite and sub-elite individuals in New Kingdom Egypt (Sparks 2003: 39). While the small vase and bowl might have been acquired through trade, and utilized to carry a commodity or as valuable objects themselves, the tazza and goblets were most likely royal gifts provided to high officials in the Egyptian government (Sparks 2003: 41, 52).

The function of the small vase most likely paralleled those of the same material and form in Egypt, where this vessel type held ointments, perfumes, or cosmetics that were an integral part of the Egyptian toilette kit in tomb assemblages of the New Kingdom. This vase might have also played a role in the funerary banquet of the deceased, where this form of calcite vessel is commonly shown being passed around in Egyptian tomb paintings. The tazza and goblets are
generally separated from one another according to their function as drinking vessels and part of fine tableware, or as expressly employed during mortuary rituals and feasting (Tait 1963: 96, 99, Note 6). The tazza are of the latter function, but the goblets, especially the decorated example from Tomb 118, are explicitly funerary objects. The outside of the cup of the goblet from Tomb 118 was carved and painted to imitate the petals of the blue lotus, whose connection with the rebirth and regeneration of the deceased has already been discussed regarding painted ceramics and metal vessels (Figure 3.3). A floral design had also been carved onto the bowl from Tomb 620, and this vessel, as well as the lotus goblet, which was lying near the head of the deceased inside of the coffin, might have been part of an Egyptian funerary feast or other libation rituals (Figure 3.5).

Two more small vessels were discovered in the Northern Cemetery at Beth-Shean: one ivory bowl in Tomb 7 and one faience vase in Tomb 90 (Figure 3.1). As in Egypt, small vessels of faience and ivory were less common than their stone counterparts at Beth-Shean, as well as Deir el-Balah, where only stone cosmetic vessels were discovered. The ivory bowl had a flat inturned rim and was engraved with a geometric pattern on the interior, a common form of decoration on similar ivory vessels in New Kingdom Egypt. The faience vase was of a similar form as the calcite vase found in the same tomb at Beth-Shean, and probably both the vase and the bowl once held oil, perfume, cosmetics, or kohl, as part of a New Kingdom Egyptian toilette kit. The flat rim of the bowl most likely demonstrates that it once held a lid, and the fact that faience vessels were not typically used as quotidian tableware in Egypt shows that this vase was created expressly for the tomb and may have been used during the funerary process.

The remaining three types of containers, boxes, baskets, and bags commonly deposited in Egyptian tombs of the New Kingdom were not discovered in any of the tombs at Beth-Shean or
Deir el-Balah. However, since these containers were manufactured out of highly perishable materials like wood, plant fibers, and leather, they are much less likely to be preserved in the more temperate Levantine climate than the widespread arid areas of Egypt. The excavators of the necropolis at Deir el-Balah suggested that the presence of multiple empty shelves in the tombs “is in itself suggestive that there were food offerings in baskets or other materials that have decomposed” (Lipton 2010: 42-43). Since baskets and bags were more common among the lower socio-economic strata of Egyptian society, where they tended to replace more costly containers like boxes, metal and stone vessels, and even pottery, the ten burials at Deir el-Balah that were completely devoid of grave goods might have originally held baskets or bags of comestibles, fulfilling the basic function of nourishing the kA and bA of the deceased through food offerings.

Although no complete wooden boxes were discovered in the cemeteries at Beth-Shean and Deir el-Balah, evidence for these containers might exist in the form of decorative elements and fittings in less perishable materials found in the necropoleis. Two narrow rectangular strips of bone and ivory were discovered in Tomb 27 and Tomb 90 at Beth-Shean (Figure 3.1). The strip of bone from the former burial was incised with two diagonal lines, while the ivory example from the latter burial was plain, but was curved on one side and flat on the reverse. These strips of bone and ivory were commonly used as inlays in wooden boxes that were placed in tombs in Egypt. Both of these tombs contained a high quantity of personal items that might have originally been placed inside of the boxes, including objects from the toilette kit, occupational items, or implements.

As for Deir el-Balah, one gypsum mushroom-shaped knob was discovered in the fill of Tomb 1405, which contained a partially disturbed burial (Figure 3.6). The knob is of a type
similar to those employed to close or lock wooden boxes in Egypt in the New Kingdom. A cord would have been lashed around the knob projecting from the lid and tied to a corresponding knob on the body of the box (Davies 1982: 200-203; Desroches-Noblecourt 1977: 84-87). However, since the knob was manufactured out of a Levantine stone, and a similar knob was discovered in the nearby settlement of Deir el-Balah, the box and its fittings were most likely manufactured in the Levant, and perhaps even at Deir el-Balah, where several types of Egyptianized grave goods were believed to have been produced expressly for the associated cemetery (Dothan and Nahmias-Lotan 2010c: 183-184).

4.6.3 Personal Adornment

After containers, the second most common category of objects deposited in tombs of the New Kingdom included items of personal adornment that were worn on the body or in the hair. All but the lowest socio-economic levels of Egyptian society contained jewelry of some kind, which was the most common and basic grave good after pottery (Taylor 2001: 109). However, some types and materials used for jewelry were relegated to different levels of Egyptian society, showing that “more than mere body ornament, jewelry in ancient Egypt was used to display rank, proclaim wealth, and designate social status” (Markowitz 2001: 201). The quantity of jewelry in a particular grave of the New Kingdom was also related to the status of the tomb owner, where the Egyptian elite could have 30 or more pieces as part of their burial assemblage, while the lower levels would have typically had five at the most, and the lowest strata may have none at all, although jewelry has been considered “almost mandatory” for Egyptian graves (Smith 1992: 202).
Items of personal ornamentation also crossed all social boundaries and were worn by the living, the deceased, men, women, and children, but again, akin with socio-economic status, specific types were also associated with particular members of these groups (Markowitz 2001: 201). Most accoutrement that was placed in funerary monuments of the New Kingdom was almost certainly worn in daily life, as evidenced by signs of repeated wear and repair (Smith 1992: 203). In both life and death, jewelry was worn as a sign of rank or office, as a military honor or civil award from the king, to provide apotropaic and amuletic powers, as well as for aesthetic purposes (Andrews 1990: 7). The fact that these same items were characteristically placed directly on the body of the deceased demonstrates the individualized nature of these ornamental objects, which must have been intimately tied to the conscious presentation of an individual’s identity in death, an identity that would have also been transferred into the afterlife.

While the majority of items of personal adornment were worn during life, excessively thin and flimsy pieces, as well as certain specialized types, for example, heart scarabs, must have been created expressly for the funerary process (Markowitz 2001: 201, 205, 207). These pieces of mortuary jewelry were placed on the deceased in a stipulated manner in order to provide guidance and protection throughout the liminal journey from life to the afterlife (Andrews 1990: 7). The placement of many pieces of mortuary jewelry in the New Kingdom was prescribed according to chapters from the Egyptian “Book of the Dead,” which related the type, color, material, and location of the amuletic item, as well as the associated spell to be recited as the object was placed on the body of the deceased (Andrews 1994: 6). The amuletic power of jewelry could come from the shape of the piece, the inclusion of a figure or name of a king, deity, sacred animal, or hieroglyph, or merely from the material itself.
Egyptian jewelry in New Kingdom tombs were manufactured out of four types of materials: metal, stone, synthetic, and organic. The choice of a material for an item of bodily ornamentation was based on several different characteristics including aesthetics, symbolism, practicality, color, availability, and expense (Markowitz 2001: 201-202). Metals employed in the production of jewelry include gold, silver, copper, and bronze. Gold was always recorded first in lists of materials and was the most preferred substance for jewelry, as it was malleable, had a low melting point, did not tarnish or discolor, and was resistant to corrosion (Romano 1995: 1605). Because gold was impervious to the effects of time and had a radiant sheen, it was associated with the flesh of the gods, immortality, and the brilliance of the sun (Markowitz and Lacovara 2001: 34). Almost every type of personal accoutrement could be manufactured out of gold or contain gold fittings, including amulets, beads, bracelets, collars, diadems, earrings, finger-rings, and pectorals.

Silver was always recorded second in New Kingdom material lists, but tended to be more costly and rare than gold, because it did not occur naturally in Egypt and had to be imported from Anatolia, Cyprus, or Crete (Romano 1995: 1605). The color of silver was associated with the bones of the gods, the moon, and the regenerative lotus blossom (Aldred 1971: 32-33). Items of personal adornment manufactured out of silver were slightly more limited than gold, including amulets, bangle-bracelets, beads, diadems, finger-rings, and rarely earrings. Copper and bronze were also imported to the Nile Valley from mines in the Eastern Desert and the Sinai, or through the trade of hide-shaped ingots and bars from Cyprus and the Levant (Markowitz and Lacovara 2001: 201-202). Neither copper nor bronze were common in jewelry production in Egypt and were restricted to earrings, bangle-bracelets, signet-rings, and bezelled-rings in the New Kingdom (Andrews 1990: 56-57).
The most common materials for all types of Egyptian jewelry were various domestic and imported rocks and minerals, which were especially utilized to manufacture beads, amulets, scarabs, and seals. Fifteen gemstones are known to have been employed during the New Kingdom in Egypt including: calcite, garnet, hematite, malachite, obsidian, amethyst, rock crystal, agate, chalcedony, onyx, lapis lazuli, feldspar, carnelian, red jasper, and turquoise (Harrell 2012). The majority of these materials were naturally-occurring in the Nile Valley or the Eastern Desert of Egypt (calcite, garnet, hematite, malachite, amethyst, rock crystal, agate, chalcedony, feldspar, carnelian, and red jasper), a few were obtained from mines in the Sinai (turquoise, malachite, and agate), and others were imported from Afghanistan (lapis lazuli), the eastern Mediterranean (obsidian), or southern Asia (onyx) (Harrell 2012).

Although all of these materials appear in jewelry of the New Kingdom, only five stones were common, with carnelian at the apex, followed by feldspar, red jasper, lapis lazuli, and turquoise (Markowitz 2001: 202). These stones were not only the most widespread, but also considered to be the most prized, although they were accessible to all but the lowest socio-economic levels, as even the burials of individuals of middle status could contain a small string of beads manufactured out of these five gemstones (Smith 1992: 203-204). The color combinations of these stones in pieces of jewelry was an aesthetic and symbolic choice for the Egyptians, with the most preferred colors being red, green, and blue (Markowitz 2001: 202). Shades of red (carnelian and jasper) connoted life-sustaining blood, power, vitality, and the sun, while green (feldspar and malachite) symbolized regenerative growth, fertility, joy, and flourishing vegetation, and light and dark hues of blue (lapis lazuli and turquoise) signified the heavens, Nile River, and primordial waters (Andrews 1994: 102-104).
These colored stones were so essential to Egyptians of the New Kingdom, that if an Egyptian could not acquire or afford expensive hard stones, they would obtain imitations that replicated the desired color through glazing a stone or composition (Markowitz 2001: 202). The most widespread glazed materials were faience and the softstone steatite, which, when glazed, generally took on shades of blue and were both extremely popular in the mass production of scarabs in the New Kingdom (Teeter 2003). Other less costly materials utilized in the production of jewelry were organic or biogenic, including faunal by-products like ivory, bone, and shell, or floral-related products like resin or flax. In the New Kingdom, bodily accoutrement manufactured out of these organic materials were much more rare than metal, stone, or faience, and with a few exceptions, were readily available and relegated to the lower socio-economic strata of Egyptian society (Harrell 2012: 6).

True resins from coniferous trees were imported from the Levant and employed for beads, finger-rings, scarabs, and earrings, while flax fibers from Egypt were used for threading jewelry (Andrews 1990: 63-64). The bones of animals, especially birds and fish, and the ivory of Egyptian hippopotami and Nubian elephants, were used to create beads, finger-rings, amulets, earrings, and especially spacers in the New Kingdom (Markowitz 2001: 203). Although mother-of-pearl, mollusks, ostrich egg, tortoise, and other shells from the Red Sea were common in earlier periods, only whole shell amulets were found in tombs of the New Kingdom. Cowrie-shell pendants were expressly worn by women, and were considered so potent in their apotropaic power towards fertility and gestation that elite and sub-elite individuals often imitated the shell in costlier materials like metal or stone (Graves-Brown 2010: 101).

In the Egyptian New Kingdom, accoutrement for the ears, neck, arms, and fingers were widespread across all socio-economic levels, genders, and ages. In earlier periods, ornamental
items for the hair, waist, ankles, and clothing were frequently discovered in Egyptian burials, but these objects fell out of fashion by the 18th Dynasty. Some jewelry, like nose-rings, torques, toggle-pins, and head-plates, were never worn by the Egyptians, and were often explicitly employed to identify and depict non-Egyptian foreigners in artistic representations (Sparks 2004: 29-33). Furthermore, the aesthetic nature of bodily adornment was significant to the Egyptians in the New Kingdom, who preferred to wear jewelry parures, color-coded combinations, binary arrangements, graduated layouts, and highly symmetrical compositions (Aldred 1971: 58; Markowitz 2001: 205, 207).

Objects worn on the head or in the hair, such as diadems, circlets, overlays, and plait-rings, either fell out of fashion by the New Kingdom, or were restricted to royalty or foreigners, such as the three Canaanite wives of Thutmose III, who are identified as such through their Semitic names, and whose shared Theban tomb contained several items of personal adornment closely connected with a Levantine-style (Aldred 1971: 130, 141-142; Lilyquist 2003). On the other hand, the use of ear ornaments did not appear in Egypt until the end of the 17th Dynasty, when the practice was deliberately borrowed from the Hyksos and the Levant (Markowitz 2001: 205). Four types of jewelry for pierced ears were known in the New Kingdom, consisting of spiral, hoop, penannular, and stud varieties, all of which, with the exception of the spiral, were originally Levantine forms of earrings (Andrews 1990: 111).

While spiral and hoop earrings of thin metal wires were popular throughout the New Kingdom, wide penannular earrings of metal, stone, bone, or faience were not common until the mid-18th Dynasty, and solid studs or plugs were introduced just before the Ramesside Period, when filigree or granulation were also added to the metal varieties (Aldred 1971: 143; Romano 1995: 1611). In New Kingdom funerary depictions, women are generally shown wearing
earrings, while men are never illustrated with ear jewelry, nonetheless, the discovery of perforated earlobes among male corpses of the New Kingdom demonstrates that men did indeed participate in this practice (Andrews 1990: 109, 111; Markowitz 2001: 205).

In the New Kingdom, three types of necklaces were common, all of which were of the beaded variety, while torques or other necklaces constructed purely out of strips of metal were never worn by the Egyptians (Sparks 2004: 32). Necklaces were worn by both genders and are found in the tombs of individuals of all ages (Smith 1992: 202). The most popular type of beaded necklace in the New Kingdom was the broad collar, which consisted of several horizontal rows of graduated or flush beads strung together on flax threads and separated by vertical spacers, which were commonly made of ivory (Markowitz 2001: 205). The colorful beads would have been splayed widely in a semi-circle across the chest and offset the monochrome white linen attire of the Egyptians, so that the broad collar became “virtually an item of dress” (Aldred 1971: 144-145). The beads of these collars were manufactured out of all types of materials and all shapes and sizes, although uniformity and symmetry were preferred throughout a single necklace (Markowitz 2001: 205).

A second type of beaded necklace in the New Kingdom was the pectoral, which consisted of a trapezoidal pendant engraved with images and hieroglyphs and suspended from a necklace of beads (Markowitz 2001: 205). While broad collars and pectorals were restricted to the elite and upper levels of the socio-economic strata, simple one strand necklaces with as little as one bead could be worn by individuals of all levels (Romano 1995: 1611; Smith 1992: 203). A common version of this type of necklace consisted of one carnelian barrel-shaped swrt-bead occasionally flanked by green cylindrical beads, and restricted to the funerary sphere, as texts describe exactly how and where the necklace must be placed on the deceased (Aldred 1971: 144-
A few ostraca from Deir el-Medina provide the price of necklaces in the New Kingdom, one of gold and faience beads is listed as five deben, which would have been half a month’s salary for an ordinary workman, and another with black scarab beads was a large sum of 36 deben (Janssen 1975a: 306-308).

Amulets were often strung among other beads or solely on necklaces, and are such an integral and conspicuous aspect of Egyptian jewelry that “the striking and exceptional nature of the iconography sets them apart from the ornaments of other cultures” (Markowitz 2001: 205). Egyptian amulets were originally classified by W. M. Flinders Petrie into five overlapping categories according to primary function, and these groupings still continue to be followed, especially in the iconic publication on Egyptian amulets by Carol Andrews (Petrie 1914; Andrews 1994). The first of these categories are theophoric or theomorphic, which includes amulets in the shape of deities and sacred animals, placing the wearer under the protection of the associated god or goddess (Andrews 1994: 14). Certain deities could be favored during different periods, for example, Amun-Re was the foremost god of the New Kingdom, and was therefore widespread in amuletic form, or favored according to an individual’s occupation, such as the patron deity of craftsmen, Ptah (Andrews 1994: 15-16, 19).

The second-most common category of amulets in the New Kingdom were phylactic or apotropaic, whose function was to protect the wearer and avert danger, purposes that commonly overlapped with other categories of amulets (Andrews 1994: 36). In the New Kingdom, the most widespread form in this category was the wDA.t, which represented the eye of Horus after it had been partitioned by Seth and was made whole again by Thoth (Markowitz 2001: 203). Other apotropaic amulets could be tied to gender or age, such as those of Bes or Taweret, the patron god and goddess of women, children, maternity, and parturience (Andrews 1994: 39-41).
third class of amulets are homopoeic and in the form of living creatures, and the wearer would be endowed with the characteristic powers or capabilities of the amuletic creature through assimilation (Andrews 1994: 60). In the New Kingdom, a specialized homopoeic amulet was that of the fly, which when manufactured in gold, was an honorific award for military valor and persistence presented by the king to a private citizen (Andrews 1994: 62-63).

Dynatic amulets had the same function as homopoeic, imbuing the wearer with characteristics related to the form, but were of inanimate objects instead of living creatures (Andrews 1994: 74). In the New Kingdom, when motifs that were previously restricted to royalty were borrowed by private citizens, amulets of divine or royal regalia, like the uraeus, became prevalent (Andrews 1994: 75-76). One of the most widespread dynatic amulet motifs during the New Kingdom were floral designs, including mandrake fruits, palmettes, poppy petals, date-palm leaves, and lotus buds and seeds (Markowitz 2001: 205; Romano 1995: 1611). The final category of amulets are ktematic, which feature mostly quotidian items and desiderata for the tomb, like food offerings, that would be magically substituted by the amulet if provisions were lost, destroyed, or unavailable (Andrews 1994: 91). In Egyptian tombs of the New Kingdom, amulets were generally restricted to the elite, who could have up to six or more in their tomb, and individuals of high-middle status, who generally owned only one or two (Smith 1992: 202). The price of a single amulet on ostraca from Deir el-Medina varies from about 0.5 to 3 deben each (Janssen 1975a: 308-311).

Like necklaces, bracelets were most commonly of the beaded variety and included amulets of varying materials, types, and sizes across different pieces, but unlike necklaces, bracelets were usually binarily arranged in sets of two on the same wrist or one on each wrist (Aldred 1971: 158). Necklaces and bracelets were also habitually part of parures for elite and
sub-elite individuals in the New Kingdom (Markowitz 2001: 207). Another widespread form of bracelet was that of a bangle, which were most commonly manufactured out of metal, but also of stone or biogenic material like ivory or shell (Andrews 1990: 146). While anklets were popular in the Middle Kingdom, they are only shown as part of archaic costumes in the New Kingdom in Egypt (Aldred 1971: 159-160). Beaded and bangle bracelets were worn by Egyptians of all types of socio-economic levels, genders, and ages (Aldred 1971: 157).

After beads, the most common type of jewelry deposited in Egyptian burials of the New Kingdom are finger-rings, which were generally discovered on the third finger of the left hand, however, finger-rings are never shown in artistic depictions (Markowitz 2001: 207; Smith 1992: 203). The most basic type of ring was a simple band of metal or stone, but beginning in the 18th Dynasty, finger-rings with a swiveling bezel became extremely widespread, and Egyptians are credited with the original invention of this ring type (Aldred 1971: 160-161; Andrews 1990: 164; Markowitz 2001: 207; Romano 1995: 1612). The hoop segment of the finger-ring could be as simple as a thread or string, but the bezel portion was always manufactured out of metal, and gemstones of many different types and shapes would be secured in the bezel by twisting shut a series of wires (Aldred 1971: 160-161; Andrews 1990: 163; Smith 1992: 203). The most popular form of amulet placed in bezeled-rings of the New Kingdom were scarabs, most of which were made of faience or glazed steatite (Aldred 1971: 160-161; Smith 1992: 203). In the Thutmoside Period, a rectangular-shaped rotating bezel was introduced (Romano 1995: 1612).

The second-most widespread type of finger-ring, the signet, was also instituted at the beginning of the New Kingdom, and by the end of the 18th Dynasty, this ring type was being mass-produced in mold-made faience (Andrews 1990: 164; Romano 1995: 1612). Signet rings were heavy stirrup-shaped rings of metal, stone, or glazed composition, most commonly gold,
silver, bronze, or faience (Markowitz 2001: 207). The gemstones of bezeled-rings and the front of signet-rings were inscribed with the names and figures of deities or kings, as well as the figures, signs, or shapes that appear in amuletic form, and basically performed the same associated function for the wearer (Aldred 1971: 161; Markowitz 2001: 205). The name and titles of the owner was also sometimes inscribed on finger-rings, and this practice fulfilled the essential role of perpetuating one of the six divisible aspects of an individual, the name (*rn*), for eternity (Markowitz 2001: 205). Finger-rings, especially those inscribed with royal names, were distributed to the elite and sub-elite on the occasion of festivals and court functions in Egypt, for example, the accession of the king (Aldred 1971: 161; Markowitz 2001: 207). Ostraca recording transactions with finger-rings at Deir el-Medina value the rings between 0.5 to 3 *deben* each (Janssen 1975a: 308-309).

Akin to Egyptian tombs in the New Kingdom, items of personal adornment were either the first or second most common and basic objects in the graves at Beth-Shean and Deir el-Balah. Jewelry was second only to pottery in the tombs at the former site, where accoutrement were discovered in all but two of the burials. At Deir el-Balah, items of bodily ornamentation were three times as plentiful as ceramics and were a significant aspect of the burial hierarchy, where 26% of graves lacked grave goods, 37% contained only pottery, 16% had only pottery and jewelry, and the remaining 21% had pottery, jewelry, and other objects (*Figures 3.1-3.6*). The burials at Beth-Shean and Deir el-Balah with other high-value items also contained the highest quantity of jewelry, a pattern similar to funerary monuments in Egypt in the New Kingdom.

Egyptian items of personal adornment were highly portable and tradable objects that could consequently travel great distances in order to arrive at sites like Beth-Shean or Deir el-Balah, however, it is also possible that some of these items could have been manufactured in the
Levant. Even if some jewelry was locally-produced, certain materials that are not native to the
Levant must have been imported from Egypt, and the distribution of materials for items of
personal adornment at Beth-Shean and Deir el-Balah show related patterns. In New Kingdom
Egypt, the three most common materials for jewelry were carnelian, gold, and faience, which is
paralleled at Deir el-Balah in the same order, with 151 items of personal adornment of carnelian,
92 of gold, and at least 51 of Egyptian faience. At Beth-Shean, these materials were less
numerous but in the same order as well, with only 103 items of carnelian, 26 of gold, and 18 of
Egyptian faience. Since all three of these materials must have been imported to the Levant, the
proximity of these two sites to Egypt appears to have played a role, with Deir el-Balah located on
the coast, near a major trade route, and closer to Egypt, while Beth-Shean was positioned both
further north and east away from Egypt.

Related patterns may arrive from the quantity of amethyst, onyx, bronze, and silver
jewelry in the tombs at both cemeteries. Amethyst was also native to Egypt and not to the
Levant, and so its presence at Deir el-Balah and absence at Beth-Shean is noteworthy. On the
other hand, onyx was not native to either land, and is believed to have been imported from
further east in southern Asia. No items of onyx were discovered at Deir el-Balah, but two were
found in a tomb at Beth-Shean, demonstrating the site’s location on a trade route with the east
and the associated close ties. As for bronze, it was the second most numerous material for
ornamental items at Beth-Shean, totaling 43 objects, while at Deir el-Balah only three items were
made of bronze. Similar ratios are found for jewelry of silver at the two cemeteries, although
these were discovered in much smaller quantities at both sites.

In Egypt, bronze was seldom used for jewelry, and silver and onyx were rare in general,
mostly due to the fact that all of these materials had to be imported. Since silver occurs naturally
and bronze was heavily produced in the Levant, it might have been equally accessible to individuals at both Beth-Shean and Deir el-Balah. If Egyptians were buried in the cemeteries at Beth-Shean and Deir el-Balah, it appears that their first choice for materials matched those of the homeland (carnelian, gold, and faience) and it is possible that these items of jewelry were most likely also manufactured in the homeland. However, if they were not able to acquire these materials or goods from Egypt, they substituted them for more readily available local or locally-produced items of local materials (bronze, silver, onyx, etc.).

Many types and styles of items of personal adornment in the necropoleis at Beth-Shean and Deir el-Balah also reflect both similarities and differences with those discovered in New Kingdom Egyptian tombs. Leach-shaped hoop earrings were the most popular style at both sites, and this form is also common in Egypt, as well as other sites in the Levant, from where the type originated. On the other hand, spiral earrings are believed to have been an Egyptian innovation, and several of these were discovered at Beth-Shean, where Oren identified associated their function with “dressing the hair,” probably due to their rarity in the Levant (1973: 119). Three drop-shaped earrings in a tomb at Deir el-Balah are of a type not found in Egypt, demonstrating that at least one of the individuals in the burial must either be an Egyptian with an affinity for the local style, which could even be considered exotic, or a non-Egyptian. Since at least one male and one female individual were found in each of the burials with earrings, parallels with the aforementioned Egyptian ties between gender and earrings cannot be analyzed further at the cemeteries.

The amount of beads and amulets, 143 at Beth-Shean and over 359 at Deir el-Balah, shows the prevalence of beaded necklaces and bracelets in the cemeteries, which were also widespread in New Kingdom Egypt. The majority of beads and amulets from the necropoleis at
Beth-Shean and Deir el-Balah were produced out of carnelian, gold, and faience, again paralleling the most popular materials of Egypt. Besides the materials and forms, which will be described below, other aspects of the beads and amulets demonstrate a cultural affinity with Egyptian jewelry. The presence of identically-shaped, but graduated, beads and amulets, as well as ivory and gold spacers, are indications that some of the beads and amulets were originally part of broad collars, the most common form of necklace in Egypt in the New Kingdom. Furthermore, the fact that jewelry parures, or sets, and a limited corpus of materials and shapes exist among the beads and amulets at Beth-Shean and Deir el-Balah correspond to the aforementioned Egyptian desire for symmetrical, uniform, and complementary jewelry pieces.

As in Egypt, the presence of beads and amulets in tombs at the two Levantine necropoleis does not indicate gender, age, or socio-economic status. In three different tombs (301, 303, and 1405) at Deir el-Balah, the only beads and amulets in the burial consisted of one barrel-shaped bead (Figures 3.4, 3.6, and 3.7). These singular finds might be related to the Egyptian swrt-necklaces of the New Kingdom, which were most often comprised of one barrel-shaped bead strung on a flax thread. These necklaces were manufactured specifically for the deceased, as funerary texts describe exactly what spell should be recited as the swrt-necklace is placed at the neck during the mortuary process. One of the beads at Deir el-Balah was indeed found in situ inside of the sarcophagus in the burial, while the other two were found in the tomb fill just above the skeletal remains of the coffin-less graves.

All five categories of Egyptian amulets that were described above are represented in the tombs in the Northern Cemetery at Beth-Shean and the necropolis at Deir el-Balah. Paralleling New Kingdom Egypt, theophoric or theomorphic amulets are numerous and include depictions of Thoth, Hathor, Ptah-Sokar-Osiris, Bastet, and Bes. The individuals wearing these amulets, in
life or in death, would have not only been safeguarded by the deity depicted on the talisman, but also imbued with other attributes related to the divinities. These amulets are not only linked with an Egyptian cultural affinity, but were also intimately connected with other aspects of identity, including gender, age, and occupation.

Hathor and Bastet were worn solely by women in Egypt, with the former representing motherhood and lactation, and the latter fecundity and reproduction (Andrews 1990: 12, 19-21, 32-33). Both of these amulets were the most frequent in the New Kingdom and Third Intermediate Period, and Bastet was an essential aspect of the insignia for royal women of the 18th Dynasty (Andrews 1990: 33). Bes was another deity tied to women, but was also commonly worn by children, since the god specifically warded off danger during gestation, parturition, and nonage (Andrews 1990: 39-40). Hathor, Bastet, and Bes amulets were not restricted to funerary contexts, and would have been worn during life and in death, demonstrating that both women and children required the same protection in both spheres.

Talismans of Bes and Bastet were discovered in two tombs (114 and 118) at Deir el-Balah, one of which contained the remains of a young adult woman and a 3-4 year-old child, either of which could have owned the amulet (Figure 3.3). In Tomb 118, two carnelian Bes amulets and one carnelian Bastet amulet were discovered near the right wrist of a female aged 25-30 years old, and probably comprised a bracelet for the woman. Similar Bes and Hathor pendants were found in two tombs in the Northern Cemetery at Beth-Shean, and although the human remains from the cemetery were not aged or sexed, if Egyptians were buried in the graves, then females must have been part of the burials. Tomb 219 contained three related amulets: one of Bes, one of Hathor, and a large faience plaque decorated on one side with three figures of Bes and on the reverse with a central depiction of Hathor and four more figures of Bes,
two of whom were brandishing knives to ward off danger (Figure 3.1). Since 16 coffins were found in the tomb, at least one of these could have belonged to an Egyptian woman who would have worn these amulets in death, and probably also during life.

On the other hand, theophoric objects depicting Thoth and Ptah-Sokar-Osiris are typically worn only by male individuals, as they can be linked to the male-gendered occupations of scribes and craftsmen. The Egyptians believed that Thoth was not only the inventor of writing, but also, as scribe of the gods, the recorder of the results of the judgment of the deceased in the afterlife, and was therefore the patron god of scribes and hieroglyphs (Andrews 1990: 27). Ptah and Sokar were traditionally separate gods who both represented craftsmanship, especially the former deity, who created mankind out of clay on a potter’s wheel (Wilkinson 2003: 209-210). Later, these gods were syncretized with the deity Osiris, which added a funerary aspect to the trio, and were now a single divinity named Ptah-Sokar-Osiris (Wilkinson 2003: 34). Tomb 7 at Beth-Shean contained amulets of Thoth, Ptah-Sokar-Osiris, and Hathor, and only one coffin, perhaps demonstrating that individuals of both genders and different occupations had all been placed in the same sarcophagus, similar to the examples from Egypt, as well as at Deir el-Balah.

All of the theophoric amulets just described also overlap into the next category of phylactic or apotropaic pendants. Another example of this type, the cowrie shell, was discovered in two tombs (29 and 66) at Beth-Shean and one burial (606) at Deir el-Balah (Figures 3.1 and 3.5). The cowrie shell was exclusively worn by women in Egypt, where, because of its resemblance to female genitalia, the shell was believed to ward off any evil that might interfere with fertility or maternity (Andrews 1990: 42). None of the human remains were sexed in the three graves with cowrie shells, but again, if Egyptians were in any of the eight coffins in Tomb 66 at Beth-Shean, at least one must be female, and if the single internment of Tomb 606 at Deir...
el-Balah is also Egyptian, it must belong to a woman. The cowrie shell from Tomb 29 at BethShean was associated with a single individual in Area A of the grave, who was also accompanied by calcite and serpentine stone tazzas from Egypt, and an ivory spindle whorl, which are also associated with females in New Kingdom Egypt, as spinning was an activity typically performed by women (Koltsida 2007: 84; Kemp and Vogelsang-Eastwood 2001: 491).

The homopoeic class of Egyptian amulets is represented by scarabs in both Levantine necropoleis, not only including plain scarab-beads that would have been part of necklaces or bracelets, but also scarab-seals that were set into bezeled-rings. The scarab-bead was a specifically funerary amulet, representing the *scarabaeus sacer* beetle who rolled balls of dung considerable distances, which the Egyptians associated with the passage of the sun, and from whence newborn beetles would appear to be spontaneously generated, representing resurrection and new life for the deceased (Andrews 1990: 50-51). Scarab-beads were commonly discovered in the graves of both genders in Egypt and this was also the case in the two Levantine necropoleis under review (Smith 1992: 204).

Dynatic amulets, which were described above as having the same function as homopoeic but of inanimate objects instead of living creatures, at Beth-Shean and Deir el-Balah are represented by a few uraei and copious floral pendants, both of which were correspondingly common in Egypt during the New Kingdom. The uraeus was originally restricted to the king and deities as an integral facet of royal and divine regalia, but was later borrowed by private citizens who could then partake of these important aspects, as well as the security associated with the spitting cobra uraeus. Uraei are depicted among lists of amulets on papyri, where up to four can be placed at the forehead, feet, and torso of the deceased individual (Andrews 1990: 75-76). Four of such amulets were discovered in Tomb 7 at Beth-Shean, and may have originally been
placed in those locations on the body or bodies of individuals placed in the sarcophagus found in the grave (Figure 3.1).

At least 78% of the amulets in tombs at Beth-Shean and Deir el-Balah belong to the floral subtype of the dynatic category, which is relative to the major popularity of these same types of pendants in the New Kingdom, especially during the Amarna Period (Romano 1995: 1611). Talismans of lotus-seeds, palmettes, floral buds, and mandrake fruits were found in burials at both Levantine cemeteries. In Egypt, these floral motifs were linked with concepts regarding lush vegetation, like regenerative growth and therefore resurrection, especially those of the lotus, a flower that was reborn each morning when its petals were opened under the warmth of the sun (Andrews 1990: 88). The large number of floral amulets, as well as their uniformity in shape, color, and graduated sizes, most likely demonstrate that these pendants were part of broad collars, one of the most common types of personal adornment in New Kingdom Egypt.

The aforementioned ktematic category of amulets is represented by a sole amulet in Tomb 60 of the Northern Cemetery at Beth-Shean (Figure 3.1). A drawing or photograph of the pendant has never been published, but Oren remarks that it resembles “two ducks” (1973: 223). While amulets in the shape of a trussed duck commonly represented the same food offering shown in funerary scenes, gold versions with multiple (usually two) ducks were handed out by the king to high officials during court events, such as the jubilee of Amenhotep III in the 18th Dynasty (Andrews 1990: 91-92). Since Tomb 60 was one of the earliest burials at Beth-Shean and dated to the Late Bronze Age II based on the ceramic assemblage, it is possible that the amulet was handed out to an Egyptian official who was deployed to Beth-Shean by the king and was subsequently buried in the anthropoid sarcophagus in the grave.
The 20 bronze bangle bracelets discovered in the tombs at Beth-Shean and Deir el-Balah are of a similar type to those found in New Kingdom burials in Egypt. Bracelets are only found in dual numbers in Egypt, and all but a few examples were discovered in groups of two or four in the two Levantine cemeteries, where even one pair was found coupled together by a small link in Tomb 241 at Beth-Shean. Also analogous with Egypt, the bangle bracelets in the necropoleis at Beth-Shean and Deir el-Balah appear to have been worn by individuals of all socio-economic statuses, genders, and ages, where they were part of tomb assemblages with many high-value items, as well as functioning as the only grave good beyond pottery in other tombs, as in Tomb 304 at Deir el-Balah, where two bangle bracelets and two ceramic vessels had been placed in the burial of a child (Figure 3.4).

After beads and amulets, finger-rings were the second most common item of personal adornment in the cemeteries at Beth-Shean and Deir el-Balah, which corresponds to similar patterns in New Kingdom Egypt. All three types of rings found in Egypt were discovered in the two Levantine cemeteries as well. This includes 15 simple bands of gold or bronze, two engraved signet-rings, and at least 37 bezeled-rings, which were the most numerous type of finger-ring at Beth-Shean, Deir el-Balah, and in Egypt. The bezeled-rings are manufactured out of gold, silver, and bronze, and were set with scarabs, scaraboids, and seals of steatite, faience, and carnelian. The most common material utilized for scarabs in Egypt in the New Kingdom, glazed steatite, was also the most common in the two Levantine cemeteries, at a total of 50%, with the remaining 50% split between faience and carnelian.

The majority of the scarabs, scaraboids, and seals set into bezeled-rings were engraved with the names, epithets, and images of Egyptian deities and kings, in addition to the same motifs found among the amulets in the graves. The bezeled finger-rings holding stones and
faience with inscribed amuletic designs would have fulfilled the same roles as the five categories of amulets provided above: theophoric or theomorphic, phylactic or apotropaic, homopoeic, dynatic, and ktematic. The nine scarabs and three seals engraved with the names, epithets, and figures of Egyptian kings were often a component of the objects presented to the elite and sub-elite by the king during national festivals, court functions, and military honors in Egypt. As was stated above, while royal scarabs can characteristically be used as evidence of gifts from the king to officials in Egypt and abroad, caution must be applied in using the royal names to date the tombs, or even to date the scarabs, as these objects, especially those with the name of Thutmose III, were commonly heirlooms, inheritance pieces, or were produced long after the pharaoh was deceased (Hornung and Staehelin 1976: 26-29, 41-87; Jaeger 1982: 94, 184-253; Teeter 2003: 14).

On the other hand, since the tombs of Beth-Shean and Deir el-Balah have only been dated according to the ceramics, it is possible that the Thutmose III scarab in Tomb 27 at Beth-Shean might be contemporary with the reign of that king, as the tomb dates to the Late Bronze Age IA to IIB. The same might be true for the Ramses II and III scarabs in Tombs 66 (Iron Age IA) and 219 (Late Bronze Age II to Iron Age IA) at Beth-Shean and in Tomb 114 (Late Bronze Age IIB) at Deir el-Balah. The scarabs with the name of Thutmose III in Tombs 66 (Iron Age IA) and 219 (Late Bronze Age II to Iron Age IA) at Beth-Shean and Tomb 118 (Late Bronze Age IIB) must either be heirlooms or later productions. This might also be true for the amethyst scarab in Tomb 118 at Deir el-Balah, due to the prevalence of this material in the Middle Kingdom in Egypt (Markowitz 2001: 202).

74 For more information on the dating of this tomb and the following examples, see the descriptions of the individual tombs in the chapters on the Northern Cemetery and the cemetery at Deir el-Balah.
One scarab engraved with a name and title discovered in Tomb 118 at Deir el-Balah would have played a significant role in the Egyptian funerary process (Figure 3.3). This glazed steatite scarab was inscribed with three lines of hieroglyphs that read \textit{imy-r-pr sS ib wHm-anx}, which translates as “Overseer of the House, Scribe, Ib, repeating life.” The scarab belonged to a man named Ib, whose titles included Overseer of the House (Steward) and Scribe, and was deceased, according to the epithet following his name. While Baruch Brandl, who published the scarab, states that it must have belonged to an Egyptian official, he claims that a mistake in the writing illustrates that the scarab was “made in Canaan by a local artisan” and therefore “was not necessarily owned by an official and one should therefore be cautious in drawing historical conclusions about Egyptian administration in the area” (1979: 84).

Brandl explains that the mistake lies in the phonetic complement and epithet being placed before the name. The second line of text begins with the hieroglyph of a goat-kid, representing the biliteral \textit{ib}, directly behind the kid is the epithet, and below the kid are the uniliteral signs \textit{i} and \textit{b}, the phonetic complements to the biliteral sign above, which are then followed by the seated-man determinative for a male name. While it is true that in long single rows or columns of text, the phonetic complements commonly follow neatly behind the initial sign, in texts with little space or of odd shapes, the complements will be placed in whatever location is the most aesthetically pleasing. This frequently means that in some parts of the text the hieroglyphs might be in a straight line, while in other parts they are placed into square groups, based on the height and length of each sign (Allen 2000: 5). Therefore, the scarab should be read as a series of square-groups, modified in shape and size in order to fit the tiny rounded medium of a scarab.

Since the name Ib, and the titles of Steward and Scribe are common in the New Kingdom, it is possible that Ib was an Egyptian official deployed to the Levant during that
period, and that Ib (or his relative) was the 35-40 year old man buried in Tomb 118 (Ranke 1935: 19-20; Quirke 2004; Ward 1982: 10, 156). The bezeled-ring with a scarab belonging to Ib would have played an imperative role in the perpetuation of his name, one of the five Egyptian divisible aspects of self that would need to be associated with Ib throughout life, death, and the afterlife. Through engraving his name on a scarab, Ib (or his son) was able to ensure that his name and titles were always connected to the other five parts (kA, bA, body, heart, and shadow) present in the tomb. Suggesting that the owner of the tomb and the ring was a Canaanite who could either not understand what was written on the ring, and added it to the grave as part of an ignorant elite emulation, or who knew what was engraved on the ring, but did not mind that the name was not his own, is a colonial perspective that devalues the burial practices and individualized knowledge of Canaanite culture.

The theory of ignorant elite emulation for Tomb 118 may also be improbable due to the fact that the amulets and rings in situ on the female skeleton sharing the same sarcophagus were all commonly manufactured for females in Egypt (Figure 3.3). Two signet rings, one engraved with a figure of Bes, and the other with a crossed-line star pattern, were discovered on the fingers of the 25-30 year old woman who was mentioned earlier as wearing a bracelet with one Bastet and two Bes amulets. Figures and amulets of both Bes and Bastet were only worn by women, as mentioned above, and the fact that a female wears these deities in the tomb demonstrates that it was known what was engraved on the rings and the amulets, as well as their exclusive association with women in Egypt. The fact that the rings were still in situ on the left hand, where they are typically located on individuals in graves of the New Kingdom, also demonstrates a knowledge of Egyptian practices of bodily ornamentation (Smith 1992: 204).
While certain evidence regarding items of personal adornment might suggest that some or all individuals buried in the tombs at Beth-Shean and Deir el-Balah were Egyptian, other finds might suggest otherwise. It has already been noted that the drop-shaped earrings discovered in Tomb 118 at Deir el-Balah were not an Egyptian style, and the presence of head-plates in at least two of the tombs at Beth-Shean shows another non-Egyptian practice. In Tomb 202 of the Northern Cemetery, a lozenge-shaped strip of gold foil was discovered inside one of the coffins with a lid in the naturalistic style (Figure 3.1). The foil was engraved with a cross-hatched design and was pierced at each end for the attachment of a string or cord. Dothan and Oren equate the object with mouth-plates that were “originally tied over the mouth of the corpse before it was placed in the coffin,” which they equated with a Mycenaean and Philistine burial custom (Dothan 1967: 220, 245; Oren 1973: 119).

These ornamental pieces of foil are, however, commonly discovered in late Middle Bronze Age and early Late Bronze Age tombs, and are part of a local Levantine practice of wearing gold foil plates on the forehead with a cord tied around the back of the head (Maxwell-Hyslop 1971: 120-122; Ziffer 1990: 57). An additional four more strips of gold foil that could be associated with head-plates were found in Tomb 66 at Beth-Shean. The wearing of head-plates and drop-shaped earrings are associated with other non-Egyptian items of personal adornment, like nose-rings, torques, and toggle-pins, which were often explicitly employed to identify and represent foreigners in Egypt (Sparks 2004: 29-33). The fact that the earrings were found in Tomb 118 at Deir el-Balah, which also contained the scarab of Ib and the Bes and Bastet jewelry on a female, shows that there was indeed a mixture of cultures in the cemetery.

The multi-cultural assemblage found in Tomb 118 could be a result of the complex processes concerning multifaceted cultural identities, and might illustrate that some Egyptians in
the Levant deliberately chose to include non-Egyptian objects in their tomb and consequently, to not present a wholly Egyptian identity. These individuals could be Egyptians who had resided and worked in Canaan for a long period of time and were acculturated to the local customs, or could be Canaanites who desired to emulate the Egyptian elites of the area, yet fully understood the meanings and customs associated with Egyptian practices of personal adornment. Since there were multiple individuals in the burial, the tomb might even belong to an Egyptian and a Canaanite, who inter-married.

However, the concept of cultural identity does not necessarily need to include an assigned and static ethnic affiliation, as an individual born in Canaan, but raised in Egypt, a common practice for the sons of Canaanite rulers in the New Kingdom, might choose to represent himself as “Egyptian,” “Canaanite,” or “Egypto-Canaanite,” based on his location, the period, the situation, and/or the audience. What is important is that the individuals buried in Tomb 118 deliberately chose objects that were not wholly Egyptian or wholly Canaanite in order to represent a multi-cultural or hybridized cultural identity, which might also reflect multi-cultural or hybridized burial practices and beliefs.

4.6.4 Funerary Practices and Items

One of the most significant categories of Egyptian grave goods includes objects and practices that are explicitly funerary in nature. These customs include the treatment of the body, encasement, orientation, and expressly mortuary provisions like papyri, heart scarabs, and shabtis. After an individual died in Egypt in the New Kingdom, the body would be mummified and prepared for burial, a process that was recorded as lasting 70 days, an amount of time that was more magical than practical (Hays 2010: 5; Hornung 1990: 136). Transforming the
corruptible earthly physical body \((XAt)\) into a perfect and enduring eternal one suitable for the next stage of existence was essential for the deceased’s continued existence, as it was the residence of the \(kA\) and \(bA\) of the individual after death (Kanawati 2001: 20-21; Olson 2001: 214; Taylor 2010: 222).

In the 18\(^{th}\) Dynasty, bodies were simply wrapped without any real embalming, but for royalty and elites in the Ramesside Period, organs would have been removed and preserved, and the entire body fully embalmed with natron, resin, and other materials (Meskell 1997: 124, \textit{pace} Smith 1992: 199). In the Third Intermediate Period, the conservation of the corpse was at an apex, with elaborate and costly mummification procedures aimed at maintaining the deceased’s physical appearance (Ikram and Dodson 1998). In reality, few could afford the full mummification process, and “beliefs allowing for a more limited treatment were necessary if more than a tiny proportion of the elite were to aspire to its benefits and a consequent passage into the hereafter” (Baines and Lacovara 2002: 14-15).

For the majority of Egyptians, only a semblance of embalming, or “a few daubs of oil and some cheap bandages,” (Assmann 2005: 411) was necessary to preserve the body (Taylor 2001: 58-63, 78-91). As with many other aspects of Egyptian burial practices, the treatment of the body was intimately connected with socio-economic status, gender, and age. At Deir el-Medina, the majority of adults were shaven and hairless, rarely had their organs removed, and were wrapped in eight to nine layers of undecorated linen without the use of natron or resinous materials (Meskell 1999: 193). While the treatment of male and female bodies in the lower socio-economic strata was generally egalitarian, paralleling that of tomb goods, more wealthy burials illustrated considerable differentiation between men and women, with the former receiving much more elaborate embalming and mummification (Meskell 1999: 193). The bodies

271
of children in the burials at Deir el-Medina were always treated minimally and were typically only wrapped in rags or a single layer of cloth (Meskell 1999: 193-194).

It should be noted that “treatments of the body such as mummification were not simply measures of preservation; rather, they transfigured the body and imbued it with magical qualities” (Meskell 1999: 195). Through proper mortuary rituals, mummification, the placement of amulets, and deposition in a coffin, a deceased Egyptian could be transformed into a divinized Osiris or Hathor and enjoy all aspects of the netherworld (Assmann 2005: 74). For this reason, as well as another layer of protection for the body, Egyptians were commonly placed in sarcophagi for burial. In the New Kingdom, coffins were commonly manufactured out of wood, clay, stone, or cartonnage, and were meant to not only present an idealized image of the deceased, but also to mimic the mummiform aspects of Osiris (Assmann 2005: 105-106).

Again, the actual use of sarcophagi varied among different socio-economic classes, genders, and ages, with the wealthiest burials containing several nested coffins, with males typically owning more than females (Smith 1992: 197). The requirement for a funerary container was clearly strong to the Egyptians, and many times these expensive items were shared between individuals of the same family or reused in communal tombs, often over several generations (Smith 1992: 197). According to ostraca from Deir el-Medina, a plain wooden coffin cost between 25-30 deben, while a decorated version would cost an additional 10 deben, which was between three to five months worth of wages for an ordinary workman at Deir el-Medina (Cooney 2007: 278; Janssen 1975a: 215-233). The quality and amount of decoration on a coffin was also typically related to socio-economic status, with the elite showcasing elaborate inlays and gilding, while sarcophagi of the lower levels were either undecorated or a monochromatic white color (Smith 1992: 197-198).
The introduction of the coffin as a means of burial in the Middle Kingdom greatly impacted the orientation of the deceased in Egyptian graves. The orientation of the body in Egyptian burial customs was based on a firm belief in the need to conform to the four directions of the sky during rites of passage, such as birth, mummification, and burial (Raven 2005: 37). The human body was a true model of the universe, or microcosmos, and must therefore be oriented according to the laws and routes of nature and the gods (Altenmüller 1977: 624-627; Beinlich 1984). There are two main orientations of the deceased in Egyptian history, which can be correlated with the periods demonstrating the absence or presence of a coffin.

Previous to the introduction of the coffin, Egyptians were most frequently placed on the side in fetal position on a north-south axis with the head pointing north and facing the west, which focused on the realm of the setting sun, the deceased, and the netherworld (Spence 1997: 109-111). The utilization of coffins was introduced in Egypt during the Middle Kingdom, and in a gradual shift between the end of the 12th Dynasty and the beginning of the 18th Dynasty, the orientation of the deceased became supine and extended on an east-west axis with the head pointing west (Bourriau 2001: 1-20). The deceased were still required to face the west, but as they were now in an extended supine position, the heads, rather than the faces, were pointed westward (Raven 2005: 52). This practice continued throughout the New Kingdom, when coffins were placed on a east-west axis with the tops or “heads” pointed to the west (Lüscher 1998: 61-65).

Like the coffin, certain provisions deposited in Egyptian tombs of the New Kingdom were also explicitly linked with the funerary sphere and would not have been used during life. Mortuary papyri, such as the “Book of the Dead,” or heart scarabs, were important objects that functioned in guiding and helping the deceased in the journey to and through the netherworld.
and the judgment of the deceased. In reality, these objects were so costly, for example, painted funerary papyri could cost as much as 100 deben each, almost nine months of salary for an average workman at Deir el-Medina, that they were relegated only to the elite and individuals of high-middle status (Janssen 1975a: 245-246; Smith 1992: 201-202). On the other hand, shabtis, another form of object used expressly in the afterlife, were discovered in tombs of the elite, high-middle, and middle level strata of Egyptian society (Smith 1992: 199-200).

Shabtis were a mumiform funerary figurine of clay, faience, wood, or stone that played a dual role in New Kingdom burials, where they not only represented the deceased, but were also a substitute for the deceased (Milde 2012: 1). The shabti was another home for the kA and bA, where an individual could partake of provisions in the afterlife, but could also escape from the agricultural labor involved in the acquisition of foodstuffs, like plowing, reaping, and sowing (Taylor 2001: 112-114). Through the placement of one or more shabtis in a tomb, the owner could be free from menial work in the afterlife, yet could also consume the comestibles acquired through the physical labor of the shabti. In the New Kingdom, shabtis began to be mass-produced in molds, and as many as a few hundred could appear in a royal tomb, although the majority of burials only contained one or two, which were typically placed inside the coffin (Smith 1992: 200-201).

Unlike the Nile Valley and the arid deserts of Egypt, objects of perishable materials tend not to be preserved in the more temperate Levant, including all parts of the human anatomy, with the exception of bones and teeth. Unfortunately, this means that even if a body were embalmed or mummified, remains or evidence of the process would be rare, similar to certain areas of Egypt, like the Delta, where the water table was high and human remains were seldom discovered intact. Providentially, some remains of Egyptian mummification might exist in a
single tomb in the necropolis at Deir el-Balah. In Tomb 118, a coffin was discovered with the remains of two individuals, along with several grave goods that had been placed with the deceased inside the sarcophagus, including a bronze platter and a mirror (Figure 3.3). Upon examining these bronze objects, Dothan discovered small pieces of cloth adhering to the base of the platter and the face of the mirror (1979: 68).

The cloth was a linen fabric of tabby weave of simple form, with single wefts over single warps, made from S-twisted threads of 26-28 per centimeter and the flax ultimate fiber showing distinct cross-markings and nodes. While Dothan attributed the fabric to linen cloths covering the bronze objects in the sarcophagus, it is more likely that the cloth was actually part of the wrappings around the bodies of the deceased, especially since both the platter and mirror were lying directly on top of or near the body on the right side of the coffin. Further evidence might arrive from an examination of the cloth itself, which was an undecorated monochrome flax-based linen, which is the prevalent fabric type for textiles in Egypt, while those in the Levant were typically made of dyed animal wool (Cochavi-Rainey 1999: 181-183; Lilyquist 1998: 215; Vogelsang-Eastwood 2000: 286-290).

The Egyptians frequently depicted their own monochrome white linen clothing in stark contrast to the multicolored and vivid patterned clothing of the Canaanites (Brovarski et al. 1982: 180; Negbi 1976: Fig. 103; Newby 1980: 38). The actual manufacturing process of the cloth also conforms to Egyptian practices, with S-spun threads in a simple weave, while those in the Levant are typically Z-spun in a compound weave (Hall 1986: 45-46; Kemp and Vogelsang-Eastwood 2001: 59, 436; Sheffer and Tidhar 1988: 230; Vogelsang-Eastwood 2000: 275). If Egyptians were buried in Tomb 118, the initial layer of protection and preservation for the body
would have been accomplished through these linen wrappings, which might have also been associated with some form of unpreserved embalming.

For Egyptians in the New Kingdom, a second form of protection for the body would have been a sarcophagus, and at least 56 coffins were discovered in all but two of the tombs in the Northern Cemetery at Beth-Shean and six at Deir el-Balah, with another 44 examples in the Israel Museum believed to be from the latter site. All but one of the coffins was made of clay, and all are cylindrical-shaped with a maximum diameter located at the shoulders that then tapers down toward a flat base. The upper one third or one fourth section of each coffin had a detachable lid with facial features, arms, and hands modeled in relief or appliqué, leading to the common name of “anthropoid sarcophagi.”

While the burial custom of placing the deceased in a sarcophagus is generally attributed to the Egyptians, the coffins at Beth-Shean and Deir el-Balah have also been attributed to Canaanites practicing elite emulation, or the Sea Peoples, who were influenced by Egyptian practices, as mentioned above. Evidence for the local production of clay coffins in the settlement at Deir el-Balah comes from the discovery of pieces of a sarcophagus in situ in a kiln at the site, along with INAA studies demonstrating that the coffins and pottery from the cemetery and the settlement were all produced from the same local clays (Dothan and Nahmias-Lotan 2010b; Goldberg et al 1986; Perlman, Asaro, Dothan 1973; Yellin and Killebrew 2010; Yellin, Dothan, Gould 1986). The remains of certain manufacturing techniques apparent on the coffins also show evidence of Egyptian practices commonly found in the pottery industry.

Many of the coffins excavated or illicitly removed from Deir el-Balah exhibit one or more horizontal rows of rope impressions that encircle the sarcophagi. Dothan attributed these impressions as the result of cutting the lids with ropes (2008: 97). While this theory might
explain the impressions located near the edges of the lids, it does not explain why rope
impressions are also located around the back of the coffins. Furthermore, a close examination of
the sarcophagi shows that most of the lids must have been cut with a sharp implement, as the
smears typically associated with rope-cutting in pottery are not present. In a personal
examination of the rope impressions themselves, I noticed that they are almost identical to the
indentations left behind by ropes in the manufacture of Egyptianized vessels in the Levant.75

These imprints have been linked to the Egyptian practice of tying twined ropes or leaves
around the upper part of large unbaked vessels in order to hold them together and prevent
deformation during the drying process, which is a hallmark of large vessels in New Kingdom
Egypt, and is still used in modern Egypt, e.g., for the production of zirs (Arnold 1993: 91; Aston
1998: 110; Martin 2011: 110; Wendrich 2013, pers. comm., 19 May). It has already been
suggested that the sarcophagi from Beth-Shean and Deir el-Balah were produced using the same
coiling techniques employed to make large storage jars (Dothan 1979: 98; 2008: 24; Oren 1973:
133). Since Egyptianized ceramics in the Levant are believed to have been created by Egyptian
potters, it stands to reason that the coffins, which were determined to be of the same clay as the
Egyptianized pottery from the site and settlement, were also manufactured by Egyptian
craftsmen and potters.

As in New Kingdom Egypt, several coffins in the assemblages at Beth-Shean and Deir el-
Balalah were decorated on the lid, and sometimes the body, with red, white, yellow, brown, black,
and/or pink paint (Dothan 1979: 98; 2008: 24). Features on the lid, including the eyebrows,
pupils, forehead, cheeks, lips, ears, wig, collar, fingers, and chest, were sometimes filled in or
outlined, while the lid and body could be slipped in entirety or adorned with patterns of ladders,

75 For a complete description and discussion of Egyptian manufacturing techniques on locally-produced
Egyptianized pottery in the Levant, see chapter seven.
triangles, lines, or zigzags (Dothan 1979: 98; 2008: 24, 96-97, 103, 105, 107-109, 112, 116). These decorative patterns, as well as the mummiform shape of the sarcophagus, divine beards, and crossed hands would have all facilitated the transfiguration of the deceased into an Osiris.76

Several shabtis were also present in the tombs at Beth-Shean and Deir el-Balah, where eight of the figurines were discovered in four burials (90, 219, 221, and 241) at the former site, and one example came from the illicit excavations of the cemetery at the latter site. All nine of the shabtis were manufactured out of clay, were painted, and are of the typical New Kingdom peg-shape. The example in the Israel Museum was mold-made and five examples from Beth-Shean were determined to have actually been made in the same two molds, corresponding to the New Kingdom practice of mass-producing shabtis in molds (Dothan 2008: 148; Oren 1973: 123). The Egyptian custom of placing shabtis in the sarcophagus with the deceased was also paralleled in two tombs at Beth-Shean, where two figurines were found in a coffin in Tomb 221, and another was inside of a sarcophagus in Tomb 241.

The orientation of the tombs in the necropoleis at Beth-Shean and Deir el-Balah fall into two interesting patterns. The tombs for which the orientation of the human remains or coffins can be determined fall into three divisions at each site. At Deir el-Balah, 57\% (n=25) of the tombs were oriented east-west, 41\% (n=18) were northwest-southeast, and 2\% (n=1) was north-south (Figure 3.3-3.6).77 If the claims put forward by Lipton are followed, then the northwest-southeast oriented graves should be grouped with those in the east-west category, which means that 98\% (n=43) of the graves are oriented according to practices followed in Egyptian burial

76 For a complete discussion of the sarcophagi at Beth-Shean and Deir el-Balah, see the preceding chapter.

77 Two tombs (100 and 111) included in these percentages as east-west were recorded as such in the publications of the graves, however, it should be noted that the tombs were oriented north-south on maps in later publications. For details about these inaccuracies, see the description of the tombs in the preceding chapter.
customs of the New Kingdom (2010: 5). This may be corroborated by the fact that all of the graves in the east-west category, whether east-west or actually northwest-southeast, contained skeletal remains or coffins with the heads pointing in a westerly direction, the designated direction for burials in the Egyptian New Kingdom.

At Beth-Shean, 65% (n=11) of the burials were oriented northwest-southeast, 23% (n=4) were northeast-southwest, and the remaining 12% (n=2) were north-south (Figure 3.1). If one again follows the claims put forth about orientation at Deir el-Balah, that graves in any type of easterly or westerly line should be grouped together in an east-west category, then 88% (n=15) of the tombs are of this type, which corresponds to the percentages at Deir el-Balah and Egypt in the New Kingdom. Further evidence for this might come from the fact that many of the human remains or coffins in the east-west group were only aligned slightly to the north or south due to the burials being situated parallel to a nearby wall, which appeared to dictate the orientation. It is significant that the majority of burials at both Beth-Shean and Deir el-Balah were aligned on a similar axis, especially considering the great distance between the two locations, as well as the incredible differences in tomb type, with those at Deir el-Balah being newly constructed shallow pit graves with an open view to the sun and night sky as a compass, while those at Beth-Shean were reused rock-cut shaft burials lacking any viewpoint of the sky.

4.7 SUMMARY AND CONCLUSION

In this chapter, the second portion of the study on mortuary contexts was presented, where the elements and features of the cemeteries and graves at Beth-Shean and Deir el-Balah

78 The single grave (601) oriented north-south in the cemetery was devoid of human remains or finds, yet is of a common size, shape, and layout for burials at Deir el-Balah. No topographical or other features appear to have been the cause of the grave’s converse orientation, and perhaps after the tomb was originally constructed, it was noticed that the layout was incorrect and the burial was never actually used.
discussed in the previous chapter were examined entirely from an Egyptian perspective and through a framework of cultural identity. This analysis was comprised of a thorough account of the Egyptian funerary process of the New Kingdom, beginning in life and continuing beyond death into the afterlife, followed by close analyses of the necropoleis and tombs at Beth-Shean and Deir el-Balah in light of Egyptian mortuary dogma and praxis. The aspects of the New Kingdom Egyptian mortuary process were divided into three sections, beginning with the preparations for burial that occurred during life, followed by the subsequent construction of the tomb, and concluding with the assemblage of equipment provisioned for the grave.

Both of the mortuary contexts examined in this study illustrate than an individual buried in the cemeteries at Beth-Shean and Deir el-Balah would have received a proper New Kingdom Egyptian burial, with all six aspects of identity, including the life force (kA), manifestation (bA), heart (ib), name (rn), shadow (Swt), and body (XAt) carefully protected, prepared, and provisioned. The canonical and subterranean shaft and pit tombs in the Levantine mortuary contexts of this study reflect the typical types of New Kingdom Egypt, and would have adequately functioned as an official dwelling place for all six aspects of an Egyptian.

The physical body (XAt) was essential for the deceased’s continued existence, and would have also been protected in the pit and shaft tombs of Beth-Shean and Deir el-Balah, as in Egypt, in a deep underground burial chamber of a shaft tomb at the former site or the recesses of a subterranean pit burial at the latter. Even further protection and preservation of the bodily aspect of Egyptian identity arrives from the discovery of over 100 anthropoid sarcophagi at the two sites, as well as the presence of linen inside a coffin at Deir el-Balah, which might be evidence of the wrapping or simple embalming that was common in the early New Kingdom in Egypt.
The subterranean burial compartments of the graves at Beth-Shean and Deir el-Balah were perfect representations of the house of the kA and bA, which would have not only been provisioned through the numerous items discovered inside of the tombs, but also through the proposed supraterranean offering places located above the burials. At Beth-Shean, these offering places might be represented by the rock ledges fronting the shafts of these burials, as well as through the stelae, which functioned as cult targets, placed in the temples of the settlement, where family members of the deceased would also leave provisions and invoke the reversion of offerings from the temple.

At Deir el-Balah, these offering places might be represented by the funerary stelae believed to have been from the cemetery, as well as the ceramic tomb markers that were partially subterranean and partially supraterranean, providing a literal physical conduit for the kA to travel from the body in the burial chamber to the offering place above the tomb. The name (rn) of an Egyptian also needed to survive into the afterlife, and so would be inscribed on objects deposited in the tomb and pronounced at the chapel during offering rituals, which is paralleled by inscribed items, such as scarabs and stelae, in the burials and offering places at Beth-Shean and Deir el-Balah.

The research presented in this chapter not only provided a detailed analyses of the New Kingdom Egyptian and Late Bronze Age and early Iron Age Levantine mortuary data sets employed in this study, but also incorporated a progressing account of the implications and results of these analyses. In chapter eight, the results of this case study will be linked with the aspects of cultural identity theory that were outlined in chapter two, providing a bridge between the methodological and theoretical frameworks.
5.1 INTRODUCTION

The focus of the second case study in this project is grounded in residential contexts, which includes five buildings located in close proximity to one another at Beth-Shean and Deir el-Balah, all of which belong to strata of the Late Bronze Age IIB and Iron Age IA. These five structures include Buildings 1500, 1700, and NB at Beth-Shean, and Buildings 350 and 1131 at Deir el-Balah. These specific edifices were chosen for the residential context portion of this project based on a number of reasons. First, all of these structures have been habitually labeled as Egyptian or Egyptian-style houses in previous scholarship, with the exception of Building NB. Building NB at Beth-Shean has been identified as a residence, but has never been given an Egyptian-style designation, and so was incorporated into the study in order to provide a further level of comparison.

Second, all five of the structures are dated to the same timeframe and are in close proximity to one another at each site, which allows for more reliable comparisons between Beth-Shean and Deir el-Balah, as well as an examination of how the buildings were related to one another within a single site. Some of these edifices also underwent modifications in a relatively short period of time; for example, the fact that Building NB was occupied, extensively modified, and then re-occupied all within the Iron Age IA, adds further potential for analysis in the study of residential contexts and their use over time. Third, these five edifices exhibit a wide variety of dimensions, shapes, and layouts, and finally, each one was excavated, re-excavated, and/or published in the past seven years, which provides an opportunity to not only employ a new
methodological and theoretical approach to the previously-published material at these sites, but also to incorporate the new material, data, and conclusions of the recent reports.

In this chapter, a descriptive analysis of these five structures is presented, beginning with a complete excavation and publication history for each building, which for Beth-Shean, incorporates the work of the original excavations in the 1920s and 1930s, but also the renewed excavations that occurred seven decades later in the 1990s. Next, the chronology of the five edifices at Beth-Shean and Deir el-Balah are discussed, including the strata, levels, and date, as well as any incongruity between scholars over the chronology of the two sites. A thorough description of each building is then provided, including the dimensions, shape, construction methods, walls, foundations, materials, main entrance, and architectural details.

This is followed by a comprehensive and detailed account of each individual room in the five structures at Beth-Shean and Deir el-Balah, including the dimensions, stone elements, floor, features, inscriptions, deposits, thresholds, walls, and all pottery and objects discovered inside. The descriptive presentation of the objects for each room includes my translation of all textual material and identification of gods and goddesses, amuletic forms, and symbols, as well as an individualized examination of the Egyptian and Egyptianized pottery, either in-person or through the published and unpublished profiles.

The information about these five buildings was gathered from seven publication reports from 1923–2009 by Clarence Fisher, Alan Rowe, Gerald FitzGerald, Frances James, and Amihai Mazar for Buildings 1500, 1700, and NB at Beth-Shean, and from nine publication reports from 1981–2010 by Trude Dothan and Baruch Brandl for Buildings 350 and 1131 at Deir el-Balah. Any inconsistencies in data or variations in conclusions between these publications, as well as those of outside scholars, are discussed in the text for each structure. This chapter not only
provides a comprehensive, collated, accurate, and updated discussion of the data employed in the second case study, but also establishes a foundation for the second portion of the study on residential contexts that follows in the subsequent chapter, which examines the elements and features of the buildings at Beth-Shean and Deir el-Balah from an Egyptian perspective and under the lens of cultural identity theory.

5.2 BUILDING 1500 AT BETH-SHEAN (Figures 5.1-5.4)

5.2.1 Excavation and Publication History

Building 1500 is located in Area Q, which is situated on the summit of Beth-Shean (HU Square P-Q/6-7, UME Squares F-L/13-18). This structure was initially excavated by the University Museum Excavations (UME) of the University of Pennsylvania in 1923 under the direction of Clarence S. Fisher, and subsequently excavated from 1925-1928 under Alan Rowe, and from 1930-1931 under Gerald M. FitzGerald (Mazar and Mullins 2006: 6; Mazar 2006c: 61). Due to the onset of the Great Depression and World War II, the UME only published preliminary reports of these excavations, however, the architecture and material culture of Building 1500 was further analyzed over three decades later by F.W. James in her publication on Levels VI-IV at Beth-Shean (Fisher 1923; FitzGerald 1932; James 1966; Ovenden 1923; Rowe 1927).

In 1991, excavations of Building 1500 were renewed under the direction of Amihai Mazar on behalf of the Institute of Archaeology of the Hebrew University (HU) (Mazar 2006c: 61). Work continued from 1992-1994, with another examination of the southeastern corner of the building in 1996. The goal of these excavations was to “conserve and reconstruct” the structure, which included re-examining the existing remnants and excavating the floors, while
Figure 5.1: UME Plan of Buildings 1500, 1700 and NB at Beth-Shean
(after James 1966: Fig. 77)
Figure 5.2: HU Plan of Buildings 1500, 1700, and NB at Beth-Shean (after Mazar 2009a: Fig. 1.5)
Figure 5.3: UME Plan of Building 1500 at Beth-Shean
(after James 1966: Fig. 77)
Figure 5.4: HU Plan of Building 1500 at Beth-Shean
(after Mazar 2006c: Fig. 3.3)
leaving the remaining walls intact. The Hebrew University excavations of Building 1500 were published extensively in 2006 (Mazar 2006a).

5.2.2 Chronology, Dimensions, and Construction

Building 1500 is situated in the HU’s Stratum Q-1 at Beth-Shean, which corresponds to the UME’s Level VI, dated to the Iron Age IA. The eastern outer wall (88913) and seven internal walls (88916, 98931, 88911, 98932, 88935, 10904, and 10930) of the structure were built directly upon the mudbrick walls of an earlier Stratum Q-2 edifice, the walls of which were leveled off between one and three courses (Mazar 2006c: 65-66). Although the earlier structure had a different internal layout, it paralleled the outer dimensions of Building 1500, which were 22.4 x 23.5 m, with a total area of about 526.4 m² (Mazar 2006c: 65-66). Building 1500 was therefore generally square in shape, although the corner where the eastern (88913) and southern (10937) outer walls met was offset by 1.0 m, creating two southeastern corners for the building (Mazar 2006c: 75).

The construction of Building 1500 consisted of a mudbrick superstructure built upon a foundation of three to five courses of dry-laid unworked basalt stones. These foundation stones ranged in length from 20 to 30 cm, with the largest examples in the corners and lower courses of the walls. Angular points of the lowest course of foundation stones were sunk directly into the mudbrick matrix of the earlier Stratum Q-2 structure. The thickness of the outer walls of Building 1500 varied from 1.70 to 1.85 meters in width, with the exception of the northern wall (88912), which was 2.2 m wide. (Mazar 2006c: 66)

Architectural stone details within Building 1500 included three column bases, seven T-shaped doorsills, and fragments of square doorjambs and rectangular lintels, six of which were
inscribed and many of which were discovered in situ (James 1966: 5-6, 9, Fig. 77). The layout of Building 1500 consisted of a central columned room surrounding on all sides by other smaller rooms and corridors. The only entrance to the structure is believed to have been located in the western wall (10936), but since only stone foundations below floor level remained, this cannot be verified. The UME proposed that the entrance should be situated in the center of the western wall (10936), while Mazar suggests that the entrance was actually located in the northern section of the western wall (James 1966: 9; Mazar 2006c: 68) (Figures 5.3 and 5.4). Mazar put forth the premise that these special T-shaped doorways direct an axis of movement through the structure, with a progression issuing from the wide part of the threshold to the narrow section (from the top of the T to the base) (2006c: 67-69).

5.2.3 Rooms and Loci

5.2.3.1 Building 1500: Room 1586 (Mazar 2006c: 74-75) (Figures 5.3-5.4)

The central room (1586) in Building 1500 was also the largest, with internal dimensions of 8.8 x 8.2 m, occupying an area of about 72 m². Two round limestone column bases were located in the almost exact center of the room, about 1.5 m apart from one another and each about 1.85 m from the northern and southern walls and 3.5 to 4.0 m from the eastern and western walls (Mazar 2006c: Fig. 3.8). The 0.80 and 0.86 m tall column bases had a sloping profile, measuring 1.5 m in diameter at the bottom and gradually narrowing to 1.45 m wide at the top. A high roof with clerestory lighting was believed to have been supported by capitals atop unpreserved wooden columns standing on the stone bases. Although no capitals were discovered in the building, two limestone papyriform examples discovered out of context about 48 m to the
southeast of the structure have been suggested as possible candidates to sit upon the columns in the central room of Building 1500 (Rowe 1940: 16, Pl. XXVI: 20). The floor of the columned room was close to the bottom level of the column bases so that both the wider and narrower parts of the columns were visible above the floor.

Finds in the central room (1586) include a limestone slab, an inscribed limestone doorjamb, an alabaster pyxis, pottery, seals, beads, an ivory comb, metal objects, and a figurine fragment. A large rectangular slab was positioned in the southwestern corner of Room 1586, standing on a platform of one mudbrick course and partly obstructing a doorway leading to the south (FitzGerald 1932: 143; James 1966: 19, Fig. 79:2) (Figure 5.3). The top of the stone was slightly hollowed out to leave a narrow edge all around and was marked on one end with three round depressions (Mazar 2006c: Fig. 3.11). While FitzGerald and Mazar would situate the stone in Level VI, James would place the slab in Late Level VI (FitzGerald 1932: 143; James 1966: 19; Mazar 2006c: 75).

An inscribed fragmentary limestone doorjamb (A-5, No. 31-12-44) was discovered southwest of the southernmost column base (James 1966: 6, Figs. 90:1, 91:1). The doorjamb fragment measured 29 x 28 cm and was inscribed with hieroglyphs filled with blue paint and enclosed by a parallel vertical incised line on each side. The incised lines were further bordered by orange painted lines 1 cm away, and 6 cm to the left of the left orange line were two painted red stripes about 1 cm apart (James 1966: 6). The fragmentary hieroglyphs on the doorjamb read \(\ldots k \, Htp \, r \, st=f \, n \ldots \) (“… content in his place of…”). The final stone object discovered in Room

79 When Building 1500 was originally excavated, Rowe and FitzGerald discovered walls and floors immediately above the Level VI material, which they designated as “Late Level VI” (Iron Age IB) (FitzGerald 1932: 42). While the excavators clearly marked the walls of this later stratum on the site plans, they did not distinguish between the Level VI and Late Level VI pottery and material culture (James 1966: 19, 23, 27). Since Late Level VI is post-Egyptian, it is not relevant to this study, but fortunately, both James and Mazar were able to distinguish between the earlier and later material, and those vessels and objects they attribute to Late Level VI will clearly be noted in the description of each room.
1586 is an alabaster pyxis that was uncovered in the northern part of the room (James 1966: Fig. 50:11, No. 31-11-260).

Pottery from the central room (1586) of Building 1500 included locally-produced Egyptian-style forms, Canaanite forms, and an imported Mycenaean vessel. Four Egyptian-style vessels were discovered in Room 1586. A simple bowl (No. 31-10-279) with a reddish-brown surface and traces of red wash around the rim was found in the southwestern area of the room (James 1966: Fig. 49:12, No. 31-10-279; Martin 2011: Pl. 6:2; Mazar 2006d: 120). A similar simple bowl (No. 31-11-57-b) was described as being found “inside the semicircular wall” of Late Level VI, and therefore James states that the vessel could possible date to this stratum, although Mazar would specific situate it firmly in Level VI (James 1966: Fig. 49, No. 31-10-279; Mazar 2006d: 120) (Figure 5.3). A third open vessel (No. 31-11-57-c), also found inside the semi-circular wall, is an Egyptian-style spinning bowl. Because of the provenience, James would assign a possible Late Level VI location for the bowl, with Mazar situating the vessel in Level VI (James 1966: Fig. 49, No. 31-11-57-c; Mazar 2006d: 120). Since these vessels were Egyptianized, the earlier designation of Mazar to the Iron IA appears more reasonable than the post-Egyptian occupation date of the Iron IB posited by James. An Egyptian-style beer jar (No. 31-10-280-a) with interior ribbing also came from the central room (1586), in the southwestern area (James 1966: Fig. 49, No. 31-10-280-a; Mazar 2006d: 120).

80 Scholars commenting specifically on the pottery from Building 1500 include F. James, A. Mazar, and M. Martin (James 1966: 23-24, Figs. 49, 50). Unfortunately, while James does state that some vessels might possibly be from Late Level VI (as opposed to Level VI), she does not provide precise reasons why (1966). Also, Mazar states that “fifteen pottery vessels from Building 1500 were published in James 1966, almost all of which came from the central columned hall (Locus 1586), except for two Egyptian saucer bowls from Locus 1599” (2006d: 120). However, Mazar only lists references for 13 of these and in fact, there are a total of 27 vessels belonging to seven different loci from Building 1500 published by James (James 1966: Figs. 49, 50, Loci 1583, 1586, 1587, 1589-1591, 1599). Martin focuses on the Egyptian-style pottery from Building 1500, but only lists three out of the four Egyptian-style examples from loci in the structure (2011: Pl. 6:1, 2, 5).

81 Walls dating to Late Level VI were left intact while excavating floors belonging to the earlier Level VI, and the later walls were therefore sometimes used to describe a findspot, like “inside the semicircular wall,” even though the material dated to an earlier level (Figure 5.3).
Six vessels of Canaanite style were discovered in Room 1586. Open forms include a cup-and-saucer (No. 31-10-150-b) of red fabric with a gray section from the northern area of the room and a 10.3 cm tall chalice stem fragment (No. 31-10-122-a) of brown fabric, dated to the Iron IA by Mazar due to the out-turned flat rim on the vessel (James 1966: Fig. 50:7, No. 31-10-150-b, 8, No. 31-10-122-a; Mazar 2006d: 120). Closed forms include a juglet (No. 31-10-122-c) of brown fabric with a red wash on the upper body trickling down to the base, another juglet (No. 31-10-42-c) with a brown slip found on a layer of stones in the western part of the room, and a storage jar (No. 31-10-462) of brown fabric with a light-brown slip discovered inside the semi-circular wall ([Figure 5.3](#)). The latter two vessels were designated part of Level VI by Mazar, but because of their provenience, James gives a possible Late Level VI assessment (James 1966: Fig. 49:3, No. 31-10-462, 22, No. 31-10-122-c, 23, No. 31-10-42-c; Mazar 2006d: 120). A Canaanite lamp (No. 31-10-111) of brown fabric measuring 14 cm long x 14.5 cm wide was also uncovered in Room 1586 (James 1966: Fig. 50:14, No. 31-10-111; Mazar 2006d: 120).

The only imported ceramic from the central room (1586) of Building 1500, found in the southwestern section, was a Mycenaean IIIC stirrup jar (No. 31-10-278) with an external yellow slip and black-brown painted decoration (James 1966: 24, Fig. 49:4, No. 31-10-278; Mazar 2006d: 120). Two more bowl rims (Nos. 31-10-123-d and f), three jar rims (No. 31-10-42-d), and one jug rim (No. 31-10-140-b) were also discovered in Room 1586, but all have been securely situated in Late Level VI due to provenience and/or stylistic traits (James 1966: Fig. 49, Nos. 31-10-42-d, 31-10-123-d, 16, No. 31-10-123-f, 17, No. 31-10-140-b).

Small finds discovered in Room 1586 of Building 1500 include seals, beads, an ivory comb, metal objects, and a figurine fragment. A steatite cylinder seal (No. 31-10-145) inscribed with two ibexes with a tree-of-life motif and a triangular-shaped stone seal (No. 31-11-356) with
one vertical and seven horizontal inscribed lines were found in the room (James 1966: Fig. 100:1, No. 31-10-145, 12, No. 31-11-356). Beads from the central room (1586) include a green faience mandrake fruit pendant (No. 31-10-496) and a blue paste truncated biconical bead (No. 31-11-340) discovered in the southwestern area of the room (James 1966: Fig. 101:5, No. 31-10-496, 11, No. 31-11-356). A comb (No. 31-10-501) engraved with two horizontal lines was the only ivory object from Room 1586 (James 1966: Fig. 101:29, No. 31-10-501). Metal pieces from the room included a bronze knob (No. 31-10-502) from the southern portion and long thin (19.7 x 2.5 cm) iron fragments (No. 25-11-9) discovered inside of the circular wall and possibly dated to Late Level VI (James 1966: 23, 24, 29, Figs. 102:2, No. 31-10-502, 104, No. 25-11-9) (Figure 5.3). A final small object from the southwestern section of Room 1586 was a figurine fragment (No. 31-10-277) of two feet on a rectangular base (James 1966: Fig. 107:8, No. 31-10-277).

At least four doorways, one in each wall, in the central columned room (1586) of Building 1500 led into the nine surrounding smaller rooms (Figures 5.3-5.4). A fifth possible doorway could have been located in the northwestern corner of the room, but a Byzantine Cistern (No. 35) destroyed that portion. The doorway in the western wall (10904) of the central room (1586) contained a limestone T-shaped doorsill (No. 1), which is one of seven similar doorsills discovered in situ in Building 1500 (James 1966: 6, 9). Doorsill 1 is constructed out of two joined stones and is one of the largest in the structure, measuring 1.95 m in length (Mazar 2006c: Fig. 3.9a). A stump of uninscribed limestone doorjamb set on the narrow northern protrusion of Doorsill 1 and fitted into the recess of the mudbrick wall (10904) was still in position, and two fragments of inscribed doorjambs (Nos. A-1 and A-2) were found lying on top of the doorsill (James 1966: 5-6, 10; Mazar 2006c: 76; Ward 1966: 164-165, Figs. 88:1, 4, 89:1, 4).
Doorjamb A-1 (No. 31-10-481-a) was lying above A-2 and contained a hieroglyphic text in two columns bordered by vertical incised lines. The text of column one reads \(\ldots iw nw wA Dw n=k aHaw n nwt nxt.ty mi mAat (?) mi (?) \) and column two reads \(\ldots ng=k rSt[wt] <Hr> aqw m Hnw=z nn xam z(y) Day \ldots \). The first column is translated as “…Heliopolis, the lifetime of victorious Thebes flourishes for you like mAat (?) and like (?)… and the second column “… you rejoice joyfully entering within it; there are no enemies drawing near it….” Doorsill A-2 (No. 31-10-481-b) is a smaller fragment with a few hieroglyphic words reading …\(n nwt wsr \ldots \), translated as “to/for the powerful city.”

5.2.3.2 Building 1500: Room 1702\(^82\) (Figures 5.3-5.4)

The threshold with Doorsill 1 and Doorjams A-1 and A-2 led from the central columned room (1586) into a rectangular hall (1702) with the internal dimensions of 4.6 x 8.3 m and an area of about 38 m\(^2\) (Mazar 2006c: 72). This doorway was the only example situated in the center of a wall in Building 1500. In the southern area (1589) of the room, six ceramic vessels were discovered. The only decorated piece was a storage jar (No. 31-10-453-c) with a five-pointed star and vertical stripe painted in purple pain on the handle and four vertical lines on the body in the same paint (James 1966: Fig. 49:5, No. 31-10-453-c). The remaining five ceramic vessels were all open forms. Two of these were cooking pots, one with a light-brown surface

\(^{82}\) Loci in this room include 1702, 1589, 1590, and 1591. The latter two loci are located in the northern half of the room, split by walls dating to Later Level VI. However, as with the Later Level VI “semicircular wall” in Room 1586, objects from these loci could date to either the earlier Level VI or later Level VI. The rim and handle of a bowl (No. 31-10-270-f) and an alabaster pyxis (No. 31-11-375) were found in Loci 1590 and 1591, but the findspots for these items were recorded as being on the stone paving that was added in Late Level VI, and must therefore date to this later period and are not relevant to this study (James 1966: 27, Fig. 50:21, 22). Locus 1589 is located in the southern area of the room on the UME’s plan, but is labeled as a different room to the south on the HU’s plan. Since only the UME discovered objects in Locus 1589, their original designated position of this locus is used here.
(No. 31-10-158-e) and the other with reddish-brown fabric (No. 31-10-158-f). Three Egyptian-style spinning bowls were also discovered in Room 1589, all three with double handles on the interior and of a reddish-brown fabric (James 1966: Figs. 49, Nos. 31-10-453-a, b, 50:2, No. 31-10-452; Martin 2011: Fig. 6:5). In Egypt, these vessels have been interpreted as plying bowls, which combine two spun threads (Kemp and Vogelsang-Eastwood 2001).

Four other finds were also recorded for Room 1702. One jasper bead (No. 31-12-45) in the shape of a lotus seed and three metal objects came from the room (James 1966: Fig. 101: No. 31-12-45). Two of these metal items from Locus 1702 included a bronze stunning bolt or rivet (No. 31-12-41) and a 8.7 cm long bronze pin or needle fragment (No. 31-12-42) with a looped end (James 1966: Fig. 104:10, No. 31-12-41, 18, No. 31-12-42). The third metal object, an almost completely preserved bronze knife (No. 31-10-503), was found below the Late Level VI stone floor of Locus 1591 in the northern section of Room 1702 (James 1966: Fig. 104:15, No. 31-10-503).

5.2.3.3 Building 1500: Room 1592 (Figures 5.3-5.4)

Besides the doorway in the eastern wall (10904) connected to the columned room (1586), Room 1702 had two other doorways, one in the north and one in the south. The northern doorway, with the eastern uninscribed doorjamb still in situ, was located on the eastern end of Wall 88937 (James 1966: 10). The largest doorsill (No.2) of Building 1500 was located in this threshold, constructed of two adjoining blocks of limestone measuring 2.25 m long and 0.75 m wide with a thickness of 0.4m (Mazar 2006c: 72). This doorway linked Room 1702 with the

83 This rim sherd was listed as being from “Loci 1589 and 1590,” but was included in the section on Room 1589 due to that fact that no other pottery was discovered in Room 1590, while several pieces (including another cooking pot rim sherd) came from Room 1589 (James 1966: Fig. 50:16).
almost square-shaped (4.2 x 4.0 m) room (1592) in the northwestern corner of Building 1500. No material culture was discovered in Level VI of Room 1592. The southern doorway in Room 1702 was located in the eastern portion of Wall 98931, directly across from the northern doorway that contained Doorsill 2. The doorsill (No. 7) in this threshold was one of the smaller examples in Building 1500, being constructed of only one limestone slab 1.5 m long (Mazar 2006c: 73).

5.2.3.4 Building 1500: Room 1589 (Mazar 2006c: 73-74) (Figures 5.3-5.4)

The threshold containing Doorsill 7 also contained a section to the south paved with 12 bricks and a thick white plaster floor (Locus 10944). The wall that this threshold was set in was 2.5 m thick, which was far thicker than any other inner or outer wall of Building 1500. It has been suggested that this wide wall might have contained an inner space which functioned as a passageway containing a ladder to a second story (Mazar 2006c: 73). Another thick internal wall (10904), measuring 1.6 m, marked the eastern limits of Room 1589. From the threshold, the floor slopes down into a small room (1589) divided by two phases of partition walls, the upper courses of which were 1 m below the doorsill, putting the whole room on a basement level. The earlier phase of partition walls consisted of two stone courses (10948) running north-south across the room, and another wall running parallel to the northern wall (98931) of Room 1589, making a corner with Wall 10948. In the second phase, another wall (10935), measuring 0.65 m in width, was constructed above Wall 10948, separated by a thin layer of earth. These partition walls were the only example of two architectural construction phases in Building 1500.

Wall 10935 divided the room (1589) into two spaces, with the eastern portion containing what appears to be a round installation (10951) built of stones (Figures 5.3-5.4). Mazar states
that this feature “could possibly have served as a sewage pit” (Mazar 2006c: 74). The western portion of the room contains a drainage channel (10938) running along the western wall (10936) of the room. The drainage channel was paved with stones and the walls were constructed of elongated stones. Inside the room, the channel probably continued north and then east, running below the northern wall (98931) of Room 1589. The drain also ran west of Wall 10936, traveling outside the structure before making a turn south and ending in what appears to be a rectangular stone feature either inside or below the southern wall of Building 1500 (James 1966: Fig. 77). Mazar proposed that the drain and the sewage pit demonstrate that these two rooms functioned as a bathroom (2006c: 74).

5.2.3.5 Building 1500: Room 1599 (Mazar 2006c: 79-80) (Figures 5.3-5.4)

To the east of Room 1589 is Room 1599, which contained two doorways, one to the north connecting the room with the central pillared hall (1586) and one to the east linking the room with the southeastern part of Room 1583. The northern threshold of Room 1599 contained one the larger doorsills (No. 6) in Building 1500, measuring 1.95 m long and constructed out of two attached stone blocks (Mazar 2006c: Fig. 3.9b). Remains of the eastern doorjambs of this doorway were in situ and uninscribed (James 1966:10). Two walls running on a north-south axis divided Room 1599 into three chambers.

The western chamber had internal dimensions of 2.7 x 3.85 m and was separated from the middle chamber by Wall 10930, which was 1.1 m wide and ran from the southern wall (10937) northward, stopping short of the northern wall (98931), leaving a 25 cm gap. As the preserved upper course of Wall 10930 lies 1 m lower than Doorsill 6, this gap might be the remains of a now missing doorway between the western and middle chambers of Room 1599. Wall 10930
was constructed directly above earlier Stratum Q-2 mudbrick walls. A long feature running from
the northern wall (98931) of Room 1599 southward, then turning a corner and continuing east to
Wall 10903 was shown on the UME’s plan but not mentioned at all in the text (James 1966: Fig.
77) (Figure 5.3).

The middle chamber of Room 1599 measured 2.15 x 3.9 m and was divided by a wall
running east-west. A round installation (10940) of stones with an inner diameter of 0.75m was
positioned in the northwestern corner of the room, and the bottom of this installation was not
reached after a depth of 0.75 m. Wall 10929a, which was separated by an ash layer from an
earlier Stratum Q-2 wall, segregated the middle chamber from the eastern part of Room 1599,
which had the internal dimensions of 1.8 x 3.9m. A rectangular installation set against the
southern wall (10937) appears on the UME’s plan, but is absent in the text (James 1966: Fig.77)
(Figure 5.3).

Material culture from Room 1599 includes pottery, stone lids, glass and stone pendants,
and a metal implement. Two Egyptian-style saucer bowls (Nos. 31-12-34-b, 31-11-101) were
discovered in the room, both having brown fabric and a band of reddish wash around the rim
(James 1966: Fig. 49:9, No. 31-12-34-b, No. 31-11-101; Martin 2011: Pl. 6:1; Mazar 2006d:
120). Other related vessel finds from Room 1599 include two limestone lids (Nos. 31-11-39-a,
b) (James 1966: Fig. 106:19, No. 31-11-39-b, 20, No. 31-11-39-a). Jewelry discovered in the
room consists of a glass plaque (No. 31-12-3) and a dark-gray stone pendant, both uncovered in
the western part of the room (No.31-11-323) (James 1966: Figs. 100:4, No. 31-12-3, 101:3, No.
31-11-323).

The glass plaque was found in the foundations of Building 1500 near the southwestern
corner and was originally 47 mm square and 10 mm thick, with two perforations running through
the piece (FitzGerald 1932: 145). Reliefs on the plaque show a standing bearded deity wearing a
horned headdress with a worshipper approaching on the left and between them a kid or gazelle
standing on its hind legs. The dark-gray stone pendant from Room 1599 was also pierced and is
in the shape of a uraeus wearing the Egyptian double-crown. A bronze bodkin (No. 31-11-273)
with the butt end missing was the only metal object from the room (James 1966: Fig. 104:12, No.
31-11-273).

5.2.3.6 Building 1500: Room 1583 (Mazar 2006c: 76-77) (Figures 5.3-5.4)

A doorway in the eastern wall (48011) of Room 1599 contained a T-shaped limestone
doorsill (No. 5) that was 1.5 m long, which connected the room with the southern chamber of
Room 1583. FitzGerald suggested that the three internal eastern walls (48011, 88916, 88914) of
Building 1500 were the original eastern outer walls of the structure and that the eastern wing of
Building 1500, which consisted of the three chambers of Room 1583 and the northeastern corner
Room 88901, were added during a later phase of construction (James 1966: 10). The threshold
with Doorsill 5 would then have been an exterior entrance to the building, and because none of
the six doorjambs in Room 1583 were inscribed, James posits that the lack of inscriptions could
be attributed to “the reconstruction having taken place after the stonecarvers had returned to
Egypt” (1966: 10). However, neither James or Mazar are completely convinced of FitzGerald’s
argument and maintain that the eastern wing of Building 1500 is an integral portion of the
original structure (James 1966: 10; Mazar 2006c: 77).

The southern portion of Room 1583 measured 2 m wide and 8.9 m long with an inner
partition wall (98933) dividing the space into two sections, the northern one being 2.9 m long
and the southern 4.9 m. In the northern section, a sloping stone construction filled the entire
width of the room, extending 1.20 m north from the partition wall (98933). Mazar suggests that this installation might have been the foundation of a podium or staircase to an upper story (2006c: 76-77). FitzGerald records that a large pot (No. 31-11-211) was discovered buried in the ground in the northern section, but James surmises that the vessel should be dated to Late Level VI (FitzGerald 1932: 144; James 1966: Figs. 49:2, No. 31-11-211, 121:2). This large jar with four handles was the only material culture discovered in any of the chambers of Room 1583.

The northern and southern portions of Room 1583 were divided by Wall 98932, which contained a small limestone doorsill (No. 4), measuring 1.5 m long, along with two uninscribed doorposts in situ and partially destroyed, although the western example was probably close to its original height (James 1966: 10; Mazar 2006c: Fig. 3.10). Beyond the threshold to the north was the small northern portion of Room 1583, which was a square chamber measuring 1.95 m each way. A simple doorway without stone doorposts or a T-shaped doorsill connected this room with the central columned hall (1586). Directly opposite of the threshold containing Doorsill 4 was a similar doorway with another 1.5 m long doorsill (No. 3) and uninscribed broken doorjambs in situ (James 1966: 10).

5.2.3.7 Building 1500: Room 88901 (Mazar 2006c: 77) (Figures 5.3-5.4)

The doorway with Doorsill 3 connected the northern portion of Room 1583 with the room (88901) in the northeastern corner of Building 1500. The inner dimensions of Room 88901 were 2.7 m wide by 4.2 m long. Stone foundations were recorded in the outer walls of this corner room, with the eastern wall (88913) having five courses and the northern wall (88912) containing four. The only find in this room was a basalt stone column base, measuring 0.8 m in diameter (James 1966: Fig. 77) (Figure 5.3). This base was found in the middle of the
room, but FitzGerald surmised that it could have been moved from its original context (1932: 144).

5.2.3.8 **Building 1500: Room 1701** (Mazar 2006c: 77-78) (**Figures 5.3-5.4**)

Directly west of Room 88901 was Room 1701, which could only be entered through a simple doorway in the southern wall (88911) of the room. This doorway, which lacked stone doorposts or a T-shaped doorsill, linked Room 1701 with the central columned room (1586).\(^{84}\) The room measured 3.2 m wide by 4.35 m long with an original floor (88926) of hard beaten earth, strewn with patches of ash, pottery, and bone. An L-shaped installation (88924) built of bricks standing on the narrow sides and filled with ash is associated with Floor 88926, although the ash appeared to run under the stone foundations of Wall 88910, which means the feature could predate the construction of Building 1500 and belong to the earlier Stratum Q-2 (**Figure 5.4**). Although Mazar records that both pottery and bone were discovered on the floor (88296) of Room 88901, no finds are recorded for this room or any related locus.

5.2.3.9 **Building 1500: Room 1587** (Mazar 2006: 78-79) (**Figures 5.3-5.4**)

Directly to the west of Room 1701 was Room 1587, which has no visible doorway, although it is assumed that the original doorway was probably destroyed by the Byzantine Cistern (35) dug into the southwestern corner of the room (James 1966: 11). If a threshold had existed here, it would have been exactly opposite the doorway located in the southern wall (98931) of the central columned Room 1586. The eastern wall (88910) of Room 1587 was founded on four stone courses and attached to an earlier Stratum Q-2 wall (88951), which was

\(^{84}\) The doorway between Rooms 1586 and 1701 that the UME team recorded could not be located by the later Hebrew University excavations (Mazar 2006c: 77).
constructed of very fine mudbricks and is the only example of the reuse of an earlier wall in Building 1500. Together, these walls formed a 2.35 m wide eastern wall of Room 1587.

Room 1587 was divided into two chambers by mudbrick partition Wall 88935, which ran east-west through the room, was founded on three stone courses, and was 1.2 m wide. These two narrow chambers measured 1.25 m (southern) and 1.6 m (northern) wide and were both 3.1 m long. Mazar suggested that these rooms could have contained a staircase to a second story or the roof (Mazar 2006c: 79). Finds in Room 1587 include inscribed limestone fragments, pottery, a stone lid, and a bone spatula. Two inscribed limestone fragments (A3, A4) were discovered in Room 1587, the smaller one (A4, No. 31-12-43-b) being very damaged, measuring 13 x 12.3 cm and engraved with the hieroglyphic signs \(d \) and \(w \), both filled with traces of blue paint (James 1966: 6, Figs. 88:2, 89:2; Ward 1966: 165).

The larger limestone fragment (A3, No. 31-12-43-a) measured 28 by 27 cm was clearly part of a square-shaped doorpost (James 1966: 6, Figs. 88:3, 89:3; Ward 1966: 165). Two columns of hieroglyphs, which also contained traces of blue paint and were bordered by incised vertical lines, were engraved on this doorjamb fragment. The second column reads \(...n sH n nb=f...q... \), which is translated as “…to the \(sH \)-hall of his lord…,” while only the partial sign of a seated man exists in the first column. The base of a jar (No. 31-10-329-c) with well-fired gray fabric and a whitish surface and an alabaster stopper or lid (No. 31-10-330-b) were also discovered in Room 1587 (James 1966: Figs. 49:9, No. 31-10-329-c, 106:22, 119:4, No. 31-10-330-b). A two-shouldered spatula (No. 989007) made of bone, which is pointed at one end and broken at the other, was found by the Hebrew University excavations. This object, measuring 1.8 cm wide and 7.4 cm long, is recorded as being somehow connected with Wall 88935,
although the exact find-spot or relationship is unclear (Yahalom-Mack and Mazar 2006: 161-162, Photo 6.7).

5.2.4 A Bone Button from Building 1500(?)

A total of two objects were published in the renewed excavations of Building 1500 by the Hebrew University. One of these is the bone spatula just described in the section on Room 1857 and the other is a bone button (No. 480012) in the shape of a stepped cone disc. This highly polished button has a diameter of 2.7 cm, a height of 0.8 cm and a weight of 3.66 g (Yahalom-Mack and Mazar 2006: 161, Fig. 6.2:4, Photo 6.5). Unfortunately, while the object is listed three times as being found in Locus 48008, the exact assigned stratum of this location is unclear. In the description of the button, it is recorded as belonging to Stratum Q-1 and Building 1500, but in the List of Loci of Area Q, Locus 48008 is listed as being a part of Stratum Q-2 and “brick debris,” and in the Index of Finds, the button is described as being from “Topsoil+Q-2” (Mazar 2006: 117c; Schiffer 2006: 733; Yahalom-Mack and Mazar 2006: 161). Locus 48008 is located on the Stratum Q-2 plan outside the southeastern corner of Building 1500 in a probe (16), however, there is no mention of Probe 16 or Locus 48008 in any of the text (Mazar 2006c: Fig. 3.12). Therefore, it is ambiguous whether this bone button should be included in the section on Stratum Q-1 and Building 1500, or the section on the earlier Stratum Q-2 below Building 1500.
5.3 BUILDING 1700 (NA) (Figures 5.1-5.2 and 5.5-5.7)

5.3.1 Excavation and Publication History

Building 1700 is located in Area N South, which is situated northwest of Area S and east of Area Q on the summit of Beth-Shean (UME Squares Q-R/7, HU Squares M-T/12-15). The edifice was originally excavated by the University Museum Excavations (UME) of the University of Pennsylvania in 1927, although a complete record of the years of excavation in Building 1700 was never published (James 1966: 12). Object numbers from loci in the structure may provide hints as to the years following the excavation of the structure. Object records for the eastern part (Locus 1224) of the building are numbered for 1927, those on the western side (Loci 1584, 1585, and 1588) for 1931, and those items from the main part (Loci 1715-1718) of the building are listed for 1933 (James 1966: Figs. 49, 50, 89, 91, 100, 101, 104, 106, 107, 109, 122).

Building 1700 is almost completely absent from the UME’s preliminary reports in the Museum Journal or Palestine Exploration Fund Quarterly Statement, which were the only publications that mentioned areas outside of the temple precinct, due to issues stemming from the onset of the Great Depression and World War II. However, the architecture and material culture of Building 1700 was briefly discussed over three decades later by F.W. James in a few paragraphs in her volume on Levels VI-IV at Beth-Shean (James 1966). In 1993, excavations of Building 1700 were renewed under the direction of Amihai Mazar on behalf of the Institute of Archaeology of the Hebrew University (Mazar 2009b: 72).
Figure 5.5: UME Plan of Building 1700 at Beth-Shean.
(after James 1966: Fig. 77)
Figure 5.6: HU Plan of Building 1700 at Beth-Shean
(after Mazar 2009b: Fig. 3.4)
Figure 5.7: Tentative Reconstruction of Building 1700 at Beth-Shean
Excavation of the structure, re-labeled Building NA, was extremely limited and included locating, cleaning, and drawing the walls of the edifice, which were still intact as the UME had left them 60 years earlier, although only two floors could be located (Mazar 2009b: 73). The Hebrew University excavations of Building 1700 were published in 2009 (Mazar 2009b: 72-73, 83-91).

5.3.2 Stratigraphy and Chronology

While the majority of scholars would clearly situate Building 1700 in the UME’s Level VI, dating to the Iron Age IA, the corresponding stratum of the HU is uncertain. Much of this is due to the fact that the southern and eastern walls of the structure were not completely preserved, and much of the interior was destroyed by Late Level VI and Level V walls, foundations, and pits (Figures 5.5-5.6). FitzGerald, James, Higginbotham, and Morris date the structure to Level VI, mostly based on the similarities with the architecture and material culture of the more securely dated Building 1500, which is immediately adjacent to the west of Building 1700 (FitzGerald 1932: 145; Higginbotham 2000: 271; James 1966: 11-12; Morris 2005: 758) (Figures 5.1-5.2).

Mazar also admits that the parallels between Building 1500 and Building 1700 make for a strong case for Level VI for the latter, and indeed, walls (98411 and 98443) in the northeastern corner appear to date to the same period as another adjacent structure (NB), which is placed in HU Stratum N-3a (=Level VI) (Mazar 2006c: 81; 2009b: 90; 2011: 168) (Figure 5.2). However, walls on the western side of Building 1700 seem to post-date Stratum N-3a (=Level VI) (Mazar 2006c: 81; 2009b: 90; 2011: 168). The incongruities between the different sections of Building 1700 have caused Mazar to place the structure in the HU’s Stratum N-2 (=Late Level VI and
Level V), which dates to the Iron Age IB, while still admitting that the building could (or should) date to the Iron Age IA based on the material culture discovered within (Mazar 2009b: 83; 2011: 168).

5.3.3 Dimensions and Construction

The exact layout of Building 1700 is unclear, and the original excavators never provided a list of which walls and loci were actually part of the structure (Figure 5.5). Later analysis and excavations of the building have not completely clarified this matter. Both James and Mazar record Loci 1224 and 1715-1718 as being components of Building 1700, but James also adds Loci 1584, 1585, and 1588 to the structure (James 1966: 157; Mazar 2009a: Figs. 1.5, 2009b: Figs. 3.4-3.5) (Figures 5.5 and 5.6). Also, the loci and walls on the UME’s plans published by James do not always correspond to the same numbered loci and walls on the plans of the building published by the HU excavations. For these reasons, the dimensions of Building 1700 are varied according to which publication is followed.

The specific measurements of the outer walls of Building 1700 were never published by the UME or James, but according to the UME’s original plan, the dimensions of the structure including Loci 1224 and 1715-1718 are: north 20.5 m, east 5 m preserved, south 8.5 m preserved, and west 19.5 m (James 1966: Fig. 77) (Figure 5.5). The only outer wall given a length in the HU’s publication was Wall 98411 in the north, with a length of 27 m “exposed” (Mazar 2009b: 86). However, measurements taken from the HU’s plan of Building 1700 provide these dimensions: north 23.5 m preserved, east 6 m preserved, and west 13.5 m preserved, with the southern wall of the building not appearing on the HU’s plan (Mazar 2009b: Fig. 3.4) (Figure 5.6). The outer dimensions of the 1580s loci series of the structure, as indicated by the
UME’s plan, were: north 15 m, east 19.6 m, and west 8.5 m preserved, with the south being unknown. According to the plans published by James and Mazar, the shape of Building 1700 would have originally been rectangular for the former and square for the latter.

The construction of the outer walls of Building 1700 consisted of a mudbrick superstructure built upon a foundation of two to three courses of dry-laid unworked basalt stones. These foundation stones ranged in length from 50 to 60 cm, with the largest examples in the corners and lower courses of the walls (Mazar 2009b: 86). The superstructure was composed of light yellow mudbricks, sometimes appearing in three rows of headers (Mazar 2009b: 90). The thickness of the outer walls of Building 1700 varied from about 1.5 to 2 meters in width (Mazar 2009b: 86). Stone details in the structure include the remains of five T-shaped doorsills, and at least eleven fragments of inscribed and painted architectural elements, consisting of two pieces of molding, two parts of a cornice, three sections of a lintel, and four fragments of doorjambs. (James 1966: 6).

5.3.4 Layout

Although Building 1700 is commonly referred to in the literature as having a similar plan to Building 1500 with a central columned room surrounded by smaller rooms and corridors, according to both James and Mazar, Building 1700 is lacking a central pillared hall (Higginbotham 2000: 271; James 1966: 12; Mazar 2006b: 81; Morris 2005: 758) (Figures 5.1-5.2 and 5.5-5.6). James admits that the central room might not have been excavated and that the UME left an “inadequate record” of this part of Building 1700 (1966: 12). The internal layout of Building 1700 remains somewhat unclear, especially due to at least four later pits that damaged

85 The width of the western outer wall (10272) was not provided in the text, but appears to be a minimum of 1.5 m wide according to the plan of Building 1700 (Mazar 2009b: Fig. 3.4).
the walls of the structure, with the possibility that the mudbricks from the building were also used to line the pits (James 1966: Fig. 77) (**Figure 5.5**). The entrance to Building 1700 is unknown, although James would place it at threshold in Wall 10209 leading into Locus 1716, which is confusingly not an outer wall and would be in what appears to be the center of the structure (1966: 12) (**Figure 5.6**).

5.3.5 Rooms and Loci

5.3.5.1 Building 1700: Northwestern Corner Room of the 1224 and 1710s Loci Series\(^{86}\) (**Figures 5.5-5.7**)

The northwestern room, which is enclosed by Walls 98411 (north), 10211 (east), 10221 (south), and 10272 (west), was not given a locus number or designation by the UME or the HU (**Figures 5.5 and 5.6**). The room is almost square-shaped, measuring about 3 x 3.5 m. The northern wall (98411), which is also the outer wall of Building 1700, is the thickest of the entire building, measuring 2 m wide. The massive stone foundations of this wall were composed of two to three courses of large basalt boulders, set above earlier occupation debris and topped by the remains of a light yellow brick superstructure (Mazar 2009b: 86). The 1.4 m wide eastern wall (10211) of this room was composed of mudbricks built directly upon an earlier wall (Mazar 2009b: 88). The area where the eastern and southern walls meet in this room was destroyed by a later pit (10203), which appears on both the UME’s and the HU’s plans (James 1966: Fig. 77; Mazar 2009b: Figs. 3.4, 3.5) (**Figures 5.5 and 5.6**). The southern wall (10221) of this room was also 1.4 m wide and constructed solely of mudbricks, which lay as headers in three rows (Mazar

\(^{86}\) Because James and Mazar disagree as to exactly which loci and walls should be included in Building 1700, the 1224 and 1710s loci series will be described separately from the 1580s series, beginning with the former.
The western wall (10272), which Mazar believes is also the western outer wall of the entire structure, was constructed in an earlier phase and continued in use during the time of Building 1700 (Mazar 2009b: 89).

The northwestern room was subdivided by two walls, one on a east-west axis and another traveling north-south. The 1.4 m wide east-west partition wall (10232) was built on a stone foundation and separated the room into northern and southern sections, with the latter chamber measuring 1.1 m wide and 3.5 m long (Mazar 2009b: 89). On the UME’s plan, this partition wall does not travel completely across the room, but stops just short of the western wall, leaving a gap of about 1.5 m, while on the HU’s schematic plan the wall is drawn cross-hatched across this gap (James 1966: Fig. 77; Mazar 2009b: Fig. 3.5) (Figures 5.5 and 5.6). According to the HU’s plan, the northern chamber was further separated into eastern and western sections by partition Wall 10238, with the former section measuring 0.7 x 2.2 m and the latter section about 0.7 m square (Figure 5.6).

Two definite doorways are located in the northwestern room. One of these is positioned in the western end of the southern wall (10221), where a complete T-shaped stone doorsill (No. B-8) was discovered in situ by the UME (James 1966: 7, 12, Fig. 99:3) (Figure 5.5). The HU excavations found fragments of this sill out of context in the northwestern room and a groove in the north face of the southern wall that probably indicated the original position of the stone doorsill (Mazar 2009b: 83, 84, 89) (Figure 5.6). Another doorway is located in the northern end of the western wall (10272) of the room, where the UME indicated what appears to be part of a T-shaped threshold, although this feature was not drawn on either of the HU’s plans of Building 1700 (Mazar 2009b: Figs. 3.4, 3.5) (Figure 5.5). An object (No. 31-9-266) from the area (Locus 1585) immediately west of the northwestern room is recorded as being found “near threshold at
northeast,” which must refer to this doorway in Wall 10272 (James 1966: Fig. 50:5, No. 31-9-266).

5.3.5.2 Building 1700: Room 1717 (Figures 5.5-5.7)

Room 1717 was located just east of the northwestern room of the 1224 and 1710s loci series in Building 1700. This rectangular-shaped room measured 2.3 m wide and 4.8 m long was bordered on the north by Wall 98411, the east by Wall 10209, the south by Wall 10210, and the west by Wall 10211 (Mazar 2009b: 86). The 1.4 m wide eastern wall was constructed of light-colored bricks laid directly on top of an earlier wall (Mazar 2009b: 88). A strip of a stone-paved floor (Locus 10208) is drawn on the HU’s plan running north-south through the center of Room 1717 (Figure 5.6). On the western side of the room, this floor was probably destroyed by a later pit (10207), but on the eastern side of the room, exactly what happened to the floor is uncertain, as the only information Mazar provides about this floor is that it abuts the bottom of Wall 98411 to the north was originally thought to be the continuation of Wall 10224 (2009b: 88-89). The only possible doorway in this room would have been located in the western end of the southern wall, which was damaged by the later pit (10207) just mentioned.

Material culture discovered by the UME in Room 1717 includes a cooking pot and two scarabs. The cooking pot (No. 33-10-1025) is described as “well-fired buff ware with a smooth surface” (James 1966: Fig. 49:14, No. 33-10-1025). Both scarabs are recorded as coming from “below peg” in the western part of Locus 1717, although it is not clear exactly to what the “peg” refers. One of the scarabs (No. 33-10-1124) was made of carnelian with an uninscribed reverse, while the other (No. 33-10-1123) was of steatite and engraved with the hieroglyph of a papyrus plant, which usually designates the word mHt, referring to Lower Egypt or the Delta (James
1966: Fig. 100:8, No. 33-10-1124, 9, No. 33-10-1123). Although Mazar mentions that pottery was discovered during the HU’s excavations in Building 1700, including “abundant fragments of Egyptian forms, such as bowls with red-painted rims and beer jars,” no pottery (or any other objects) were listed as being found in loci and walls associated with Building 1700 (2009b: 90).

5.3.5.3 Building 1700: Room 1718 (Mazar 2009: 86) (Figures 5.5-5.7)

Directly east of Room 1717 and located in the northwestern corner of Building 1700 was Room 1718. This room was 2.5 m wide and 6.6 m long, and was bordered by Wall 98411 on the north, by Wall 98443 on the east, by Wall 10249 on the south, and by Wall 10209 on the west. A stone pavement (Locus 10433) was discovered by the HU in the eastern half of the room (Figure 5.6). The only doorway in this room must have been located in the now-destroyed eastern part of the southern wall (10249). No finds were recorded by the UME or the HU for Room 1718.

5.3.5.4 Building 1700: Room 1224 (Figures 5.5-5.7)

Room 1224 is located directly south of Room 1718 and is bordered by Wall 10249 on the north, Wall 98443 on the east, an unnumbered wall on the south, and Wall 10209 on the west. The HU’s plan shows Room 1224 as one large chamber with the internal measurements of 4.7 m x 6.4 m, but on the UME’s original plan, Room 1224 appears to be a subdivided chamber inside of a larger room (James 1966: Fig. 77; Mazar 2009b: 86) (Figures 5.5 and 5.6). The smaller internal room consists of a 1.5 m wide wall on the western side, a 0.5 m wide wall on the southern side, a narrow 0.3 m wide wall on the eastern side (that probably abutted the outer

87 Locus 1280 is situated on the UME’s plan as being part of or a separate room east of Room 1224. This locus will not be included in the discussion of Room 1224 because James stated that it belonged to Late Level VI (1966: 12).
eastern Wall 98443 of Building 1700), and Wall 10249 on the north. The internal room was divided further by a partition wall running on an east-west axis, splitting the room into two equal 1 x 2 m chambers.

At least two doorways existed in Room 1224, one in the western wall (10209) of the external room and the other directly opposite in the western wall of the smaller room. The threshold in Wall 10209 contained two in situ stones from a three-stone T-shaped doorsill (No. B-9) and was the largest (2.5 m) discovered in the building, causing James to assert that this must have been the main entrance to Building 1700 (1966: 7, 12) (Figure 5.5). James states that the preserved stones of the doorsill measured 1.5 m in length, while Mazar provides a measurement of 1.8 m (James 1966: 12; Mazar 2009b: 83). Another 1.5 m long complete stone doorsill (No. B-10) was discovered in situ in the T-shaped threshold located in the southern part of the western wall of the internal chamber of Room 1224 (James 1966: 7, 12; Mazar 2009b: 84) (Figure 5.5). Other doorways might have been located in the now destroyed northern (10249), eastern (98443), and southern (unnumbered) walls of the external room.

Objects discovered in Room 1224 include pottery and a pendant. Two jars, one (No. 27-10-262) of light-brown ware with a 6.5 cm diameter neck, and the other an amphora (No. 27-10-106) of red-brown ware were found in the room (James 1966: Fig. 49:1, Nos. 27-10-262, 27-10-106). The remaining pottery consisted of a cooking pot (No. 27-10-311) and an Egyptianized spinning bowl (No. 27-10-9) with two interior handles and an engraved decoration of three lines below the rim on the exterior (James 1966: Figs. 49:21, No. 27-10-9, 50:13, 27-10-311). A pottery pendant (No. 27-9-488) in the shape of a human knee, leg, and foot and perforated near the top was also discovered in Room 1224. James mistakenly describes this pendant as
belonging to a figurine, even though there is “no knob on ankle,” while Rowe states that it was a “votive offering” (James 1966: Fig. 107:5, No. 27-9-488; Rowe 1940: 20, 90, Pl. LIIIA:6). 88

5.3.5.5 Building 1700: Southern Rooms of the 1224 and 1710s Loci Series 89 (Figures 5.5 and 5.7)

Two unnumbered rooms appear south of Room 1224 on the UME’s plan of Building 1700, but are not included on the plans provided by the HU (James 1966: Fig. 77). Just south of Room 1224 is a narrow 1.5 m wide room bordered by Wall 10209 on the west, unnumbered incompletely preserved walls on the north and south, and a now destroyed part of Wall 98443 on the east. A T-shaped stone doorsill (No. B-11) appears on the UME’s plan floating in the middle of this room (James 1966: 7) (Figure 5.5). This doorsill measures 1.5 m in length and is parallel to and facing the same direction as the doorsill in the internal chamber of Room 1224. If this doorsill is in situ, as James claims, the wall to which it belongs is either now destroyed, or was not added to the plan of Building 1700 (1966: 7, 12).

Another room or area is located south of the room just described, but only the northwestern corner appears on the UME’s plan (Figure 5.5). This area probably contained the southeastern corner room of Building 1700 (Figure 5.7). To the west of this area, in the southwestern corner of the 1224 and 1710s loci series of Building 1700, was a room bordered by Wall 10272 on the west and unnumbered walls on the north, east, and south. This room was almost square-shaped (2.5 x 3 m) with a smaller section (1.5 x 2.5 m) jutting off in the

88 The publication of this pendant is contra Mazar, who states that no finds from Building 1700 were published by the UME (2009b: 85).

89 Locus 1281 is situated on the UME’s plan as being part of the room just south of Room 1224. This locus will not be included in the discussion of the southern room because James stated that it belonged to Late Level VI (1966: 12).
northeastern corner. No information was published on this room and any possible doorways were either destroyed or not marked on the UME’s plan.

5.3.5.6 Building 1700: Western Room of the 1224 and 1710s Loci Series (Figures 5.5-5.7)

North of the southwestern corner room was an unnumbered long rectangular hall (8 x 4 m) bordered by Wall 10221 on the north, Walls 10216 and 10225 on the east, an unnumbered wall on the south, and Wall 10272 on the west. The eastern wall was mostly destroyed by two later pits (10204 and 10259), which split the wall into three sections, one to the north (10216), one in the middle (10225), and one to the south (unnumbered). This 1.6 m wide wall was built of bricks directly above an earlier wall (Mazar 2009b: 88). Both the UME and the HU also discovered another wall (10213) running alongside the western wall (10272) of the room (Figures 5.5 and 5.6). This 1.3 m wide and 8 m long wall stopped short of the southern wall and was built above an earlier stone floor (Mazar 2009b: 89). Although Wall 10213 ran alongside Wall 10272, they were not parallel and this created a V-shaped area between the two, which the HU found filled with brick debris. Mazar admits that Wall 10213 might have been added during a later phase because it is not parallel to any walls in Building 1700 and because of the nature of the doorways in this room (2009b: 89).

At least three doorways existed in this western room, although one more was probably located in the area of the eastern wall that was destroyed by later pits. One of these doorways contained an in situ T-shaped stone doorsill (No. B-8) in the northern wall (10221) and was already described in the section on the room in the northwestern corner of the 1224 and 1710s loci series of Building 1700 (Figure 5.5). However, if this northern doorway was contemporary with the internal wall (10213) running through the western room, then this threshold would have
been blocked by the wall. On the other hand, another in situ fragment of a stone doorsill (No. B-12) was also discovered on top of the southern end of internal Wall 10213 (James 1966: 12) (Figure 5.5). James states that another doorway was located in the western wall (10272) of this room, which she states was the main door in this room (1966: 12). This doorway might be shown on the UME’s plan as a U-shaped section in the southern part of the wall (Figure 5.5).

5.3.5.7 Building 1700: Room 1715 (Figures 5.5-5.7)

Room 1715 was located south of Room 1717, west of Room 1716, and east of the western room just described. Like the room to the west, Room 1717 was rectangular-shaped, measuring 2.5 m in width and 9 m in length. This room was surrounded by Wall 10210 to the north, Wall 10224 to the east, an unnumbered wall to the south, and Walls 10216 and 10225 to the west. Wall 10224 to the east was 1.3 m wide and constructed of a light-colored brick superstructure founded on one course of basalt stones (Mazar 2009b: 88). The only extant doorway in this room appears in the eastern wall (10224), although doorways probably also existed in the northern (10210) and eastern (10216 and 10225) walls that were destroyed by later pits. Objects discovered in this room include a basalt bowl (No. 33-10-1023) and a ceramic duck’s head (No. 33-9-6) (James 1966: Figs. 106:17, No. 33-10-1023, 107:9, No. 33-9-6).

5.3.5.8 Building 1700: Room 1716 (Figures 5.5-5.7)

Room 1716 was located in what appears to be the center of Building 1700, south of Room 1717, west of Room 1224, north of an unnumbered room, and east of Room 1715. The room measured 1.2 m wide and 5.5 long and was divided by an unnumbered partition wall (Mazar 2009b: 88). Two doorways were located in this room, one in the eastern wall with two
T-shaped stone doorsill pieces (No. B-9) and one in the western wall, both of which were previously described. No finds were recorded as being discovered in Room 1716, but the UME’s plan does show a rectangular feature located against the southern wall (James 1966: Fig. 77) (Figure 5.5).

5.3.5.9 **Building 1700: Locus 1585 (Figures 5.5 and 5.7)**

Locus 1585 is a large area, about 8 x 11m, located west of the 1224 and 1710s room series, with which it shares two walls, Wall 98411 to the north and Wall 10272 to the east. These shared walls are probably part of the reason why James decided to include this locus (as well as Loci 1584 and 1588) as part of Building 1700; however, Mazar does not mention these loci except to state that the material culture found within could have originated in Building 1500 to the west (James 1966: 157; Mazar 2009b: 84). Only the northeastern corner of Locus 1585 contained internal dividing walls (1.5 m wide), which marked off a square room, measuring 5.5 x 5.5 m. A round feature with a 2 m diameter appears on the western side of this room on the UME’s plan, but is not mentioned or described by the UME or James (1966: Fig. 77) (Figure 5.5). However, an object from Locus 1585 is recorded as being found “under level of column base,” which might refer to the circular feature in this room (James 1966: Fig. 49:6, No. 31-10-114-a). There are at least three possible doorways in Locus 1585, two in the eastern wall (10272) that were described earlier in the sections on the Southwestern Corner Room and the Western Room, and one doorway in the northern part of the western wall.

A large amount of material culture was discovered in Locus 1585 including pottery, architectural stone elements, whorls, metal items, and figurine fragments. The ceramic assemblage contains 30 vessels ranging across both open and closed form types. Open forms
include carinated bowls, cooking pots, cup-and-saucers, a spinning bowl, and a milk-bowl. Two carinated bowls were discovered in Locus 1585, one (No. 31-10-130-c) near the center of the area and another (No. 31-11-245) with purple and black painted decoration was found below a Late Level VI wall (James 1966: 24, Figs. 49:20, No. 31-10-130-c, 50:17, No. 31-11-245).

The rims of two cooking pots (Nos. 31-10-130-a, 31-11-366-b) and the “cups” from two cup-and-saucers (Nos. 31-11-366-a, c) were also discovered in Locus 1585 (James 1966: Fig. 50:6, No. 31-11-366-a, 7, No. 31-11-366-c, 12, No. 31-10-130-a, 15, 31-11-366-b). The remaining open forms include an Egyptian-style spinning bowl (No. 31-11-298-a) and a white-slipped Cypriot milk-bowl (No. 31-11-298-d) with brown-painted decoration, both of which were found in the southern part Locus 1585 (James 1966: Fig. 49: Nos. 31-11-298-a, c).

Closed forms in the Locus 1585 ceramic assemblage consist of flasks, amphorae, beer jars, a pyxis, and other jar fragments. Four lentoid flasks were discovered in Locus 1585, one (No. 31-11-365) was undecorated, while the other three were slipped and painted with purple or carmine concentric circles (James 1966: Fig. 50:1, No. 31-11-365). The three decorated flasks were found near the threshold in the northeast (No. 31-9-266), below a Late Level VI wall (No. 31-10-128), and under a wall in the southern part (No. 31-11-277) of Locus 1585 (James 1966: Fig. 50:5, Nos. 31-9-266, 31-10-128, 31-11-277). Amphorae from this locus include a vessel (No. 31-10-40) with a reddish-brown painted decoration discovered below a Late Level VI wall, an amphoriskos (No. 31-9-314) with traces of a red-painted decoration from the northwestern part of the locus, and a cream-slipped base fragment (No. 31-10-103b) from the center of the area (James 1966: Figs. 49:7, No. 31-10-103b, 50:10, No. 31-9-314, 20, No. 31-10-40).

Fragments of three more jars also came from this locus: the handle of a stirrup jar (No. 31-10-301-b), the rim and handle of a jug (No. 31-10-41), and a sherd of a jar with reddish-
brown painted decoration (No. 31-10-439-c) (James 1966: Figs. 49:No. 31-10-301-b, 50:18, No. 31-10-41, 19, No. 31-10-439-c). The latter two fragments were found below a Late Level VI wall in Locus 1585. Single type finds from Locus 1585 include a pyxis (No. 31-11-296) from the southern part of Locus 1585 and a perforated stand (No. 31-9-335) set inside a container with a blackened interior from the northwestern section of the area (James 1966: Fig. 50:3, No. 31-11-296, 4, No. 31-9-335). Egyptianized pottery from Locus 1585 consists of three brown-slipped beer jars with ribbed interiors and perforated bases (James 1966: Fig. 49:6, Nos. 31-10-114-a, b, 31-11-366). One (No. 31-10-114-a) of these beer jars was found under the level of the column base in Locus 1585.

Small finds from Locus 1585 include ivory (No. 31-11-321) and glass (No. 31-11-320) whorls, a engraved ivory disk (No. 31-9-240), a heavy mass of bronze and iron fragments (No. 31-11-247) from below a Late Level VI wall, a clay horse’s head (No. 31-9-239) found near the foundations in the western part of the locus, and the torso of a female figurine (No. 31-11-297) from the southern part of the area (James 1966: Figs. 24, 101:25, No. 31-11-321, 27, No. 31-9-240, 30, No. 31-11-320, 104: No. 31-11-247, 107:6, No. 31-9-239, 10, No. 31-11-297).

At least eleven fragments of inscribed and painted architectural stone elements were also discovered in Locus 1585, consisting of two pieces of molding, two parts of a cornice, three sections of a lintel, and four fragments of doorjambs. The fragments of molding (B-3a) were narrow ledge pieces with straight edges, while the cornice parts (B-4) were curved and painted with blue and red stripes (James 1966: Figs. 90:2a, No. B-3, 3, No. B-4, 91:2, No. 31-10-478, 3, No. 31-10-477; FitzGerald 1932: 145). All three sections of the lintel (Nos. B-3b, c) were covered with orange paint and engraved with a frieze of multiple figures of uraei with sun-disks upon their heads (James 1966: 6, 12, Figs. 90:2b, c, No. B-3, 91:3, No. 31-10-478; Ward 1966:
166-167). Two of the doorjamb fragments were also decorated with orange paint, while one fragment (No. B-3d) showed an engraved register line and the other (No. B-3e) was inscribed with two hieroglyphic signs (James 1966: Figs. 90:2d, e, No. B-3, 91:3, No. 31-10-478). The other two doorjamb fragments (Nos. B-1, 2) were discovered under a Late Level VI wall on the western side of Locus 1585 and were engraved with parallel vertical lines and fragmentary hieroglyphs bearing traces of blue paint (James 1966: 6, Nos. 31-10-437, 438).

5.3.5.10 **Building 1700: Locus 1588 (Figures 5.5 and 5.7)**

Locus 1588 was located directly west of Locus 1585 and consisted of a room bordered by an eastern wall shared with Locus 1585, a southern wall (1.5 m wide) shared with Locus 1584, and northern and western walls (both 1.5 m wide) that were also the outer walls of the structure. No information is provided by the UME or James about this locus, but it appears that a doorway is situated in the center of the southern wall of Locus 1588 on the UME’s plan (Figure 5.5). Two round features are also located in this locus on the plan, but whether these are later intrusive pits, column bases, or some other feature is not known. The only recorded find from Locus 1588 was a 10.3 cm tall stem of a chalice (No. 31-10-117) with brown fabric (James 1966: Fig. 50: No. 31-10-117).

5.3.5.11 **Building 1700: Locus 1584 (Figures 5.5 and 5.7)**

Locus 1584 is located just south of Locus 1588, with which it shares a wall, and west of Locus 1585, separated by a series of Late Level VI walls. No information about this locus was provided by the original excavators or James, and no features are drawn on the UME’s plan except for a doorway in the northern wall, which was described above (Figure 5.5). Material
culture discovered in Locus 1584 included two jar rims (Nos. No. 31-10-355-a, b), a bowl rim (No. 31-10-355-f), and a glass scaraboid (No. 31-10-500-c) (James 1966: Figs. 49:10, No. 31-10-355-b, 11, No. 31-10-355-a, 18, No. 31-10-355-f, 100:11, No. 31-10-500-c).

5.4 BUILDING NB (Figures 5.1-5.2 and 5.8-5.10)

5.4.1 Excavation and Publication History

Building NB is situated in Area N North, which is located immediately east of Building NC, north of Building 1700, and south of the northern edge of the mound (UME Square R/7, HU Squares S-Y/12-16) (Figures 5.1 and 5.2). Building NB is separated from Building NC by a 1.8-2 m wide street, but is constructed directly against Building 1700, with which it shares a wall (98411) during certain periods (Killebrew and Mazar 2009: 43). This structure was initially excavated by the University Museum Excavations (UME) of the University of Pennsylvania in 1933 under the direction of Gerald M. FitzGerald (James 1966: 13; Killebrew and Mazar 2009: 33). Due to the onset of the Great Depression and World War II, the UME was not able to publish any reports concerning these excavations, however, the architecture and material culture of Building NB was briefly analyzed over three decades later by F.W. James in her publication on Levels VI-IV at Beth-Shean (James 1966).

In 1992, excavations of Building NB were renewed under the direction of Amihai Mazar on behalf of the Institute of Archaeology of the Hebrew University (HU) (Killebrew and Mazar 2009: 34). Work continued from 1993-1994, with a final season in 1996. The goal of these excavations was to reinvestigate and correlate the stratigraphic sequence of the UME with that of
Figure 5.8: UME Plan of Building NB at Beth-Shean
(after James 1966: Fig. 76.1)
Figure 5.9: HU Plan of Building NB (Stratum N-3b) at Beth-Shean
(after Killebrew and Mazar 2009: Fig. 2.4)
Figure 5.10: HU Plan of Building NB (Stratum N-3a) at Beth-Shean
(after Killebrew and Mazar 2009: Fig. 2.6)
the HU, provide a detailed plan of the building, and excavate the Late Bronze Age II level in the structure, which the UME had not reached (Killebrew and Mazar 2009: 34). The Hebrew University excavations of Building NB were published in 2009 (Killebrew and Mazar 2009).

5.4.2 Stratigraphy and Chronology

The UME differentiated between two construction stages in Building NB, while the HU excavations divided the stratigraphy of the structure into five phases. The HU phases consisted of Strata N-4 (Late Bronze Age IIB), N-3ab (Iron Age IA), N-2 (Iron Age IB), and N-1 (Iron IIA), although remains from the upper two strata were especially scarce (Killebrew and Mazar 2009: 34). The UME differentiated between an upper and a lower construction phase in Building NB, with FitzGerald claiming that the lower phase must correspond to Level VII (Late Bronze Age IIB), based on the “absolute level of the houses” (James 1966: 13). FitzGerald did not remark on the level of the upper phase, but it does appear on the UME’s plan of Level VI (Iron Age IA) and Late Level VI (Iron Age IB) of Beth-Shean, with plain walls referring to the former level and cross-hatched to the latter (James 1966: Fig. 77) (Figures 5.1 and 5.8).

Because the lower level of Building NB is featured in a separate plan, and the walls of the upper level of the building are marked with cross-hatching on the Level VI and Late Level VI plan, it looks as though the UME assigned the construction of the upper phase of the structure to Late Level VI (James 1966: Figs. 76, 77) (Figures 5.1 and 5.8). After analyzing the topography of the mound, pottery, and material culture from Building NB, James concluded that the upper phase should be positioned in Late Level VI and the lower in Level VII, with a possible division of the latter into Level VI and Level VII (James 1966: 13, 20). The HU was able to correlate
their Stratum N-3ab with the UME’s lower phase (Level VI) and their Stratum N-2 with UME’s upper phase (Late Level VI) of Building NB (Figures 5.9 and 5.10).

5.4.3 *Dimensions and Construction of Stratum N-3b* (Figure 5.9)

The outline of Building NB in Stratum N-3b paralleled that of the previous Stratum N-4 structure, with at least three of the outer walls of the building, 10419 (northern), 10422 (eastern), and 98403 (western), remaining the same in both strata (Killebrew and Mazar 2009: 48). The southern outer wall (98415) also probably continued in use during Stratum N-3b. The internal layout of the two buildings also remained relatively unchanged, with one large room (10440) in the south and two smaller rooms (10441, 10442) to the north, although two new internal walls (98431+10418, and 18415) were constructed in Stratum N-3b directly upon the earlier wider N-4 walls (18420 and 18421). Building NB was rectangular in shape, with outer dimensions measuring ca 8.5 m wide and 12.5 m long (Killebrew and Mazar 2009: 35).

The southern (98415) and western (98403) outer walls of Building NB were constructed out of a mudbrick superstructure built upon a foundation of two to three courses of stone boulders, and even though no stone foundations were discovered for the northern (10419) and eastern (10422) walls, this may be due to the excavations not reaching a low enough level (Killebrew and Mazar 2009: 36). The interior of the stone foundation for Wall 98415 was filled with closely packed pebble to cobble-sized stones. The thickness of the outer eastern and western walls ranged from 1-1.4 m in width, while those on the northern and southern sides were a much thicker width of 2.5 m (Killebrew and Mazar 2009: 36).

Neither the UME nor James mention or clearly indicate any type of outer doorway on the plan of Building NB, however, only the outer western wall appears completely preserved and so
the doorway might have been located in a destroyed section of the outer northern, eastern, or
southern walls. On the other hand, Killebrew and Mazar mention that several courses of cobble-
sized stones (98432) in the southwestern corner of NB might have been placed there in a post-N-3b period in order to block an earlier N-3b doorway (2009: 53, Photo 2.32) (Figure 5.9). It is
also possible that a doorway was not located in the outer walls of Building NB at this level, as
Killebrew and Mazar state that the earlier Stratum N-4 structure completely lacked an outer
doorway and was probably entered from above (2009: 41).

5.4.4 Rooms and Loci of N-3b

5.4.4.1 Building NB (N-3b): Room 10440 (Figure 5.9)

Room 10440 is located in the southern part of Building NB, with Room 10441 to the
northwest and Room 10442 to the northeast. The larger southern room is separated from the two
smaller to the north by a 0.5-0.7 m wide partition wall (98431+10418), which was constructed
upon an earlier and much wider Stratum N-4 wall (18420) (Killebrew and Mazar 2009: 48).
Although FitzGerald excavated almost all of the N-3b architecture and floors in Building NB, no
information or material culture was published from this level of the structure. When the HU
excavated below a Stratum N-3a wall (98406) in Room 10440 they discovered an intact floor
segment made of beaten-earth laid down above destruction debris (98417) from Stratum N-4
(Killebrew and Mazar 2009: 48). Room 10440 was lacking any type of doorway, paralleling the
earlier Stratum N-4 room below (Killebrew and Mazar 2009: 41).

A rectangular partially subterranean feature (98439) associated with the beaten-earth
floor in Room 10440 was uncovered sunk down into Stratum N-4 destruction debris alongside
the western (98403) wall of the room (Killebrew and Mazar 2009: 48). This 2 x 0.75 m installation was constructed of sides lined with bricks and coated on the interior with 3-4 cm of thick white plaster. The only material culture discovered in Room 10440 consists of sherds from three ceramic vessels: an Egyptian-style simple bowl with a red-painted rim (No. 104376/7), a hemispherical bowl with an incurving rim and burnished interior (No. 104376/3), and a storage jar with a thickened rim exterior (No. 104376/8) (Martin 2009: 444-445, Pl. 11:1, No. 104376/7; Panitz-Cohen 2009: 204, Pl. 11:5, No. 104376/3, 234-237, Pl. 11:9, No. 104376/8).

5.4.4.2 Building NB (N-3b): Rooms 10441 and 10442 (Figure 5.9)

North of Room 10440 were two smaller chambers, Room 10441 to the west and Room 10442 to the east. These two rooms were divided by a 0.5 m wide partition wall (18415). Room 10441 is rectangular-shaped, measuring ca. 1.5 m by 3.5 m, and is located above Stratum N-4 Room 18411. Room 10441 contained a cobble pavement located 0.7 m above the floor of the Stratum N-4 room. This stone floor ran from the western face of Wall 18415 for 0.75 m, where it then continued as a beaten-earth floor. A similar cobble pavement was also discovered running up to all four walls in Room 10442 to the east. This square-shaped room was situated above Stratum N-4 Room 18419, with the dimensions of about 1.5 m by 1.5 m. Both of these rooms were lacking any type of doorway, a similar situation to the earlier Stratum N-4 rooms below (Killebrew and Mazar 2009: 41).

Although no material culture was discovered on the floors of these rooms, a debris layer lying on the stone-paved floor in Room 10441 contained a large barrel-shaped krater (No. 104209/6) and an Egyptianized beer jar (No. 104209/1) (Martin 2009: 447-448, Pl. 11:11, No. 104209/6; Panitz-Cohen 2009: 220-223, Pl. 11:6, 104209/1). Four ceramics were also
discovered in a similar debris layer on the stone floor in Room 10442 including an Egyptian-style simple bowl with a red-painted rim (No. 104290/2), an Egyptian-style beer jar (No. 104125/4), a cooking pot with an everted triangular rim (No. 104043/1), and a storage jar with a thickened rim exterior (No. 104043/2) (Martin 2009: 444-445, Pl. 11:4, No. 104290/2, 447-448, Pl. 11:12, No. 104043/1; Panitz-Cohen 2009: 227, Photo 5.23, Pl. 11:7, No. 104125/4, 234-237, Pl. 11:8, No. 104043/2).

5.4.5 Dimensions and Construction of Stratum N-3a (Figures 5.8 and 5.10)

The outline of Building NB in Stratum N-3a almost paralleled that of the previous Stratum N-3b structure, with three of the outer walls of the building, 10419 (northern), 10422 (eastern), and 98403 (western), remaining the same in both strata. The earlier southern Stratum N-3b wall (98415) was replaced by Wall 98412, which was constructed about 1 m south of the earlier wall, providing new dimensions of 8.5 m wide and 13.5 m long for the building in Stratum N-3a (Killebrew and Mazar 2009: 55). There were also structural changes in the internal layout of Building NB in Stratum N-3a. While the two northern rooms (1738 and 1743a) remained relatively the same, the earlier southern room was split into four chambers (1739, 1740, 1743b, and 1744ab) through the construction of three new internal walls (98406, 98418, and 10424) (Killebrew and Mazar 2009: 54) (Figure 5.10).

The western (98403) outer wall of Building NB were constructed out of a mudbrick superstructure built upon a foundation of three courses of stone boulders, and even though no stone foundations were discovered for the northern (10419) and eastern (10422) walls, this may be due to the excavations not reaching a low enough level (Killebrew and Mazar 2009: 36). The thickness of the outer eastern and western walls ranged from 1-1.4 m in width, while the
southern wall was much thinner (about 0.5-1.3 m wide) and the northern wall was much thicker (2.5 m wide) (Killebrew and Mazar 2009: 36). Neither the UME nor James mention or clearly indicate any type of outer doorway on the plan of Building NB, on the other hand, Killebrew and Mazar mention that several courses of cobble-sized stones (98432) in the southwestern corner of NB might have been placed there in a post-N-3b period in order to block an earlier N-3b doorway (2009: 53) ([Figure 5.9](#)). It is also possible that a doorway was not located in the outer walls of Building NB at this level, as Killebrew and Mazar state that the earlier Strata N-4 and N-3b structures completely lacked an outer doorway and were probably entered from above (2009: 41). A 50 cm wide semi-circular feature (98426) appears midway down Wall 98403 on the HU’s plan of the building ([Figure 5.9](#)). Although this locus does not appear in the text, it does appear in the loci list as “oven?” (Killebrew and Mazar 2009: 70).

5.4.6 Rooms and Loci of Stratum N-3a

5.4.6.1 Building NB (N-3a): Room 1738 ([Figures 5.8 and 5.10](#))

Room 1738 was located in the northwestern corner of Building NB, north of Room 1739 and west of Room 1743. The dimensions of this room, 1.5 m by 3.5 m, changed little from the previous Stratum N-3b room below (Killebrew and Mazar 2009: 54). Only one area of this room was modified, with an about 0.5 m wide and 1.1 m long cut-out in the northwestern corner of the room appearing on the HU’s plan ([Figure 5.10](#)). Although this cutout is not mentioned anywhere in the information provided about Building NB, a group of stones, only mentioned as “stones in corner of Wall 10419” belonging to Stratum N-3a, is visible on the plan in the same corner and may be related to the cutout in Room 1738 (Killebrew and Mazar 2009: 69). It
appears as though the same stone feature is also illustrated on the UME’s plan of the Lower Level of Building NB (Figure 5.8). Three recesses were discovered in the southern wall (98431) of Room 1738, in which James claimed wooden posts had once stood in order to support a roof (1966: 14) (Figure 5.8). Only one find, a steatite truncated-biconical bead (No. 33-11-1), was discovered in Room 1738 (James 1966: Fig. 101:18, No. 33-11-1).

5.4.6.2 Building NB (N-3a): Rooms 1739 and 1740 (Figures 5.8 and 5.10)

Room 1739 is located south of Room 1738, north of Room 1740 and east of Room 1742b and Room 1743b. This room was the largest in Building NB in Stratum N-3a and almost square-shaped (about 3.5 x 3.5 m), with 1.5 m of the southern wall (98418) creating a small cutout in the southeastern corner of the room. No material culture was listed by the UME or the HU as being found in this room. Room 1740 was located in the southwestern corner of Building NB in Stratum N-3a with Room 1739 to the north and Room 1741a to the east. This rectangular-shaped room measured about 2.1 m wide and 3.5 m long.

Three recesses similar to those in Room 1738 were discovered in the northern wall (98412) of Room 1740 (James 1966: 14; Killebrew and Mazar 2009: 54, 66) (Figures 5.8 and 5.10). However, these depressions were larger and James remarks that they probably represented both post-holes and a surrounding area hollowed out for packing (1966: 14). One large stone had been placed in each hollow to be used as a base for the post. Although James states that no pottery was uncovered in Room 1740, a 4.5 cm diameter rim of a “jar-bowl” (No. 33-11-7) and a 15 cm x 16 cm lamp (No. 33-11-8) are listed as having been discovered in this room (1966: Fig. 54:5, Nos. 33-11-7, 8).
5.4.6.3 Building NB (N-3a): Rooms 1743 and 1744 (Figures 5.8 and 5.10)

Rooms 1743 and 1744 are located on the eastern side of Building NB in Stratum N-3a, with the former to the north and the latter to the south. According to Killebrew and Mazar, Room 1743 was only located in the northeastern corner of the structure and had the same square-shaped dimensions (3.5 x 3.5 m) as the earlier Stratum N-3b room (10442) below (2009: 54) (Figure 5.10). On the other hand, the UME’s plan shows Room 1743 as not only including the square chamber (1743a) in the northeastern corner, but also a small (about 1 x 2 m) area immediately south (1743b), which would have been separated by Wall 10418 (Figure 5.8). South of this small area was an even smaller space (1744b), divided by a wall that does not appear on the HU’s plans of Building NB. South of this chamber, and in the southeastern corner of the structure, was Room 1744. The only object found in this almost square-shaped (2 x 2 m) room was a carnelian bead in the shape of a lotus seed (No. 33-11-5) (James 1966: Fig. 101:14, No. 33-11-5).

5.5 BUILDINGS 350 AND 1131 AT DEIR EL-BALAH (Figures 5.11-5.13)

5.5.1 Excavation and Publication History

Buildings 350 and 1131 are located in the southeastern area of the settlement of Deir el-Balah, which is situated about 200 m northeast of the cemetery (Squares E-I/4-10). These structures were excavated by the Institute of Archaeology of the Hebrew University of Jerusalem from 1977 to 1982 under the direction of Trude Dothan (Dothan 2010a: XXVII). Several preliminary reports were published following the close of the last season and the final report of the excavations undertaken in both the settlement and the cemetery was published in a two
Figure 5.11: Buildings 350 and 1131 at Deir el-Balah
(after Dothan 2010a: Fig. 2)
Figure 5.12: Building 350 at Deir el-Balah
(after Dothan and Brandl 2010a: Plan 4)
Figure 5.13: Building 1131 at Deir el-Balah
(after Dothan and Brandl 2010a: Plan 4)
volume set almost three decades later (Dothan 1981; 1982; 1985a; 1985b; 1987; 1993; 1998; Dothan and Brandl 2010a; 2010b). Several problems at the site that inhibited the excavation and publication processes are mentioned by Dothan in the introduction to the final report (2010a: XXVII-XXXIV).

First, most of the settlement was covered by 13 m high sand dunes that needed to be removed in order to excavate the area, which resulted in the clearance of 175,000 metric tons of sand over a six to seven month period. The continual encroachment of the dunes limited the scope of the excavation area, so that the full extent of the settlement was never wholly realized. A more critical problem was the preemptive re-interment of the excavation area in 1982 by the landowner, who had agreed to use of the land as long as the area would eventually be filled in and covered with arable soil. The landowner not only backfilled the excavations, but also denied access to the area, abruptly ending the last season without a final evaluation or re-evaluation of the stratigraphy or architecture. Dothan states that “as a result, there are differing views of the stratigraphy that are reflected in both the text and the plans, although this may hamper the fluent reading of the book” (2010a: XXXIV).

Another issue mentioned by Dothan concerning the progression of the publication includes the submission of chapters by authors at different times, so that earlier sections become outdated, and therefore, some unrevised material is reflected in the final report. A quick scan of sections in the two volume set shows that at least 22 chapters were initially written and submitted for publication in the 1980s, and were either not updated at all since the original submission, or were “moderately,” “selectively,” or “minorly” modified (Dothan 2010a: XXXIV; Killebrew 2010a: 267, Note *; 2010b: 75, Note *; 2010c: 163, Note *; Rosen and Goring-Morris 2010: 273, Note *).
5.5.2 Stratigraphy and Chronology

Buildings 350 and 1131 are situated in Stratum VII at Deir el-Balah, which Dothan dates to the reign of Sety I in Egypt, adding that it is no earlier than the beginning of the 13th century BCE (2010a: XXVIII) (Figure 5.11). Furthermore, Brandl records that Stratum VII should be dated to the early 13th Dynasty and the period of Sety I, which he equates with the “LB IIC,” a term that is not defined or discussed further (2010a: 53). Since the reign of Sety I is generally accepted to have lasted about 15 years (1294-1279 BCE), the period of Stratum VII and its related buildings is quite ephemeral (Bard 2007: 42; Lloyd 2010: 15; Shaw 2000: 485). The date of Stratum VII is the keystone to understanding the stratigraphy of the settlement at Deir el-Balah, as it cuts two other strata (IX and VIII) and is cut by at least three more (VI, V, and II) (Brandl 2010b: 77).

Since only a sparse amount of pottery was discovered in Stratum VII, the dating evidence relies mostly on the architectural remains and “artistic parallels or negative information” (Brandl 2010b: 84). These artistic parallels refer to the comparison of Building 350 with structures illustrated in the reliefs of Sety I in the Hypostyle Hall of the Temple of Amun at Karnak. The excavators argue that the square ground plan and protruding corner towers of Building 350, as well as the nearby pond, match the depictions of fortresses and wells along the north coast of the Sinai in the Karnak reliefs (Brandl 2010c: 255; Dothan 1982: 758-762, 782) (Figure 5.12). Although Brandl asserts that the building “should not be viewed as one of the fortresses represented on the Seti I relief, but rather as a contemporaneous entity,” later in the same volume he states that “the Deir el-Balah fortress appears on the map as the eighth and easternmost fort of the military road” (Brandl 2010b: 84; 2010c: 258).
Other scholars have criticized this claim based on the identification of the fortresses of Raphia and Gaza immediately contiguous in the reliefs, which does not allow for the existence of a Deir el-Balah fortress between the two locations (Gardiner 1920: 103-104; Killebrew, Goldberg, and Rosen 2006: 115; Morris 2005: 516). Brandl answers these critiques in asserting that the identification of Raphia and Gaza is “doubtful” but offers no further explanation, only stating that “this will be discussed by me in detail elsewhere,” without a reference (2010c: 258, Note 32). Other scholars have stated that the reliefs only show the façade of each fortress, and therefore, the plan of Building 350 at Deir el-Balah does not actually match the depictions in the Karnak reliefs (Oren and Shershevsky 1989: 9-10).

It is for these reasons, as well as the aforementioned excavation and publication problems listed by Dothan, that a study analyzing the ceramic corpus from Deir el-Balah was conducted by Ann Killebrew, Paul Goldberg, and Arlene Rosen, with the conclusion that the chronology and stratigraphy of the site required revision (Killebrew, Goldberg, and Rosen 2006). Killebrew, Goldberg, and Rosen examined a representative assemblage of pottery from several loci in the settlement and illustrated how the corpus parallels 13th century BCE assemblages at other sites (2006: 98). The result was a complete revision of the stratigraphic sequence and chronology of the settlement at Deir el-Balah, with the original six strata reduced to two main periods: the 13th century BCE (Strata IXa and IXb) and the late 13th century and/or early 12th century BCE (Strata VII), the latter of which includes Buildings 350 and 1131 (Killebrew, Goldberg, and Rosen 2006: 98, 115).
5.5.3 Building 350: Dimensions and Construction (Figure 5.12)

Building 350 was an almost square-shaped structure measuring 19.5 m from north to south and 18.75 from east to west, with a buttress on each corner projecting a further 0.5 m, making the total dimensions about 20.5 x 20 m (Brandl 2010b: 77). The structure was built above an earlier Stratum IX building that Dothan dates to the Amarna Period, Brandl dates to the mid-14th century BCE, “LB IIB,” and the Amarna Period, and Killebrew, Goldberg, and Rosen date to the 13th century BCE and the 19th Dynasty (Brandl 2010a: 53; Dothan 2010a: XXVIII; Killebrew, Goldberg, and Rosen 2006: 117).

The foundation trenches of Building 350 were well preserved and in the lower part of some of the trenches (1017, 1021, 1088, and 1154) a layer of pure sand was discovered above the remains of the earlier Stratum IX structure (Brandl 2010b: 78-79). Brandl concluded that the deposition of clean sand could either be a result of aeolic or anthropogenic devices, the latter of which other scholars have associated with technical functions, like facilitating drainage, or religious or symbolic purposes (Brandl 2010b: 79-80; 2010c: 254-255; Higginbotham 2000: 264; Oren 1984: 50; Spencer 1979: 120; Weinstein 1973: 5-6, 13, N. 34).

Pottery was discovered in three of the foundation trenches of Building 350 (Dothan and Brandl 2010b: Pl. 22). A simple bowl, cooking pot, juglet, and two storage jars were found in the trench (1159) for external Wall 432 in an area outside the southwest corner of the structure, and three bowls, three kraters, a jar, and an Egyptianized large bowl were present in the sand deposit (1154) associated with the trench. An Egyptian-style ovoid jar and a Cypriot White Slip Bowl were also discovered in the foundation trench (1017) for external Wall 432, but were located along the western side of Room 1011. A trench (1028) for internal Wall 1516 contained an Egyptianized neckless store jar near the western side of Room 1020.
The four external walls (432, 1509, 1522, and 1535) of Building 350, as well as their foundations, were 2.4 m wide, while the ten internal walls (1510, 1511, 1512, 1513, 1516, 1517, 1518, 1519, 1520, and 1521) were a standardized 1.4 m wide (Brandl 2010b: 77). Every wall was built entirely of mudbricks, which measured 55 x 25 x 15 cm and were created from two different marl clays, resulting in bricks of two different colors (yellow and brown) in the same layer (Brandl 2010b: 77; 2010c: 255). The majority of the external and internal walls were constructed out of courses of headers, which varied between two rows for the thinner walls, and four for the thicker external walls (Brandl 2010c: 254).

Although only the foundations of Building 350 remained, the wide girth of the walls led Brandl to assume that the structure was originally two or three stories tall (2010b: 78). No superstructure or trace of a floor was discovered, and therefore no thresholds were located either, but Brandl surmises that the main entrance to the structure was situated in the center of the eastern wall (1535), leading into Room 1043, based on the large size of the room and its location (2010b: 78, 80-81). Building 350 is comprised of 13 rectangular or square-shaped rooms, with three central spaces surrounded by a series of rooms on all four sides, the southeastern (1044) of which was divided by a partition wall (1518).

5.5.4 Building 350: Rooms and Loci

5.5.4.1 Building 350: Rooms 1007, 1008, 1011, 1020, 1024, and 1055 (Brandl 2010b: 80) (Figure 5.12)

Rooms 1007, 1008, 1011, 1020, 1024, and 1055 were located in the northwestern area of Building 350. These six rooms were laid out in two equal rows and three even columns, with the
length of each room measuring about 3.7 m and the widths ranging between 2.25 and 2.5 m. Brandl surmised that these six chambers functioned as storerooms due to their uniformity in size (2010b: 80). Room 1011, located east of Room 1008 and north of Room 1055, was located in the northwestern corner of Building 350. Two limestone burnishers were discovered in this room, one rectangular-shaped and the other in the form of an elongated plaque (Brandl 2010e: 233-234). One 3.5 g piece of blue fine-grained pigment from a copper derivative was also found in this Room 1011 (Wreschner 2010: 305).

East of Room 1011 were Room 1008 and Room 1007, which were located north of Room 1020 and Room 1024, respectively. No finds were discovered in these four rooms. South of Room 1011 and west of Room 1020 was Room 1055, where a knob, quernstone, basalt plate, and pigment remains were found. The small mushroom-shaped knob was manufactured out of stone and was probably attached to a wooden box that was not preserved (Dothan and Nahmias-Lotan 2010b: 183-184). The large quernstone netherstone had a working face of flint and was oblong-shaped (Klein 2010: 279-288, 297). A medium-sized basalt plate with a ring base was also discovered in Room 1055 (Klein 2010: 279-288, 298). A 2 g amount of fine-grained blue pigment from a copper derivative was similar to the pigment from the room (1011) north of Room 1055 (Wreschner 2010: 305).

5.5.4.2 Building 350: Room 1056 (Brandl 2010b: 80) (Figure 5.12)

Room 1056, located in the southwestern corner of the structure, was the second largest chamber in Building 350, measuring 2.5 m in width and 5.25 m in length. Brandl theorized that this room functioned as a bedroom (2010b: 80). Two clay figurines were discovered in this room. One of these was a fragment of a female figurine or mold-die made from pink clay with a
straw temper and a dark core (Dothan and Nahmias-Lotan 2010c: 199-201). The fragment shows part of the upper torso and belly of a female reclining on a plaque, as well as part of the left arm, which lies parallel next to the body wearing bracelets. The second figurine from Room 1056 was comprised of several pieces of a hollow zoomorphic figurine made of reddish-yellow clay (Dothan and Nahmias-Lotan 2010c: 204-205).

5.5.4.3 Building 350: Rooms 1045, 1061, and 1065 (Brandl 2010b: 80) (Figure 5.12)

Rooms 1045, 1061, and 1065 were located in the center of the southern area of Building 350, east of Room 1056, south of Rooms 1020 and 1024, and west of Room 1044. Room 1065 was the northernmost room of the group, measuring about 1.6 x 5.2 m, which matches the combined widths and wall (1521) of the two small rooms (1045 and 1061) to the south. Brandl stated that this long rectangular room was probably a corridor (2010b: 80). Rooms 1045 and 1061 were two square-shaped rooms with identical lengths (2.4 m) and slightly different widths, with the latter being 2.1 m and the former 1.9. These two rooms were side by side, with Room 1045 lying west of Room 1061. Room 1061 was semi-divided by a small 0.50 m partition wall that ran from the northern wall (1519) southward to about the center of the room. No finds were recovered from these four rooms. Brandl surmised that Room 1045 was as a latrine, with the immediately adjacent Room 1061 functioning as a bathroom divided by the partition wall (2010b: 80).

5.5.4.4 Building 350: Rooms 350, 1043, and 1044 (Brandl 2010b: 81) (Figure 5.12)

Rooms 350, 1043, and 1044 were three rooms that ran along the eastern side of Building 350. In the northeastern corner was Room 350, east of Room 1007 and north of Room 1043, an
almost square-shaped chamber with the dimensions of 3.5 x 3.7 m. Brandl suggested that the space was a living room (2010b: 81). Directly south of Room 350 was rectangular-shaped (2.5 x 4.5 m) Room 1043, which Brandl asserts “is the largest in the building,” which is demonstrably untrue, as Room 1044 (18 m²), Room 1056 (13.125 m²), and Room 350 (12.95 m²) are all larger than Room 1043 (11.25 m²) (2010b: 81). Nevertheless, the dimensions of the room and its location in the midpoint front of the structure caused Brandl to theorize that the main outside threshold to the structure must have been located in this chamber (2010b: 81).

Room 1044, which was actually the largest (4 x 4.5 m) room in Building 350, was situated south of Room 1043 in the southeastern corner of the building. The room was divided down the center by a 1.4 m wide partition wall (1518) running north-south, essentially splitting the chamber into two equal sections (1044A to the west and 1044B to the east) measuring 1.5 m wide and 4.5 m long. Brandl believes that Room 1044 represents a stairwell due to the fact that a partition wall that did not reach the ceiling was situated in the room instead of a central column (2010b: 80-81; 2010c: 258). No finds were discovered in these three rooms.

5.5.5 Building 1131: Dimensions and Construction (Figure 5.13)

Building 1131 was a rectangular-shaped structure measuring about 11.25 m from north to south and 5.25 m from east to west (Brandl 2010b: 81). The structure is situated west of Building 350, with the eastern external wall (1528) of Building 1131 running parallel to the external western wall (432) of Building 350, with a 1.8 m alleyway between the two in the north that gradually widens to a 2.3 m gap in the south (Figure 5.11). The northeast corner of Building 1131 is perfectly aligned with the northwest corner of Building 350. Three of the external walls (429/1528, 436, and 1531) of Building 1131 and the four internal walls (428,
1524, 1525, 1546) were a standardized 0.5 to 0.55 m wide, the length of one mudbrick (Brandl 2010b: 81).

Each of these walls was built entirely of mudbricks similar to those used in the construction of Building 350, most of which measured 55 x 25 x 15 cm and were created from two different marl clays, resulting in bricks of two different colors (yellow and brown) in the same layer (Brandl 2010b: 77, 81; 2010c: 255). All of the external and internal walls just mentioned were constructed out of one course of headers (Brandl 2010b: 81; 2010c: 254). The southern external wall (1543N) of Building 1131 was constructed up against an earlier wall (1543S) from Building 1140 of Stratum VIII without any bonding between the two (Brandl 2010b: 74, 82). Wall 1543N was built of two rows of mudbrick stretchers, while Wall 1543S was a single row of headers. Each wall was about 0.5 m wide, making the double wall the widest in Building 1131 with a 1 m width.

Building 1131 was comprised of at least four rooms, with long rooms the entire width of the structure in the north (426-451-470) and south (1064), with two narrower rooms in between situated on the east (1131) and the west (1135-1141). Intact floors were discovered in four (426-451-470, 1064, 1131, and 1135-1141) of these rooms (Brandl 2010b: 81). These floors consisted of beaten earth that followed the topographical slope of the site from south to north, but remained at the same level in the east-west direction. The entrance to the structure was located in the eastern external wall (429/1528), leading from the alley between Building 1131 and Building 350 into Room 426-451-470 in the northwestern corner (Brandl 2010b: 81; 2010c: 258).
5.5.6 Building 1131: Rooms and Loci

5.5.6.1 Building 1131: Room 426-451-470 (Brandl 2010b: 81) (Figure 5.13)

Room 426-451-470 was a large L-shaped room running along the northern part of Building 1131. The 4.9 m length of the room ran the entire width of the structure, while the width varied between 2.25 m on the western side and 4.4 m on the eastern. The outside entrance of Building 1131 was situated in the southeastern corner of this room in Wall 429. The only other threshold in Room 426-451-470 is believed to have been located in the wall (1525) opposite the external doorway to the building (Brandl 2010c: 258). This proposed doorway was in an unexcavated portion of the balk, but would have led west into Room 1135-1141 south. A segment of a beaten earth floor (451) was discovered in the northern part of Room 426-451-470.

In the northeastern corner of the room close to the inner corner of Walls 429 and 1531, a ceramic foundation deposit (426A) was discovered (Dothan and Nahmias-Lotan 2010a: 111-113). This deposit consisted of two Egyptianized simple bowls with a saucer lamp between them. Both bowls had physical signs of being kiln wasters, like warped rims and sides, superfluous clay lumps, and cracked bases, but the lamp was well-constructed and properly fired. None of the three vessels show any signs or use or burning. The only other object discovered in Room 426-451-470 was a large rider quernstone made of kurkar and bun-shaped (Klein 2010: 292).

5.5.6.2 Building 1131: Room 1135-1141 (Brandl 2010b: 81) (Figure 5.13)

Room 1135-1141 in located in the center of the western side of Building 1131, south of Room 426-451-470, west of Room 1131 and north of Room 1064. Although over half of the
room was covered by two balks and unexcavated material, the original dimensions of 2 x 4.7 m, with about 1 x 3.4 area exposed, can be theorized according to the size of the surrounding rooms. Proposed thresholds in Room 1135-1141 include the aforementioned example in the eastern wall (1525), which would have led to Room 426-451-470, and possibly another in the southern wall (1546) that would have connected the space with Room 1064 (Brandl 2010c: 258). A beaten earth floor was found across the entire excavated portion of Room 1135-1141. Three ceramic vessels were associated with the floor: a simple bowl and a two-handled krater came from the northern section (1141) and another two-handled krater was discovered on the southern part (1135) (Dothan and Brandl 2010b: Pl. 20).

5.5.6.3 **Building 1131: Rooms 1131 and 1064** (Brandl 2010b: 81) (Figure 5.13)

Room 1131 was situated on the eastern side of Building 1131, south of Room 416-451-470, east of Room 1135-1141, and north of Room 1064. This room was small chamber measuring only 1.8 m wide and 2.4 m long, with a beaten earth floor discovered across the southern half of the room. Although the entire room was excavated, no thresholds were illustrated or indicated on the published plan and Brandl does not mention any in his description of Building 1131. One Egyptian-style simple bowl with a plain rim was found in the chamber (Dothan and Brandl 2010b: Pl. 20).

Directly south of Rooms 1131 and 1135-1141 was Room 1064, which appears to have run the entire width of the building, although the western end was not excavated. The original dimensions of the space were 4.75 m in length (exposed 3.5 m) and the width ranged from 1.6 m on the eastern side and 2 m on the western side, which gave the room a trapezoidal shape. A strip of beaten earth floor was discovered along the edge of the southern wall (1543N). Brandl
theorized that this space might have been unroofed (2010b: 81). Finds associated with the floor include an Egyptianized simple bowl and a two-handled storage jar (Dothan and Brandl 2010b: Pl. 20).

5.5.7 *Alleyway between Buildings 350 and 1131* (Brandl 2010b: 83) (*Figure 5.11*)

Two loci (440 and 1190) were excavated in the alleyway between the western wall (432) of Building 350 and the eastern wall (1528) of Building 1131. Locus 440 was located in the northern part of the alley, just north of the external threshold of Building 1131. A small bronze pin with a rounded section was discovered in Locus 440 (Dothan and Nahmias-Lotan 2010d: 188). Locus 1090 consisted of a large 2.1 m diameter pit spanning the width of the alleyway south of Locus 440 and the external threshold to Building 1131. Brandl suggests that the pit was a dump for Building 1131 (2010b: 83). Ten ceramic vessels were discovered in Pit 1090 including: one krater, two cooking pots, one flask, two storage jars, two Egyptianized simple bowls, one Egyptianized beer jar, and one Egyptian “meat jar” (Dothan and Brandl 2010b: Pl. 21).

5.5.8 *Silo 1074* (Brandl 2010b: 82) (*Figure 5.11*)

About 6 m south of Building 1131 and about 3 m west of the southwest corner of Building 350 was a circular structure (1074) with a 3.5 m diameter. The floor of Silo 1074 was paved by files of mudbricks laid on their narrow sides and oriented northwest-southeast, with about 10 rows still preserved. The enclosure wall of the silo was 0.10 m thick and preserved to 0.04 m above the floor level. Due to the lack of an inner partition wall, Brandl suggests that Silo 1074 was originally roofed with a dome and that the lower section of Silo 1074 was subterranean.
with a possible opening in the upper part of the dome for filling and another near the ground level for removal (2010b: 82; 2010c: 258).

5.5.9 *The Crater* (Figure 5.11)

A large anthropogenic crater measuring 19.5 m north-south and 17 m east-west was situated about 11 m north of Building 1131 and northwest of Building 350. In the middle of each of the four sides of the crater were narrow sloping passages dug approximately 2 to 2.5 m from the surface to the edge of the depression, which allowed entry into the crater. There are two different theories as to the function and chronology of the depression. Proponents of both theories agree that the crater was initially manufactured during Stratum IX in order to provide a clay quarry for the mudbricks used to construct the buildings at Deir el-Balah (Brandl 2010b: 71; Issar 2010: 289; Killebrew, Goldberg, and Rosen 2006: 99). As was explained in the introduction to this chapter, Dothan and Brandl date Stratum IX to the mid-14th century BCE (Amarna Period), while Killebrew, Goldberg, and Rosen would push the date to the 13th century BCE (19th Dynasty) (Brandl 2010a: 53; Dothan 2010a: XXVIII; Killebrew, Goldberg, and Rosen 2006: 117).

Brandl believes that later in Stratum IX, the quarry was turned into a pond, mostly based on the form and earliest deposits in the depression (Brandl 2010b: 71-72). He asserts that the organized structure of the crater, including the regularity in shape and outline, well-defined corners, and entrance passages demonstrate that the quarry was prepared for secondary use as a lake (2010b: 71). The lowest area of the depression, just above the base, contained a 1.6 m deep horizontal deposition of multiple thin layers that resembled varves of dry mud surfaces (Brandl 2010b: 72). Brandl suggests that these striations, as well as the lack of finds, are evidence that
the quarry was turned into a water installation, and the profound depth of the deposit show that it was used over a long period of time (2010b: 72).

Brandl proposes that the crater was used as a pond through Strata IX, VIII, and VII (2010b: 77, 84, 94). Evidence for its continued employment as a lake in Stratum VII for Buildings 350 and 1131 include the aforementioned comparison with structures illustrated in the reliefs of Sety I in the Hypostyle Hall of the Temple of Amun at Karnak, which show fortresses and their related water installations (Brandl 2010c: 255; Dothan 1982: 758-762, 782). In the subsequent Strata VI-IV, which Dothan and Brandl date to the 13th century BCE and the reign of Ramses II, the crater was filled with many layers of ash and debris from an adjacent industrial complex, that eventually spread out over the top of the crater (Brandl 2010b: 72, 94). Brandl asserts that the industrial complex and its related filling of the depression occurred after Buildings 350 and 1131 fell out of use at the end of Stratum VII (2010b: 84).

While Killebrew, Goldberg, and Rosen agree that the crater was initially constructed in Stratum IX for use as a quarry, they argue that the depression was never actually turned into a pond based on an analysis of the microstratigraphy and sediments using grain size and micromorphological techniques (2006: 98-99). They state that not only is there not enough mottling and iron staining to indicate that water stood for a long period of time in the crater, but also that the natural sediment (*nazaz*) in the bottom of the basin was of such a high porosity that any standing water would have only held for 4 to 12.5 days, based on measurements of hydrologic conductivity by Issar (2006: 101, 108).

Furthermore, they attribute the striations in the bottom of the depression to the silts and sands carried by water runoff during the winter season, and that if the crater was meant to hold water, it would probably have been plastered (2006: 108). Killebrew, Goldberg, and Rosen
suggest that during the course of Stratum IX, the quarry was completely filled with refuse and ash from the industrial area that eventually expanded onto the crater as it slowly filled with debris (2006: 99). Therefore, the crater was completely filled in and covered over by the time of Stratum VII, and so Buildings 350 and 1131 should not be associated with this feature.

Issar published a response to Killebrew, Goldberg, and Rosen’s claims in the second volume of the final report of Deir el-Balah (2010: 289-290). He states that his own onsite observations and inspections of the natural nazaz sediment showed definite evidence of water collection associated with an artificial reservoir and that the lamination of layers at the bottom of the depression were of a low enough porosity to hold water (2010: 289). Furthermore, the storage of water could have been an exclusively seasonal event, and the crater probably held water for one to four months at a time, with an average of 1.5 months based on the amount of local precipitation and infiltration (Issar 2010: 289-290).

5.6 SUMMARY AND CONCLUSION

In this chapter, the data set for the second case study, which is grounded in residential contexts, was presented in the form of a descriptive analysis. These residential contexts consisted of five buildings located in close proximity to one another at Beth-Shean and Deir el-Balah, all of which belong to strata of the Late Bronze Age IIB and Iron Age IA. These structures include Buildings 1500, 1700, and NB at Beth-Shean, and Buildings 350 and 1131 at Deir el-Balah, and because they comprise the data set for the second case study, a complete discussion of the excavation and publication history, stratigraphy, and chronology was required for each building. An exhaustive account of the physical aspects of all five structures, including the dimensions, shape, construction methods, walls, foundations, materials, main entrance, and
architectural details, allowed for a comprehensive analysis, which was one of the primary goals of this project.

The thoroughness was taken even a step further through a detailed account of each individual room in the five structures at Beth-Shean and Deir el-Balah, including the dimensions, stone elements, floor, features, inscriptions, deposits, thresholds, walls, and all pottery and objects discovered inside. Much of the descriptive process incorporated a personal translation and identification of the material, as well as other scholars’ interpretations, and updated information. This chapter not only provided a comprehensive, collated, accurate, and updated discussion of the data employed in the second case study, but also established a foundation for the second portion of the study on residential contexts that follows in the subsequent chapter, which examines the elements and features of the buildings at Beth-Shean and Deir el-Balah from an Egyptian perspective and under the lens of cultural identity theory.
CHAPTER SIX. AN EGYPTIAN PERSPECTIVE OF THE RESIDENTIAL CONTEXTS AT BETH-SHEAN AND DEIR EL-BALAH

6.1 INTRODUCTION

This chapter represents the second portion of the study on residential contexts, where the elements and features of Buildings 1500 and 1700 at Beth-Shean and Buildings 350 and 1131 at Deir el-Balah presented in the previous chapter will be examined entirely from an Egyptian perspective and through the framework of cultural identity theory. First, the intellectual history of previous scholarship on the identity of the occupants and the function of the five Levantine structures is provided, which includes aspects of ethnicity, status, gender, age, and occupation, as well as a discussion of architectural plan and construction techniques. Following this section, a thorough examination of the five types of Egyptian domestic architecture of the New Kingdom occurs, including anteroom villas, four-sided villas, three-sided houses, tripartite houses, and three-room houses, followed by close analyses of each of the five buildings at Beth-Shean and Deir el-Balah in light of Egyptian dogma and praxis in regards to residences.

This includes a side-by-side comparison of these edifices with contemporary houses in Egypt, including aspects related to the socio-economic status and occupation of the owners, the function(s) of the structures, and the locations of comparanda in Egypt. This portion of the study is divided into sections that initially reflect more broad architectural features of the buildings, including the size and layout, position of the main entrance, and the location and function of rooms, and then contracts into an analysis of each individual chamber positioned in the front, middle, and rear sections of the edifices. The discussion of the architectural features of each building includes a study of the significance, location, orientation, decorative elements, size, and shape of these features in both Egypt and the Levant. The analyses of the structural divisions of
the buildings examines the function of each division, as well as each individual room, and also includes a discussion regarding the utilizers of the room (gender, age, socio-economic status, and occupation), the number of rooms in each division, and the shape, size, walls, decoration, thresholds, floors, furnishings, roofing, subdivisions, and pottery and objects discovered inside.

The research presented in this chapter not only provides the detailed analyses of the New Kingdom Egyptian and Late Bronze Age and early Iron Age Levantine data sets, but also incorporates a progressing account of the implications and results of these analyses. Investigating the buildings at Beth-Shean and Deir el-Balah from an Egyptian viewpoint and through the application of cultural identity theory analyzes how a New Kingdom Egyptian would have functioned as a resident in these structures, and how similarities or variations between these buildings and the houses in the Egyptian homeland would have determined or affected life abroad in Canaan.

6.2 PREVIOUS SCHOLARSHIP

The identification of Buildings 1500, 1700, and NB at Beth-Shean and Buildings 350 and 1131 Deir el-Balah in scholarly literature are highly varied and sometimes contradictory for an individual structure, ranging from esteemed titles like “ceremonial palace” (Mazar 2006c: 80) or “governor’s residency” (Oren 1984: 39), to more martial-oriented labels like “fortress” (Dothan 2010a: XXVIII) or “migdol” (Hasel 1998: 96), and even down to the lowly designation of “sketchy little building” (James 1966: 13). The one commonality among discussions of these five buildings stems from the classification of certain architectural features, construction techniques, or even whole monuments as “Egyptian,” “Egyptian-Style,” “Egyptian-Type,” “Egyptianized,” or “Egyptianizing.” However, even these labels can differ dramatically
according to a personal definition for each term, ranging from aspects of provenance to stylistic features.90 Titles and names are not the only disparities in research publications about these structures, as the occupants and function of each building are also divergent among scholars.

There is a common consensus that a large part of the architectural plan and construction techniques of Building 1500 at Beth-Shean are Egyptian in style and “recognizable in their careful planning and fine construction,” including: the square-shaped blueprint, central courtyard with surrounding rooms, deep foundations, thick walls, carved door jambs, T-shaped stone doorsills, and column bases (Higginbotham 2000: 264-267, 270-271; James 1966: 8; Killebrew 2005: 58; Mazar 2006c: 80; Mazar 2011: 168; Morris 2005: 755-756; Oren 1984: 38-39, 49; Oren 1992: 18; Weinstein 1981: 18) (\textbf{Figures 5.3 and 5.4}). A few of these scholars also mention that these characteristics are similar to those found among houses at Tell el-Amarna in Egypt, with the implied assumption that these features are not aspects of Canaanite architecture.

On the other hand, the central-axis entrance, basalt foundations, and lack of a staircase in Building 1500 are explicitly stated to be non-Egyptian, although the location of the entrance and presence of a stairway is contested at Building 1500 (Higginbotham 2000: 268, 270-271; Mazar 2006c: 80; Oren 1984: 39, 52; 1992: 18; Morris 2005: 756, Note 175; Weinstein 1981: 18). Oren is the only scholar who has compared Egyptian-style “governor’s residencies” (including Buildings 1500 and 1700) with the “royal palaces typical of the cities of Palestine (and Syria),” and demonstrated the differences in architectural concept, general plan, constructional details, and function between large Egyptianized and Levantine-style edifices (1984: 51; 1992).

Since Building 1500 is the most widely published of all five structures in this study, it therefore also has the highest quantity of various labels, including “governor’s residency,”

90 See, for example, definitions of these terms in Morris 2005: 15 versus those of Martin 2009: 434, Note 2 and Martin, Gadot, Goren 2009: 362.
“center-hall house,” “administrative building,” “residency,” “small palace,” “patrician house,”
“domestic,” “ceremonial palace,” “house,” “governor’s building,” and “headquarters” (Hasel
The most basic function assigned to Building 1500 is a dwelling, without any reference to the
cultural or ethnic identity of the occupants (Higginbotham 2000: 264). Very few scholars
remark that the structure could have been a house for either Egyptian officials or Canaanite

However, the majority of descriptions about Building 1500 maintain that the structure
was a residence, patrician house, ceremonial palace, or administrative center for Egyptian
officials, governors, administrators or noblemen (James 1966: 13; Mazar 2006c: 80; Mazar 2011:
number of publications also claim that the occupants could have been associated with the
Egyptian military, including army officers and/or garrison troops, as the headquarters or homes
for the “northern command” of Egypt in Canaan (James 1966: 13; Morris 2005: 757; Oren 1984:
38, 49; Weinstein 1981: 19). Based on hieroglyphic inscriptions discovered at Beth-Shean,
several scholars assert that the edifice was the personal home of the Egyptian bureaucrat and
military officer Ramsesuserkhepesh, whose name appears on several stone architectural elements
at the site, although none were actually discovered within Building 1500 (Higginbotham 2000:

Although these inscriptions are employed as evidence for the proposed function and
resident of Building 1500, the designations of almost all publications are based entirely on
architectural features, with no examination or recognition of the objects discovered in the edifice,
sometimes with rationalizations along the lines of “unfortunately, however, the quite limited
record keeping of the original excavators has meant that the functions of most of the rooms can
be deduced solely upon their structure” (Morris 2005: 756). Contrary to this statement, James
concluded that Building 1500 had a specifically domestic purpose, based on her publication of
the pottery and other finds, and that the structure was not religious or martial, based on the
absence of cultic objects and weapons (1966: 12-13). Only Mazar has offered a purpose for the
structure outside the purely utilitarian, stating that Building 1500 was “designed to impress
visitors and reflect Egyptian rule and power” (2011: 168).

Building 1700 at Beth-Shean also appears in many publications about Egyptian-style
architecture in the Levant, where it tends to be grouped together with Building 1500, without an
individualized description of the structure, other than a list of the similarities the edifice shares
with Building 1500 including: the architectural plan, western orientation, carved doorjambs, and
183; Oren 1984: 38-39; 49; 1992: 18; Weinstein 1981: 18-19) (Figures 5.5 and 5.6). These
parallels with Building 1500, which lies directly east of Building 1700, also prompt similar
identifications for the building as a residence or headquarters for Egyptian administrative
officials and/or military officers and garrison troops (Hasel 1998: 93, 96; Morris 2005: 755; Oren

The inscriptions and objects discovered inside Building 1700 are mentioned even more
rarely than those of Building 1500 in these descriptions, nevertheless, the statement that
“although the building apparently contained ‘many Egyptian finds,’ these were not documented
individually” (Morris 2005: 758) is incorrect, as James published all of the pottery and objects
individually for the edifice according to the locus or room in which they were discovered (James
1966; Yannai 1996: 192). As with Building 1500, James concluded that Building 1700 had a purely domestic nature, due to the lack of religious or martial objects in the structure (1966: 8, 11-13).

Mazar also deduced that Building 1700 (=NA) was an administrative building and recognized the aforementioned list of similarities with Building 1500, but also found that specific characteristics of the walls, such as the number of courses, employment of small or large stones, and layout of the mudbricks, were analogous between the both structures (2009b: 90). On the other hand, James and Mazar were the only scholars to point out that Building 1700 was actually completely lacking a large central hall, which was the most defining aspect of Building 1500, essentially demonstrating that the layout of the two buildings was fundamentally different, contrary to the majority of the aforesaid publications mentioning the structure (James 1966: 12; Mazar 2006c: 81; 2009: 90).

James and Mazar are also the only scholars who have published on or even mentioned Building NB at Beth-Shean, and while James’ publication of the layout, pottery, and objects from the structure is informative, her only conclusion that Building NB was a house among the “architecturally unimpressive buildings clustering up against the north wall of the 1700 house” or “sketchy little buildings” does not provide much information (1966: 13) (Figures 5.8-5.10). Killebrew and Mazar also stated that the structure was a house in their publication of the later excavations in the structure, but were silent regarding any conclusions or hypotheses concerning the occupants or major alterations made in the structure over a short period of time (2009: 33-56).

The lack of further identification is probably connected to a later statement about Beth-Shean made by Mazar, asserting that “simple houses cannot be defined as belonging to a certain
‘Egyptian’ or ‘Canaanite’ tradition,” due to the fact that a combination of large spaces and smaller rooms is typical of both cultures (2011: 169). On the other hand, his subsequent remark that the cultural designation of simple houses is also difficult because “examples of New Kingdom dwellings are few” (Mazar 2011: 169) is quite contrary to the numerous small dwellings excavated at Tell el-Amarna, Deir el-Medina, Kom el-‘Abd, Thebes, Lisht, Medamud, Gurob, and Thebes.91

Like Building 1500 at Beth-Shean, Building 350 at Deir el-Balah has also been widely discussed, with labels including “fortress, administrative headquarters, residency, storehouse, garrison, police station, and outpost (Brandl 2010b: 77; Dothan 2010a: XXVIII; Hasel 1998: 98; Higginbotham 2000: 284, 286; Killebrew 2005: 60; Morris 2005: 386, 388, 516; Oren 1984 Fig.1; 1987; Oren and Shershevsky 1989: 15-18) (Figure 5.12). Several architectural characteristics of the structure, like the square-shaped plan, mudbrick foundations, corner towers, sand-filled foundations, and lamp-and-bowl foundation deposit, are generally referenced as the Egyptian-style aspects of Building 350 (Brandl 2010c: 254-255; Dothan 2010b: 313; Higginbotham 2000: 284, 286; Killebrew 2005: 60, 62-63; Morris 2005: 517). Brandl, the author of the final excavation report on the edifice, adds that the size, color, and stance of the mudbricks employed in the construction are also evidence of Egyptian features (2010c: 254-255; 258).

Conversely, Morris has stated that the ceramic foundation deposit is not an Egyptian practice, while a few other scholars assert that there are no close parallels for Building 350 in Egypt or Nubia that can “assist in interpreting its layout or function” (Higginbotham 2000: 284, 288; Morris 2005: 517; Oren 1987; Oren and Shershevsky 1989: 15-18). The function of the

91 For a list and references of sites in Egypt with small New Kingdom houses, see Koltsida 2007: 3-4.
structure is another source of contention regarding Building 350. The excavators of the building affirm that the square ground-plan, corner towers, and proximity to a pond, demonstrate that the building was an Egyptian fortress based on parallels with artistic representations of the same type in Egypt and the Sinai (Brandl 2010c: 255; 258; Dothan 2010a: XXVIII; 2010b: 313-314). On the other hand, several other scholars argue against a martial purpose, given the small size of the building, walls, and buttresses, and propose that Building 350 played a more administrative role collecting taxes, storing trade goods, stationing police, or that it functioned as a fortified residence for an Egyptian official (Higginbotham 2000: 284; Morris 2005: 286, 388; Oren 1987; Oren and Shershevsky 1989: 15-18).

Like Building NB at Beth-Shean, Building 1131 at Deir el-Balah has not been widely published or discussed by many scholars (Figure 5.13). Based on the assumed Egyptian-style elements of mudbrick foundations and corner entrances, the excavators proposed that the structure was a “Commander’s House” and a subsidiary building to the fortress (Building 350) located a few meters east from Building 1131 (Brandl 2010b: 77; 2010c: 254, 258; Dothan 2010b: 313). Morris is the only other scholar who has mentioned the edifice, stating that “neither its form nor its function is ascertainable” (2005: 517-518).

6.3 SIZE AND LAYOUT

There are six basic types of domestic architecture in Egypt in the New Kingdom. The categorization of these structures is based on the size, architectural plan, and layout, and includes: palaces, ante-room villas, four-sided villas, and three-sided, tripartite, and three-room houses. Palaces were huge complexes employed to house the king and the royal family, as well as functioning as the governmental center of the state, and “as the residence of the king, it – the
palace – was not only the focus of the community but also the basis for its existence” (Lacovara 1997: 24). These residential and administrative palaces are distinct from the ceremonial palaces attached to temples of the New Kingdom, which the king would occasionally visit in order to participate in festivals and other rituals (Badawy 1968: 35). New Kingdom palaces have been discovered at Tell el-Amarna, Tell Basta, Tell el-Dab‘a, Deir el-Ballas, Deir el-Medina, Ezbet Helmi, Ezbet Rushdi, Malkata, Medinet Gurob, Memphis, and Thebes in Egypt (Badawy 1968: 35-36; Koltsida 2007: 2).

The second and third types of domestic architecture are comprised of sizeable square-shaped villas, which are defined by a large central room surrounded on four sides by smaller rooms, either with or without the addition of an exterior anteroom outside the main building (Tietze 1985: 48-84). Anteroom villas, which are the larger of the two types, are also known as Normalhäuser or grossen Einzellösungen, while those without the exterior addition are generally smaller, and labeled as four-sided villas or Positive Zwischenlösungen (Ricke 1932: 21-23, 25-36, 37-42). These two types of villas belonged to private citizens of the upper middle and higher levels of the socio-economic strata of Egyptian society, who would reside in the edifices, as well as conduct business and perform occupational labors, for example, the villa of the craftsman Thutmose at Amarna included his sculpting workrooms (Borchardt 1907: 59-61; Borchardt and Ricke 1980: 87-98). Large Egyptian villas have been discovered at Tell el-Amarna, Deir el-Ballas, Dahshur, Elephantine, Kahun, El-Ahaiwah, Malkata, Luxor, Giza, Abu Ghalib, and Abydos (Koltsida 2007: 3).

The remaining three types of domestic Egyptian architecture, three-sided, tripartite, and three-room houses, were the most widespread, as they were the chief abodes of the lower middle and lowest levels of the socio-economic strata in New Kingdom Egypt (Koltsida 2007: 3-4).
Three-sided houses were medium-sized structures with a large square chamber surrounded by smaller rooms on three sides, while tripartite houses had a smaller blueprint consisting of a large room with one or two smaller chambers on either side (Tietze 1985: 48-84). The latter type of residence is the most common form of domicile in Egypt and comprised “the standard residence of a New Kingdom low class state employee,” as evidenced by the numerous examples at Tel el-Amarna and Deir el-Medina (Koltsida 2007: 4). These governmental employee houses are typically found in groups of two or more, commonly scattered among larger villas, and attached to or nearby a worksite, whether a palace, temple, cemetery, or fortress (ibid).

This form of structure was also used as the quarters and barracks for military personnel stationed in Nubia at the Middle Kingdom and New Kingdom fortresses located at Buhen, Kuban, Kumma, Mirgissa, Semna, Shalfak, and Uronarti (Badawy 1966: 28-29, 207-218, 222-227; Dunham 1967: 141-167; Dunham and Janssen 1960: 113-128, 226-227; Emery and Kirwan 1935; Emery, Smith, and Millard 1979; Kemp 2006: 231-241). Tripartite houses have also been discovered in Egypt at Tell el-Amarna, Deir el-Medina, Elephantine, Kom el-ʿAbd, Lisht, Medamud, and Thebes (Arnold 1996: 13-21; Badawy 1966: 30-31; Hölscher 1954: Pl. XXVIII; Kemp 1977: 72; Robichon and Varille, 1940: Fig. 2; Robichon and Varille 1936: 34, Pl. VIII; Von Kaiser et al 1988: 135-182; Von Pilgrim 1996: 253-264). The sixth type of domestic edifice, three-room houses or Dreiraumgruppe, were the smallest and simplest in layout, which consisted of a large square room with one or two smaller rooms directly behind (Ricke 1932: 13-17; Tietze 1985: 48-84).

Based on their size alone, Buildings 1500 and 1700 at Beth-Shean and Building 350 at Deir el-Balah would all belong to the two largest categories of private domestic architecture in Egypt, namely, the anteroom and four-sided villas (Figures 5.3-5.4 and 5.5-5.6). The size of
each of these square-shaped buildings, which ranges from about 19 to 23 m, matches the average size of 20 m for villa building types in Egypt (Badawy 1968: 93). At first glance, the absence of a conspicuous anteroom would place all three into the four-sided variety of villa, however a closer look at Building 1700 at Beth-Shean reveals possible evidence for an anteroom. On the UME’s plan for Building 1700, the northern exterior wall (HU 98411) extends westward about 5 m beyond the square outline of the structure, and when the HU reinvestigated the structure six decades later, they also found this extension to the west (Figures 5.5 and 5.6). On the UME’s plan, this wall connects with two others, forming a rectangular-shaped chamber about 3.5 x 5.5 m (Figure 5.5). This chamber, which utilizes two of the exterior walls (HU 98411 and 10272) of Building 1700, appears to be a part of the same structure. In order for this chamber to be an anteroom, the main entrance to Building 1700 must be located here, which is a possibility that will be discussed later regarding thresholds.

Both types of Egyptian villas have the same layout of a central room surrounded on all four sides by smaller chambers, and Building 1500 fits this blueprint perfectly (Figures 5.3 and 5.4). Buildings 1700 and 350, on the other hand, while square and symmetrically-arranged, do not appear to have a large open central room (Figures 5.5-5.6 and 5.12). Instead, these two edifices have two or three chambers that occupy the center of the plan, surrounded by more rooms of the same, smaller, or larger dimensions. James remarked that the original excavators of Building 1700 could have missed excavating the middle part of the building due to the lack of detailed records for the area, but the resemblance between this structure and Building 350 at Deir el-Balah most likely demonstrates that both lacked a focal room in the center. This would appear to be a major obstacle in assigning an Egyptian cultural affinity to these two buildings, as the function of the central room was a key component of Egyptian villas.
Nevertheless, the belief that all large Egyptian domestic houses possessed an open middle area appears to be not entirely accurate, as two New Kingdom villas in the town of Abydos do not reflect this architectural standard. These two almost complete buildings, called “Mansion I” and “Mansion II,” were part of a row of adjoining residences that were uncovered at Abydos, of which only 25% of the town was fully excavated (Ayrton, Currelly, and Weigall 1904: 37-38; Pl. LIII). These square-shaped structures, which are slightly bigger (26 m) than Buildings 1700 and 350, were comprised of two or three central rooms surrounded on all four sides by smaller chambers. The excavators identified the inner chambers as the living quarters of the occupants, while the outer rooms were devoted to the storage of goods related to their occupations, which were believed to have been related to the construction of funerary monuments in the area (Ayrton, Currelly, and Weigall 1904: 37; Pl. LIII; Badawy 1968: 57). Therefore, it is possible that Buildings 1700 and 350 resemble the layout of an Egyptian, albeit rare, type of domestic architecture.

After Buildings 1500, 1700, and 350, the next largest structure (8.5 x 13.5 m) of the group is Building NB of Stratum N-3a at Beth-Shean (Figures 5.8 and 5.10). The importance of designating the stratum lies in the fact that there were two editions of this building during the relatively short period of the Iron Age IA, with the later N-3a structure being slightly larger and of a more complex architectural plan than the earlier N-3b building (Figures 5.9 and 5.10). The rectangular layout of the later version of Building NB is comprised of a large rectangular-shaped room (UME 1740) in the northern part of the structure with a small adjacent chamber (UME 1744a), two chambers to the north (UME 1739 and 1743b/1744b), followed by a further two rooms (UME 1738 and 1743a) in the northernmost area of the edifice (Figure 5.8 and 5.10). This blueprint is analogous with the tripartite Egyptian three-room houses described above. The
smaller (8.5 x 12.5 m) N-3b building was simpler, with one large rectangular-shaped chamber (HU 10440) in the southern area of the structure and two small rooms (HU 10441 and 10442) to the north, which follows the design of the New Kingdom three-room houses in Egypt (Figure 5.10).

The remaining, and smallest (5.25 x 11.25 m), edifice in the group is Building 1131 at Deir el-Balah, which has a large rectangular-shaped room (426) in the northern part of the structure with two smaller chambers to the south (1131 and 1135), followed by a further two rooms (1064) in the southernmost area of the edifice (Figure 5.13). These three contiguous sections of Building 1131 resemble the three divisions of the Egyptian tripartite house, which was the most prevalent type of private domestic architecture in Egypt during the New Kingdom. As with the architectural layout and plan, the placement of the main exterior entrance to Egyptian domiciles was an exceptionally significant and standardized aspect of the design of the structure.

6.4 MAIN ENTRANCE

For the Egyptians, the position of the main threshold in domestic architecture was both a practical and psychosomatic issue, as doorways “mark transitions of the domain,” and signified the movement from the public outside world, which represents grime, immorality, and disorder, to the private interior of the house, which represents cleanliness, control, and order (Dubisch 1986: 200; Koltsida 2007: 40). In New Kingdom houses in Egypt, the direction of the doorway changed according to the locale of the building; nevertheless, the position within the exterior wall was a key characteristic (Koltsida 2007: 4). Only two locations were typically utilized, either directly in the center of an exterior wall or at one end of the wall, which essentially places
the entrance in the corner of the edifice. The other chief aspect of the outside doorway was the room in which the main threshold was located, which was always an anteroom, loggia or the focal (largest) chamber. The main distinction between the placement and room was based on the size and type of the structure, but in all cases the main doorway was the widest threshold in the house (Koltsida 2007: 40).

For the largest type of domestic architecture, the anteroom villa, the outside entrance to the structure was located in an antechamber that was always situated outside one of the corners of the main square outline of the building. The doorway was typically placed off-center in one of the exterior anteroom walls, and led into the small room, where another threshold into the main building was located either on the same axis or perpendicular to the outside entrance (Koltsida 2007: 27). This doorway of the main building led into another antechamber in the interior, before reaching the loggia. The fact that an individual had to cross at least three different thresholds before entering the first sizeable room of the house “created a gradual passage from the outer to inner world” and demonstrates the numerous degrees of separation from the outside world that was the privilege of the largest house type in Egypt (Koltsida 2007: 40).

The doorsteps of these large buildings were frequently approached via a few steps or a ramp, which was often covered by a porch or canopy, placing the residents or visitors in the cooling shade, another entitlement of the elite villas (Borchardt and Ricke 1980: 287-288; Peet and Woolley 1923: 33). Since the exterior doorway of a domestic structure was the outside representation of the entire house and its occupants, the threshold, lintels and doorjambs of anteroom villas were commonly manufactured out of limestone, and many were engraved and painted with artistic motifs and the name and titles of the house owner (Borchardt and Ricke
1980: 341, 345-346; Peet and Woolley 1923: 4-5, 9, Pl. VII). These high value buildings were occupied by high status individuals, and the stone elements with inscriptions placed around the door would signify and solidify the position and ownership of the building and its residents.

Elaborately decorated limestone, sandstone, and wooden architectural features associated with the outside entrance were also a common characteristic of the next largest type of house, the four-sided villa (Borchardt and Ricke 1980: 246; Peet and Woolley 1923: 31). Although four-sided villas could be as large as their anteroom counterparts, the number of thresholds blocking the outside from the interior of the house was fewer, as the exterior entrance to the building led directly into the main square-shaped structure. For the majority (about 64%) of these houses, the outside doorway was located near one of the corners of the domicile and led into an antechamber before reaching the loggia, which would have still created two steps before entering the main front room of the house (Koltsida 2007: 33). Conversely, the remaining 36% of four-sided villas contained main thresholds that were located in the center of an exterior wall, and opened directly into the central front room of the structure (Koltsida 2007: 33-34).

Since situating the doorway in this midpoint position would allow a clear outside perspective directly into the loggia, there must have been another feature to obstruct this view, and indeed, many of the four-sided villas, as well as the antechamber versions, were fronted by an enclosed courtyard that would have adequately separated the house and its entrance from the street (Koltsida 2007: 41). The majority, about 79%, of the medium-sized three-sided houses of Egypt also enjoyed the privilege of a main entrance located in one of the corners of the structure, which led into a small antechamber; however, the remainder (21%) of these residences had thresholds located in the center of the exterior wall, which led directly into the focal (largest) room of the house, creating a singular path and thin separation between the outside world and the
inside realm that was not a mark of high status in Egypt (Koltsida 2007: 35). A few of the larger three-sided houses also contained stone architectural elements surrounding the exterior doorway (Borchardt and Ricke 1980: 112, 311).

The two smaller types of domestic architecture in Egypt, tripartite and three-room houses, were typically rectangular-shaped, and the main entrance could be placed on either the short or long end of the structure (Ricke 1966: 119-123, Fig. 1, Pl VII; Woldering 1958: 73, Fig. 46). Tripartite houses were the most numerous type of domicile in Egypt in the New Kingdom, and in the majority (86%) of examples, the entrance was placed off-center near the corner of the building, which would offer more privacy for the 58% of tripartite residences with an exterior threshold leading directly into the focal (largest) room of the edifice (Koltsida 2007: 16-17, 36-37, 41). Corner entrances also sometimes led into an antechamber, with the entrance to the focal room on the opposite wall from the exterior doorway (Borchardt and Ricke 1980: 326; Pendlebury 1951: Pl. XX).

The main threshold of tripartite houses measured between 0.8 and 1.2 m wide and 0.35 m deep and were most commonly manufactured from limestone or sandstone, with a few examples of date palm wood (Koltsida 2007: 16-17, Notes 6, 31). As is commonly found in larger houses, the stone lintels and doorjambs surrounding the main doorway could be engraved or painted with the name of the house owner (Bruyère 1939: 251, 257-258, 290-291, 321, 329-330). Several examples of tripartite houses also contained a recess located in the exterior wall of the house near the main entrance (Bruyère 1939: 252). These niches, one of which was 35 cm high, would have contained or displayed a high-value item, such as an amphora, signifying the upper status of the owner, as well as the building itself (Bruyère 1939: 252-253, 291).
The smallest and simplest houses in this study are the three-room houses, where the overwhelming majority (94%) contained an entrance in the corner of the building, again assisting in keeping the view of the interior of the house more private, especially since the front of these small houses were generally not enclosed in a courtyard and were therefore open to the street (Koltsida 2007: 74). Since these domiciles typically only consisted of one long room in the front and two smaller chambers in the rear, 88% of the exterior doorways opened directly into the focal (largest) room of the structure, with only 12% leading to a tiny antechamber and then to the focal room (Koltsida 2007: 37).

It was discussed above how Building 1700 at Beth-Shean might belong to the Egyptian anteroom villa architectural type, with an antechamber located outside the northwestern corner of the square-shaped structure (Figures 5.5 and 5.7). If this was an entrance antechamber, the threshold into the main part of the building should also be located in the northwestern corner. There are two possible locations for the main entrance to Building 1700. The first of these was suggested by James as being positioned three meters south of the mid-point of the western exterior wall (HU 10272) of the structure (1966: 12) (Figure 5.5). An entrance in this location (neither centered nor in the corner) would not suggest an Egyptian cultural affinity, however, the U-shaped area on the UME’s map that James proposed was a doorway, does not parallel the T-shape of all of the other thresholds in the building, and instead appears to be an interior feature in the southern area of the western wall of the room. The fact that James also proposed that the main doorway to Building 1700 could have also been located in Wall 10209 (HU) might indicate a confusion about UME’s plan of the building, as this wall runs north-south through the center of the structure (1966: 12).
In the northwestern corner of Building 1700 on the UME’s plan, one side of a T-shaped outline appears in the wall (Figure 5.5). Since all of the other doorways in the structure are T-shaped, this feature might indicate a doorway, which, based on its location in an exterior wall (HU 10272), would be the main entrance for the house. More evidence for this theory comes from the description of an object found in Locus 1585 (the supposed antechamber along with the area south of the antechamber), which describes the find-spot as “near threshold at northeast” (James 1966: Fig. 50:5, No. 31-9-266). The northeastern area of Locus 1585 would be the northwestern corner of the main part of Building 1700, essentially identifying the T-shaped feature in the wall as a threshold.

Now that the main entrance to the edifice has been suggested, it still stands to identify the exterior threshold leading from the street into the antechamber. Although the walls surrounding the anteroom were not completely excavated, a rectangular element almost spanning the entire width of the western wall appears in the northwestern corner of the chamber (Figure 5.5). The width of this feature (1.5 m), as well as the aforementioned proposed threshold (≥ 2 m), fit well within the range of 1.5 to 2.5 m for known doorways inside of Building 1700, as well as for the anteroom and three-sided villas in New Kingdom Egypt. This exterior entrance to the antechamber is directly opposite the proposed entrance to the main structure, which was a common feature of anteroom villas in Egypt, where these two thresholds were typically on the same axis.

Even more telling evidence for this proposed location of the main entrance comes from objects discovered inside or south of the antechamber (UME 1585). At least eleven fragments of inscribed and painted architectural stone elements were found here, consisting of two pieces of molding, two parts of a cornice, three sections of a lintel, and four fragments of doorjambs. The
fragments of molding (B-3a) were narrow ledge pieces with straight edges, while the cornice parts (B-4) were curved and painted with blue and red stripes (James 1966: Figs. 90:2a, No. B-3, 3, No. B-4, 91:2, No. 31-10-478, 3, No. 31-10-477; FitzGerald 1932: 145). All three sections of the lintel (Nos. B-3b, c) were covered with orange paint and engraved with a frieze of multiple figures of uraei with sun-disks upon their heads (James 1966: 6, 12, Figs. 90:2b, c, No. B-3, 91:3, No. 31-10-478; Ward 1966: 166-167).

Two of the doorjamb fragments were also decorated with orange paint, while one fragment (No. B-3d) showed an engraved register line and the other (No. B-3e) was inscribed with two hieroglyphic signs (James 1966: Figs. 90:2d, e, No. B-3, 91:3, No. 31-10-478). The other two doorjamb fragments (Nos. B-1, 2) were engraved with parallel vertical lines and fragmentary hieroglyphs bearing traces of blue paint (James 1966: 6, Nos. 31-10-437, 438). The uraei frieze and striped cornice are two of the most common Egyptian decorative elements utilized in architectural design, and appear in domestic, religious, and royal structures, as well as in two-dimensional reliefs and sculpture-in-the-round (Davies 1903: Pl. 6; 1905a: Pl. 10; Epigraphic Survey 1934: Pls. 136, 144; Hölscher 1939: Figs. 11-12; 1941: Fig. 22, Pl. 17A; 1951: Pl. 22; Koenigsberger 1936: Pl. 8:2). The ornamental stone lintel, molding, and cornice, as well as the inscribed doorjambs, were often a key element of large villas in Egypt, and would have been a mark of high status for the owner, as well as the structure itself.

The northern wall (HU 98411) of the antechamber juts out about 1.2 m beyond the suggested entrance to the room, and the addition of a parallel wall on the other side of the doorway creates a doorstep the exact width of the threshold (Figure 5.5). Since the doorstep was flanked on three sides by walls, it is possible that a canopy or porch sheltered the small area, creating a shady spot that was also a desideratum for large villas in Egypt. The wall flanking the
southern part of the doorway continued to the west and then turned southward, outlining a 15 x 19.6 m area defined on the east by the western exterior wall of Building 1700. This area might have functioned as a large courtyard for the structure, another aforementioned privilege of anteroom and four-sided villas in Egypt, which will be explored in further detail later.

The main entrance to Building 1500 at Beth-Shean, whose general layout fits perfectly with those of Egyptian four-sided villas, must have been in the unpreserved superstructure of the western wall (HU 88948), due to the absence of doorways in the existing exterior northern (HU 88912), eastern (HU 88913), and southern (HU 10937) walls (Figures 5.3 and 5.4). Two locations in this wall have been suggested, with the UME proposing that the entrance should be situated in the center of the wall, while the HU suggests that the entrance was actually located in the northern section of the wall, which is essentially the northwestern corner (James 1966: 9; Mazar 2006c: 68). Either of these placements is analogous to the location of the main doorway in four-sided villas in Egypt, although a position in the corner was more widespread, as well as the most preferred, due to the extra privacy afforded by an off-center entrance.

More support for the corner-entrance theory arrives from the orientation of the T-shaped thresholds discovered inside Building 1500. Mazar put forth the premise that these specially-shaped doorways direct an axis of movement through the structure, with a progression issuing from the wide part of the threshold to the narrow section (from the top of the T to the base) (2006c: 67-69). If this were the case, the northwestern room (HU 1592) of Building 1500 is the only chamber with a T-shaped threshold explicitly directing an exit flow away from the room, as opposed to an ingress flow into the room, essentially denoting that this chamber was the space from wherein each person would issue after entering the house.
The main entrance to the other suggested four-sided villa, Building 350 at Deir el-Balah, was also not preserved, as only the foundations of the edifice were still intact (Figure 5.12). Again, if this were an Egyptian-style four-sided villa, the entrance would have to be located in the center or near the corner of an exterior wall. Brandl surmised that the main entrance to Building 350 was situated in the center of the eastern wall, based on the large size of the room (1043) in into which the doorway would have led (2010b: 78, 80-81). Further evidence for this position might arrive from the fact that the four corners of this structure were buttressed, which would cause a corner entrance to span across the projecting buttressed area of the wall, as well as the thinner portion of the wall itself, which would result in an awkward architectural arrangement. Therefore, Brandl’s suggestion of the centered placement of the main entrance to Building 350 is analogous to other four-sided villas in Egypt, although these would have been protected from the street by a courtyard, which unfortunately, cannot be determined at Deir el-Balah because the area east of Building 350 was not excavated and/or destroyed by modern agricultural fields.

Although an intact exterior threshold was not discovered in Building NB by the UME or the HU, Killebrew and Mazar mention that several courses of cobble-sized stones (HU 98432) in the southwestern corner of the structure appear as though they were placed there in a post-N-3b period in order to block an earlier N-3b doorway (2009: 41) (Figures 5.9 and 5.10). If this doorway was still in use in Stratum N-3a, this later version of Building NB, which was suggested above to have a similar layout to Egyptian tripartite houses, would have had a corner entrance that led into an anteroom (UME 1740) before reaching the focal (largest) room (UME 1739) of the domicile (Figure 5.10). A feature discovered by the HU in the outer face of an exterior wall of the building might also provide clues as to the location of the entrance.
This feature (HU 98426) consisted of a semi-circular niche located within the eastern wall (HU 98403) of Building NB (Stratum N-3a) and situated just south of the midpoint of the wall (Figure 5.10). Although the locus is not discussed anywhere in the text of HU’s publication on the building, the feature appears on the Stratum N-3a plan, in the locus list and also in a few photographs of the building (Killebrew and Mazar 2009: 70, Fig. 2.6, Photos 2.37-2.38). Based on the drawing of the structure and elevations recorded in the loci list, the niche was about 75 cm wide, 35 cm tall, and 50 cm deep (Killebrew and Mazar 2009: 70, Fig. 2.6). In the plan of the edifice, the feature seems to be lined with some material, and this is corroborated in photos of Building NB, where two light-colored items (stones? mudbricks? plaster?) are shown along the edge of each side of the niche (Killebrew and Mazar 2009: Fig. 2.6, Photos 2.37-2.38). The excavators identified this locus as an “oven?,” without further explanation, in the locus list (Killebrew and Mazar 2009: 70).

The location of the niche near the center of the wall would not allow a doorway to be situated in the area, thereby negating a possible entrance to Building NB of Stratum N-3a in a center position, and strengthening the argument for the southwestern corner location. Also, the feature is strikingly similar to the recesses discovered near the exterior doorways of several tripartite houses at Deir el-Medina discussed and referenced earlier. At least one of the niches was 35 cm tall, which is exactly the same height as the niche in the wall of Building NB. Perhaps this recess also held a high-value item signifying the important status of the owner and the building, however, only small sherds of pottery and no other objects, with the exception of a bronze arrowhead, were found in the street running along the eastern side of Building NB in Stratum N-3a.
Building 1131 at Deir el-Balah was the only structure in this study with an intact exterior entrance, located in the eastern wall of the edifice (Figure 5.13). Like the majority of tripartite houses in Egypt, the main threshold was not situated in the center of the short side of the building, which would allow a full view into the large front room of the domicile, but rather on the long side, which would block any perspective from the street. Further privacy was initiated in Building 1131 through placing the entrance in an antechamber, which meant that the only viewable aspect from outside the doorway would be the face of a wall, and after entering the house, one would have to make a 90° turn in order to see the front room. Furthermore, the entrance to the focal chamber (1135) of the residence was located on the wall opposite the main entrance, but was off to the side, resulting in a series of two 90° turns before reaching the focal room. Although one edge of the main entrance to Building 1131 was located within a balk, the threshold would have measured somewhere between 0.5 and 1.5 m, similar to the range of aforementioned measurements (0.8-1.2 m) provided for the main doorways of tripartite houses in Egypt.

The exterior entrance to the smallest domicile in this study, Building NB of Stratum N-3b, was already described earlier as being located in the southwestern corner in reference to the later Stratum N-3a version of the same structure (Figure 5.9). This position corresponds to the placement of the main threshold in the overwhelming majority of three-room houses in Egypt. Since these houses only typically have one large room at the front of the building, a side-entry doorway would only allow a constricted observation of a small corner of the chamber across from the doorway. This was also the case for Building NB, which would have been afforded even more privacy due to the fact that a narrow (1.5 m wide) alleyway separated the structure from the neighboring edifice in the same period.
It is interesting to note that the change in layout and the addition of the niche that occurred in Building NB during the course of the Iron Age IA modified the structure from a small three-room house to a slightly larger three-sided abode with an exterior recess, which in Egypt during the New Kingdom, would also indicate a change in socio-economic status (Figures 5.9 and 5.10). Perhaps the original owner of Building NB in Stratum N-3b received a promotion, changed occupations, or was affected by some other event that caused an elevation in status and/or the accolade of a higher salary, allowing the individual to renovate their home into a more high-value and high-status residence, including the addition of the niche next to the main threshold as a status symbol for the newly updated home. A change in ownership could also be suggested as a cause of the modifications.

6.5 LOCATION AND FUNCTION OF ROOMS

The architectural layout and plan of a residence in New Kingdom Egypt has already been shown to reflect certain levels of socio-economic status. A closer examination of certain details within each layout can also relay vital information about the function of the space, as well as detailed data concerning the genders, ages, social stratification, and occupation of individuals dwelling and working in the structure (Koltsida 2007: 5). While a certain level of personal choice is employed in designing and decorating an abode, more forceful inclinations are sometimes governed by utilitarian and symbolic factors (Koltsida 2007: 4). The detailed examination of a room includes: shape, size, walls, decoration, doorways, floors, furnishings, roofing, subdivisions, and the pottery and objects discovered in the space. Egyptian houses are generally divided into three areas, which are based on their position in the forepart, center, or rear of the building.
Each of these three sections has a focal room, which is typically the largest chamber in that part of the residence. For the forepart, this is designated as the “front room,” for the center, it is the “living room,” which is also always the focal (largest) chamber for the entire building, and for the rear section, the “bedroom” or “kitchen” (Koltsida 2007). The significance of the forepart of the house lies in the fact that it was the first sector that a visitor or occupant reached upon entering the residence and consequently also provides the first impression, which can in many cases be applicable for the entire house (Koltsida 2007: 16). This anterior area of Egyptian structures in the New Kingdom also played a vital role in segregating the inner private areas of the abode from the outer public locales outside (Koltsida 2007: 16). The forepart of each Egyptian domicile varies greatly depending on the size of the building and the socio-economic status of the owner, which essentially translates into larger structures containing a higher quantity of chambers that are also typically have bigger dimensions than those of smaller edifices (Crocker 1985: 63).

There was also a functional distinction for the front areas of a home based on the size of the house, where in large houses the fore-space was an intermediate area to segregate the inner part of the house from the out parts of the domain, whereas in smaller houses, the space also functioned as a vital sector for significant domestic activities (Koltsida 2007: 43). On the other hand, there were several similarities between anterior spaces in all sizes of houses, for example, the preferred shape of the front focal room was always rectangular (Koltsida 2007: 40). In both larger and smaller residences, this area was defined as a semi-public work area, which was also a semi-open space, with smaller houses featuring an enclosed court in the forepart of the domicile, while the larger structures had a roofed veranda (Koltsida 2007: 43). The anterior sector of all
Egyptian houses, no matter the dimensions, was also believed to have been gendered and “centered around elite, married, sexually potent, fertile females” (Meskell 1998: 215).

6.6 FRONT SECTION

The front section of anteroom villas was comprised of several rooms including an exterior anteroom, two interior antechambers, a loggia, and two smaller rooms. The first anteroom, which was mentioned earlier as the defining characteristic for this villa type, was always located outside the square-shaped main building, was consistently either rectangular- or square-shaped, and sometimes featured a central column that supported the roof (Borchardt and Ricke 1980: 170). The floors in the room were constructed out of mudbrick or packed earth and could contain a sunken pottery vessel emplacement (Davies 1999: 71). The walls of this entrance chamber could be whitewashed or plastered and generally contained two thresholds, the exterior doorway for the entire house, and another leading into the interior anteroom (Borchardt and Ricke 1980: 243; Frankfort and Pendlebury 1933: 12; Peet and Woolley 1923: 5-9).

It has been suggested that the exterior antechamber of Egyptian villas functioned as a porter’s lodge; on the contrary, since the space has no permanent features, such as a sitting area or hearth, the room was solely an intermediate station between the outside and the inside, offering coolness and shade to visitors or residents and facilitating the adjustment to a new environment (Crocker 1992: 12; Koltsida 2007: 41; Peet and Woolley 1923: 39; Ricke 1932: 26). Nevertheless, the presence of an exterior antechamber was certainly a status marker for the owner and building, as only the largest structures featured these spaces (Crocker 1985: 57-58; 63).
A doorway in the exterior antechamber generally led into one or two interior anterooms, which were rectangular- or square-shaped, had floors of mudbrick or stamped dirt, could have white-washed or plastered walls, and large jar emplacements, all of which were also elements of the exterior antechambers, suggesting the same functions above for the exterior antechamber (Borchardt and Ricke 1980: 77, 243; Peet and Woolley 1923: 5). New features in the interior versions consisted of a few instances of rectangular-shaped (1 x 0.5 m), plastered, mudbrick constructions against the wall, which are believed to have been connected with worship or rituals (Borchardt and Ricke 1980: 103). It should also be mentioned that besides the two previously-stated functions for this series of two to three antechambers, a major purpose was related to the several layers of separation between the exterior entrance and the focal chamber of the forepart, the loggia.

The loggia, also called the *breite Halle*, was reached through the above series of one to three antechambers, and comprised the central point and largest chamber among the front rooms of Egyptian domestic structures (Borchardt and Ricke 1980: 192). In anteroom villas, this room was always rectangular-shaped, had a mudbrick or packed earth floor, sometimes had white-washed or plastered walls, and commonly contained columns that supported the roof (Borchardt and Ricke 1980: 92; Frankfort and Pendlebury 1933: 6, 12, 22-23, 28; Peet and Woolley 1923: 5-6, 9-15). The long front wall of the loggia featured a huge window to the outside and the opposite wall was shared with and contained the doorway to the “living room,” while antechambers and smaller rooms were accessed via the short ends of the chamber, which were always symmetrically placed on the same axis (Borchardt and Ricke 1980: 30; Petrie 1894: 21).

Niches were commonly discovered in the loggia of anteroom villas in Egypt, and these were decorated with painted motifs and engraved with texts focusing on hymns to deities and the
name and titles of the house owner (Borchardt and Ricke 1980: 119, 124; Frankfort and Pendlebury 1933: 9-12, 20-21, 67-68; Peet and Woolley 1923: 10). As the largest and most decorated room in the forepart of the house, the loggia was designed to demonstrate the high-status of the building and its residents to visitors and invited guests (Crocker 1992: 14). Due to its rectangular shape, this chamber has been compared to the throne rooms of palaces, and would therefore function as a formal room for receptions and as a meeting room for the occupants (Crocker 1992: 14-15; Lloyd 1933: 5). However, both of these proposed functions have been disputed according to the lack of temporary or permanent furniture for sitting and hearths discovered in the loggia (Koltsida 2007: 41).

Instead, Koltsida argues that the abovementioned functions were reserved for the “living room,” which was located in the middle portion of the house, and that the loggia was just an intermediate room between the courtyard and this focal point of the structure (2007: 41). According to artistic representations of the main front room, the space was occasionally utilized for business matters, where goods would be brought into the room for assessment and then transferred to a storeroom after inspection. In the short rear wall of the loggia, there were typically one to two thresholds that led to smaller rooms that were either employed to prepare the catering for receptions in the loggia, for the storage of provisions, and/or for an occupational workroom (Davies 1903: Pls. XXV-XXVIII; 1908: Pls. XXIX, XIX; Borchardt and Ricke 1980: 92; Ricke 1932: 27). In some cases, one of these small rooms held a staircase leading to the roof of the structure (Borchardt and Ricke 1980: 181; Pendlebury 1951: 139).

With the exception of the exterior anteroom, the front areas of four-sided villas are practically identical in shape and layout to those of anteroom villas. The fore-section of the majority of four-sided villas contained two to three rooms, which included an interior
anteroom and a loggia, and occasionally a small chamber at the rear (Frankfort and Pendlebury 1933: Pl. IV). Those villas with front sections of three or more rooms would have been roofed, whereas those with two would have been open courtyards (Koltsida 2007: 34-35). The interior antechamber contained the main entrance to the house and occasionally contained an entrenched vessel emplacement and one or two short walls, which the excavators suggested could have originally supported a wooden table (Borchardt and Ricke 1980: 37, 276, 288; Frankfort and Pendlebury 1933: 32).

The purpose of this room was the same as their exterior counterparts in anteroom villas, namely, as a porter’s lodge or as a transitional place between the outside world and the inside realm, although the layers of separation were generally one or two fewer in the slightly lower status and smaller four-sided villas (Crocker 1992: 12; Koltsida 2007: 41; Peet and Woolley 1923: 39; Ricke 1932: 26). Also akin to anteroom villas, the loggia of the four-sided versions had a standardized rectangular contour and was the largest room and focal point for the front sector of the residence (Borchardt and Ricke 1980: 192). Unlike those found in anteroom villas, the main fore-room of four-sided examples rarely contained the status markers of columns and decorated niches, and were utilized in two different manners (Frankfort and Pendlebury 1933: 40-41; Koltsida 2007: 34).

For many of the four-sided villas in Egypt, the finds in the loggia were similar to those of the larger villas, and probably served the same purpose as a reception hall, intermediate space, or temporary / part-time place for business (Crocker 1992: 14-15; Koltsida 2007: 41; Lloyd 1933: 5). Conversely, some four-sided villas had loggias with animal troughs, pottery emplacements, and many small objects related to domestic labor and occupation labor, demonstrating a distinct function for the chamber as a stockyard and workroom, which will be described in more detail.
below regarding tripartite houses (Borchardt and Ricke 1980: 117). The small rear chamber behind the loggia typically contained a dirt floor and sometimes a trough, sunken vessel, or table supports, suggesting its use for storage or as a workroom, or, in some cases, to house a stairway that wrapped around a pillar (Borchardt and Ricke 1980: 76-66, 114-115; Pendlebury 1951: XX).

The front sections of medium-sized three-sided houses in Egypt in the New Kingdom typically contained one or two rooms and occasionally a third chamber (Koltsida 2007: 35). The entrance antechamber and smaller rear room were similar to those described above in the larger houses, with the former functioning as a porter’s lodge and layer of separation and the latter as a storeroom or workroom. The larger focal space of the front area could be roofed or unroofed, and like those of the four-sided houses, commonly had items related to animal husbandry and domestic and industrial work (Borchardt and Ricke 1980: 37, 88, 99, 250, 252, 259, 320). Conversely, several of these spaces in three-sided houses contained ovens and may have been used as kitchens or for cooking (Borchardt and Ricke 1980: 249, 259).

The front sectors of both of the smallest types of houses in Egypt were comprised of only one or two rooms. For three-room houses, this singular fore-room also functioned as the focal room for the entire building, and so will be discussed in the next section on the middle section of houses. For tripartite domiciles, which always had a separate focal chamber, the front area typically consisted of one rectangular room, which could also be divided by a low partition wall or connected to a small square-shaped chamber (Bruyère 1939: 241, 243, 280; Peet and Woolley 1923: 51-91). The average size of the front room was 2.15 wide and 5 m long, with walls measuring between 30-40 cm in thickness and constructed out of mudbrick, stone, or both (Bruyère 1939: 28, 301, 311; Peet and Woolley 1923: 56-57, 60). The walls were in many cases mud-plastered and painted, while the floors were mostly made of beaten earth and sometimes sat
at a deeper level than the street outside (Bruyère 1939: 28; Peet and Woolley 1923: 77). A mudbrick linear staircase to the roof with storage cupboards located underneath was sometimes placed in this area of the house (Borchardt and Ricke 1980: 257, 307-308, 320, 326; Peet and Woolley 1923: Pl. I).

The fore-room of tripartite houses in Egypt were always unroofed open courtyards, wherein activities regarding animal husbandry, domestic labor, and cultic rituals were performed (Borchardt and Ricke 1980: 67, 160, 253, 263-264; Kemp 1986: 19). While the majority of the front rooms in tripartite houses had mud-packed floors, some examples had a section paved in stone, upon which a 15-30 cm deep circular or square bin would be positioned (Peet and Woolley 1923: 71-72, 79, 81). These containers functioned as feeding-troughs for animals, as evidenced by the presence of straw remains and tethering stones discovered nearby (Kemp 1987: 4-5; Peet and Woolley 1923: 60, 79).

These features and objects were also discovered in the front rooms of tripartite residences without paved floors, and show that this area of the house was typically employed as a stockyard for animal husbandry (Pendlebury 1951: 100). According to the numerous texts on ostraca from Deir el-Medina, these spaces most likely housed pigs, goats, donkeys, cattle, or fowl, which were an important part of daily life in Egypt due to their essential roles as comestibles, by-products, and labor-animals (Eyre 1984: 196-199; Houlihan 1996: 11-31; Janssen 1975a: 164-178; Janssen and Janssen 1989: 27-36; Kemp 1987: 40; Kitchen 1980: 548-550; 1982: 317-319; McDowell 1992: 197-199).

Other features and objects discovered in the fore-rooms of tripartite houses in Egypt demonstrate that the chambers were used as a general utility space for performing domestic activities related to grinding, weaving, spinning, and occupational labor (Peet and Woolley 1923: 212, 472-475).
In Egypt, cereal grinding and animal keeping were generally performed in the same area, and the presence of quern emplacements, along with the aforementioned items related to animal husbandry, in the fore-rooms of tripartite houses demonstrates this practice (Kemp 1987: 4-6). Quern emplacements could consist of 40 cm tall boxes (50 x 110 cm) attached to shallow (15 cm) bins, which were disinfected by ashes and coated with lime and plaster, two oval hollows on a solid base with a hole between and a bin nearby, or even just a sole mortar or grindstone (Kemp 1986: 3, Fig. 1.1-1.3; 1987: 6, 10; Peet and Woolley 1923: 64, 72). Because both stockyards and querns were related to sullied and dust-filled activities, they were commonly located in these unroofed front rooms (Koltsida 2007: 42).

Both the maintenance of animals and foodstuff milling were also activities generally performed by women in the Egyptian New Kingdom, perhaps illustrated a gendered nature to the front room of tripartite houses, although several other activities also occurred in the room (Černý and Gardiner 1957: Pl. LXXX; Frandsen 1992: 33; Toivari 2000). In a few domiciles of this type, ovens and fireplaces were discovered in the front room in areas segregated from the rest of the chamber by a coping wall, suggesting the use of the isolated space as a kitchen (Borchardt and Ricke 1980: 168, 253; Frankfort and Pendlebury 1933: 35). On the other hand, the lack of all open-form ceramic vessels in the forepart of houses has been used as evidence that the chamber was not used for dining or feasting (Koltsida 2007: 24, 42-43). Others have tied the presence of ovens and fireplaces to occupational labors, such as jewelry making, which is corroborated by the plethora of tools discovered in the front rooms of tripartite houses including: axes, mallets, blades, pegs, pounders, borers, drills, rubbers, pestles, chopping blocks, and roundels (Koltsida 2007: 24).
The discovery of objects related to spinning and weaving, such as cubical stone blocks for vertical looms, wooden supports for horizontal looms, spinning bowls, spindle whorls, pins, and needles demonstrate that these activities could have also taken place in the front chambers of tripartite houses (Kemp and Vogelsang-Eastwood 2001: 60-61, 373; Peet and Woolley 1923: 60-61, 75, 79-80). Other items found in these rooms are also related to daily life, such as storage containers like baskets, large closed vessels, and boxes, and toilettte objects like combs, kohl pots, and stone vessels, conversely, items of personal adornment were rarely found in these spaces (Koltsida 2007: 24).

Another large category of objects found in the front rooms of tripartite houses especially at Deir el-Medina, and also somewhat at Tell el-Amarna, were related to cultic rituals, which centered around false doors, niches, stelae, busts, and platforms (Koltsida 2007: 43). All of these monuments and objects have been associated with an ancestor cult at Deir el-Medina or worship of the royal family at Amarna, however, many other purposes have been suggested for the platforms in the front rooms of tripartite houses (Koltsida 2007: 20). At Deir el-Medina, these platforms, also called lit clos or “elevated beds,” were rectangular (0.80 x 1.7 m) mudbrick constructions about 0.75 m tall with open sides or enclosed by thin (40 cm) walls and decorated with images of deities (especially Bes), marshland motifs, and scenes of females dancing, sitting, nursing, and performing the toilettte (Brunner-Traut 1955: 14-16, Fig. 5; Bruyère 1923: 121, 132, Fig. 5; 1939: 56-57, 61-62, 257, 259, 264, 274, 276, 286, 305, 311, 330, Figs. 136, 145, 148, 202; Robins 1993: Fig. 22; Schulman 1985: 99, Fig. 3; Vandier d’Abbadie 1938: 27-35). At Amarna, similar scenes appear above bins or stands located in the forepart of tripartite houses (Kemp 1979: 47-53).
Some scholars have interpreted these scenes as evidence that the platforms were related to elements of female sexuality, like procreation, maternity, and eroticism, and that these platforms were specifically employed for parturition (Brunner-Traut 1955: 23; Bruyère 1939: 59; Friedman 1994: 98, 110; Janssen and Janssen 1990: 4; Pinch 1983: 405-414). Other authors believe the platform was an elevated area reserved for sleeping, sitting, eating, or sexual relations (Hobson 1990: 117; Meskell 1997: 59-61; 1998: 217; 1999: 99-100; Romano 1990: 27). Koltsida has argued that almost all of these activities would not have been realistically performed in open courtyards in Egypt, and concluded, along with other scholars, that the Deir el-Medina platforms and Amarna stands were actually domestic altars for household deities related to fertility, parturition, and rebirth (Arnold 1996: 99-102; Kemp 1979: 53; Koltsida 2007: 43; Robins 1993: 75; 1996: 30).

The front area of Building 1700 at Beth-Shean is comprised of four rooms: the previously proposed exterior antechamber, an interior antechamber, a large room, and a smaller rear chamber (Figures 5.5-5.7). Like the foyer of large anteroom villas, the entry chamber (part of UME 1585) for Building 1700 was located outside the corner of the main structure, was rectangular-shaped, and had two doorways, one in the northwestern corner leading to the outside, and one on the same axis in the northeastern corner leading inside the house (Figure 5.5). Although there is no published information on the floor or wall treatments, a column might have been located in the room. On the UME’s plan, a round feature with a 2 m diameter appears partially within or above the western wall of the space, but is not mentioned or described by the UME or James (1966: Fig. 77) (Figure 5.5). However, in James’ list of ceramics discovered at Beth-Shean, one jar is described as being discovered “under level of column base,” which might refer to the circular feature in this room (James 1966: Fig. 49:6, No. 31-10-114-a).
On the UME’s plan, the walls of two levels (VI and Late VI) are shown for Building 1700, and the drawing indicates that a Late Level VI wall was built around the possible column base, completely enclosing the feature inside of the wall (Figure 5.5). It therefore appears as though the column was originally centered in the antechamber of the Level VI (Iron Age IA) building. If so, then it is possible that the subsequent occupants of the structure in Late Level VI (Iron Age IB) moved the base slightly to the west in order to incorporate it as part of the wall. In such a case, this base would have originally supported a wooden column, which was a common high-status feature of large Egyptian ante-room villas in the New Kingdom. When the UME excavated the exterior antechamber of Building 1700, they did not assign a specific locus to the chamber, instead they designated the room, as well as the space outside to the west and the south as Locus 1585 (Figure 5.5).

Consequently, pottery and other objects listed for the locus might have originated from inside the antechamber or its exterior, which was probably part of an open courtyard for Building 1700. Only two items can definitely be allocated to the room: a decorated lentoid flask found near the threshold in the northeast and the aforesaid Egyptianized beer jar from underneath the column base. Jars were commonly found in the antechambers of Egyptian houses, especially partially or completely sunken into the floor as a permanent feature to hold water and other liquids, such as beer. The beer jar discovered below the column base might demonstrate a pottery emplacement that was located against the western wall and next to the exterior doorway of the room in Level VI, which was then covered over when the column base was shifted and enclosed in Late Level VI. Other objects which probably came from the main threshold of this space include the previously mentioned fragments of inscribed and painted architectural stone.
elements from Locus 1585, consisting of two pieces of molding, two parts of a cornice, three sections of a lintel, and four fragments of doorjambs.

The exterior antechamber of Building 1700 led into an interior anteroom, which, like those of Egyptian houses of all types, was square-shaped (3 x 3.5 m) (Figures 5.5-5.7). The northeastern corner of the room was divided off by two partition walls (HU 10238 and 10232), creating a 1.1 m wide and 3.5 long rectangular box in the corner. Although the full height of the walls forming the box in the anteroom of Building 1700 is not known, they are preserved at lower heights (0.28 and 0.40 m) than the surrounding walls of the chamber (0.53-0.98 m), perhaps demonstrating that they did not originally reach the ceiling, although the preserved height of wall cannot be relied on as an indication of the original height. Neither the UME or HU designates a function or lists any finds for the room, but, like the antechambers in Egyptian houses, the most basic purpose of the space was to provide another layer of separation between the outside world and the inside realm, which of course were more numerous in larger houses like ante-room villas. A function or explanation for the partitioned area in the northeastern corner of the chamber was also not provided by the excavators, but similar constructions with known functions are discovered in Egyptian houses of the New Kingdom.

In four sided-villas and the full range of medium and small-sized houses, feeding-troughs for animals could appear in the antechambers or rear rooms of the front section of the structures. A height of 28-40 cm for the box would be similar to that of the feeding troughs from Egyptian domiciles, which ranged from 15 to 30 cm, but the 1-1.4 m width of the walls are much too wide to allow an animal to adequately reach the foodstuffs within the box. Also, feeding-troughs are not typically found in any part of the fore-sections of anteroom-villas, as they were usually relegated to the open courtyard outside the residence, where the animals would be housed.
Therefore, the purpose of the box might be related to the utilization of such features for storage, either as a cupboard located underneath a now unpreserved staircase, or below a table, the top of which would have been supported by the walls of the box. Stairways with cupboards below, and walls believed to be table-supports were commonly discovered in the interior antechambers of four-sided villas in Egypt.

Besides the threshold to the exterior antechamber, only one other doorway was in the space, and this was positioned on the western side of the southern wall (HU 10221), which, like Egyptian villas, would have necessitated a 90° turn before a visitor could see inside the next chamber, which from the anteroom would only be a view of the southwestern corner of the room, due to its off-center location. A high-value stone threshold was located at the base of this doorway, which led into a large room to the south (Figure 5.5). This room was in the shape of a perfect rectangle (4 x 8 m) and was centrally-located and the largest chamber in the forepart of the building, all of which correspond to the loggias of Egyptian anteroom villas. No finds were listed by the UME or HU for this area, with the exception of a broken stone threshold found in a secondary context near the western wall (HU 10272) of the room by the UME.

A U-shaped feature that appears in the southwestern corner of the room was also not described or even mentioned by the excavators, but might be the source of James’ suggestion that a doorway was located in this wall (HU 10272) (Figure 5.5). This theory was shown to be invalid above, as the form of the feature does not parallel the T-shape of all of the other thresholds in the building, and instead appears to be an interior element in the southern area of the western wall of the room. This 1 m deep feature was split into two sections, each being about 54 cm wide. In Egyptian anteroom villas, similar elements in the walls are identified as niches, which were commonly decorated with painted motifs and engraved with texts focusing
on hymns to deities and the name and titles of the house owner. The purpose of these elaborately
decorated recesses was to show the high socio-economic status of the house owner and the
location of the niches in the loggia would have allowed visitors from lower socio-economic
strata to view these status symbols without entering into the more private sectors of the domicile.

Another room was located to the south of the loggia in Building 1700, the typical position
of small rectangular or square-shaped rooms at the rear of loggias in Egypt (Figure 5.5 and 5.7).
Unfortunately nothing is known about this room, except for the rectangular shape (2.5 x 3 m),
and the possibility that the aforementioned broken stone threshold discovered about 1 m north of
the chamber, could have originally been located in a doorway between this room and the loggia
to the north. If the broken stone was only shifted northward, then the threshold would have been
positioned on the same axis as the doorway between the loggia and the interior anteroom, which
was a common symmetrical placement in Egyptian houses of all types as well.

The fore-section of Building 1500 at Beth-Shean was comprised of three rooms: an
ante-chamber, a large room, and a smaller chamber to the rear (Figures 5.3 and 5.4). This three-
room design was the most common layout for the frontal areas of four-sided villas in New
Kingdom Egypt, which, like the anteroom villas, would have been roofed. The location of the
ante-chamber (1592) in the northwestern corner of the structure was already mentioned above in
relation to the position of the main entrance to Building 1500. Resembling the majority of
ante-chambers in Egyptian villas, this room was almost square-shaped (4.2 x 4.0 m) and was
devoid of material culture. A threshold was situated on the eastern end of the southern wall (HU
88937) of this chamber, again necessitating a 90° turn after entering the building in order to see
into the next room (UME 1702), whose observance would be limited due to the off-center
location of the doorway. The base of the threshold contained a large limestone doorsill, which
was constructed of two adjoining blocks together measuring 2.25 m long, 0.75 m wide, and 0.4 m thick. This limestone doorsill, along with the in situ eastern doorjamb made of the same material, are examples of high-value architectural elements that were commonly a feature of large villas in Egypt.

This stone threshold in the southern wall of the antechamber led to the largest and most central room (UME 1702) in the front area of Building 1500, which was the same shape and almost exactly the same size (4.6 x 8.3) as the proposed loggia of Building 1700 situated immediately to the east (Figures 5.3 and 5.4). Unlike Building 1700, at least 10 items were discovered in the loggia of Building 1500, paralleling the occasional strong distinction between anteroom villas and the slightly lower status four-sided villas in Egypt. The pottery and objects discovered in the loggia of Building 1500 are similar to those found in the same rooms in four-sided villas in Egypt, showing that analogous activities must have taken place in these rooms.

All but one of these 10 objects can be separated into two groups related to either textile production or food preparation. Three Egyptianized spinning bowls and a bronze needle belong to the former category, while two cooking pots and a large storage jar belong to the latter. A bronze rivet and small recurved knife could be placed in either or both categories, as similar implements in Egypt were used for both food preparation and to shear linen (Petrie 1917: 22-26, 51-52; Pls. XXIV-XXIX; LXII-LXIII). Spinning, weaving, and sewing were all activities that were commonly performed in the main front rooms of all but the largest type (anteroom villas) of Egyptian houses in the New Kingdom. Kitchens were also occasionally located in these rooms, but were typically separated by a mudbrick partition wall, which is not present in the loggia of Building 1500. The large storage jar might have originally been a sunken into the floor, as this was the only closed vessel located in the room.
The remaining find was a jasper amulet in the shape of a lotus bud, which are also found in the loggia of Egyptian houses, but all items of personal adornment are rare. This significance of this amulet lies not only in the shape, but also in the material, as jasper was the third most prized stone in Egypt, and was relegated generally to the upper levels of the socio-economic strata, such as the residents of a four-sided villa (Markowitz 2001: 202; Smith 1992: 203). In Egyptian tombs of the New Kingdom, amulets were generally restricted to the elite, who could have up to six or more in their tomb, and to individuals of upper middle status, who generally had only one or two (Smith 1992: 202). Amulets of lotus buds were widespread in the New Kingdom in Egypt and were dynastic, imbuing the wearer with characteristics related to the blossom, which represented lush vegetation, regenerative growth, and resurrection, due to the rebirth of the lotus flower each morning when its petals were opened under the warmth of the sun (Andrews 1994: 74; Markowitz 2001: 205; Romano 1995: 1611).

It is noteworthy that two other common activities, animal husbandry and grinding, that are commonly practiced in the loggia of Egyptian houses do not appear to have been performed in the front room of Building 1500, because features related to these activities, like a stone pavement, troughs, tethering-stones, straw remains, and quern emplacements were not discovered in the chamber. Since these two activities were habitually carried out together in open courtyards in Egypt, the use of the loggia of Building 1500 as a stockyard and grinding space would not have occurred because the three-room fore-section of the house would have been roofed (as opposed to four-sided villas with only two rooms, which would have both been unroofed). The small room at the rear of the loggia in Building 1500 has many similarities to bathrooms in Egyptian houses, and so will be described in the section on the rear areas of domiciles below.
The front area of Building 350 at Deir el-Balah was comprised of three rooms including: a central chamber, a chamber to the north, and a chamber to the south (Figure 5.12). It has already been discussed how the main entrance to Building 350 would have been located in the center of the western exterior wall, leading directly into the front focal room (1043). The three-room layout and central entrance are analogous to four-sided villas in Egypt, as is the rectangular shape of the loggia, and the absence of columns and niches. Brandl asserted that this room was the largest in the structure, a fact that would directly conflict with the architectural plan of Egyptian houses, especially large villas, where the “living room” was always the largest chamber in the abode (2010b: 81). In reality, this space is the fourth largest in the structure and is therefore still congruent with Egyptian examples.

On the other hand, the fact that no pottery or objects were discovered in the loggia does conflict with the plethora of finds related to animal husbandry, grinding, and other domestic activities discovered in these rooms of Egyptian four-sided villas, especially those marked as lower-status by a centralized entrance. In this case, the absence of evidence can absolutely not be used as evidence of absence, as only a total of nine ceramic vessels and objects were discovered across all thirteen rooms of Building 350, which prompted the excavators to suggest that the structure was either not finished, or completely destroyed in antiquity down to the foundations (Brandl 2010b: 84; Dothan 2010b: 314).

No finds or permanent furniture were discovered in the almost square-shaped (3.5 x 3.7) room (350) north of the central front chamber either, which contrasts with the troughs, table supports, ceramic vessel emplacements, and staircases frequently found in the smaller chambers next to the loggia of Egyptian houses. On the other hand, the large chamber (1044) to the south of the central fore-room of Building 350 contained a partition wall that divided the room into two
equal sections. That the two sides of the chamber were employed as troughs or that the partition wall was used as a table support is untenable, as the feeding-troughs were generally much smaller and located in one corner of the space, and the table supports were typically comprised of two small mudbrick walls. Brandl surmised that the chamber and its partition wall functioned as a stairwell and this theory is analogous to the staircases discovered in the chambers next to the loggia of four-sided villas in New Kingdom Egypt.

The front section of Building NB in Stratum N-3a at Beth-Shean was comprised of an antechamber with a smaller room to the east (Figures 5.8 and 5.10). The anteroom (UME 1740) was discussed above as containing the main threshold for Building NB and was rectangular-shaped and slightly smaller (2.1 x 3.5 m) than average dimensions (2.15 x 5 m) of the front rooms of tripartite houses in Egypt. The fore-room of tripartite houses in Egypt were always unroofed open courtyards, wherein activities regarding animal husbandry, domestic labor, and cultic rituals were performed, and therefore objects related to such activities are expected in the front room of Building NB. On the other hand, these areas might have been roofed in the Levant, where the rainfall amounts are higher than those in Egypt. Only two ceramic vessels were discovered in the chamber, consisting of a lamp and a ceramic jar that might have been part of a vessel emplacement, and while both were commonly found in Egyptian tripartite houses in the New Kingdom, there is no evidence of a stockyard, workroom, or cultic area.

On the other hand, these activities could instead take place in the “living rooms” of tripartite houses in Egypt, and this appears to be case at Building NB in Stratum N-3a, which will be discussed further in relation to the middle section of the houses. Only one carnelian amulet in the form of a lotus seed was discovered in the small square-shaped (2 x 2 m) room

92 I would like to thank R. Mullins for this perceptive suggestion (2013, pers. comm., 21 May).
(UME 1744-South) to the east of the entry chamber. While this find might not suggest much as to the use of the room, the amulet itself is a marker of high socio-economic status, as is carnelian, which was the most prized stone in Egypt in the New Kingdom (Markowitz 2001: 202; Smith 1992: 203). The significance of the lotus to the Egyptians and its imperative and widespread function as a dynastic amulet in the New Kingdom was already discussed above.

The front area of Building 1131 at Deir el-Balah consisted of a small antechamber and a large room to the north, a layout similar to those of tripartite houses in Egypt (Figure 5.13). The main entrance to the structure was located in the antechamber, which was connected to a large rectangular room (426) that ran the entire width of the edifice. The shape and size (2.25 x 4.9) of this fore-room was practically identical to the average size (2.15 x 5) of front rooms in Egyptian tripartite houses in the New Kingdom. The presence of a beaten earth floor in the northern area of the chamber was also analogous to Egyptian front rooms, and while the tripartite Building NB at Beth-Shean was lacking any sign of activities that took place in the fore-room, a grindstone was discovered in the fore-room of Building 1131 at Deir el-Balah, which was also a tripartite structure. The large kurkar quernstone was bun-shaped and of the rider variety, indicating that grinding would have taken place in this front room of the structure, which was most likely an unroofed open courtyard similar to those fronting tripartite houses in Egypt, where both grinding and animal husbandry were performed.

6.7 MIDDLE SECTION

The middle section of rooms in Egyptian houses of the New Kingdom were considered to be the most significant in the residence, due to the fact that the largest and most heavily-utilized space, labeled the “living room,” was located in this area (Canter 1991: 10-16). The preferred
shape for the living room in all types of Egyptian houses was the square, a form linked to the fundamental concepts of balance and order in Egypt (Koltsida 2007: 87). The square shape of the chamber would also facilitate the primary purpose of the room for sitting, relaxing, and dining, allowing the individuals to be assembled around the room against the walls equidistant from one another (Koltsida 2007: 88). Many other activities also took place in living rooms, as evidenced by the typical range of furniture, pottery, and other objects discovered in the chamber.

For the largest type of Egyptian houses, the anteroom villa, the living room was consistently located in the center of the building surrounded by rooms on all four sides, which not only protected those within from exterior weather conditions, but also represented a cool and clean “haven of peace” away from the heat, dust, and turmoil of the outside village (Crocker 1992: 14; Endruweit 1989: 11-21; 1994: 194-196). This room was always roofed, and the presence of one or two high-value stone columns in the chamber would have not only supported the roof and an upper storey, but also symbolized the high socio-economic status of the structure and its occupants (Koltsida 2007: 59-60). The main door to the living room was always located in the wall shared with the loggia in the front section of the house, and while the orientation of this threshold varied, the position of the door was always either at the mid-point or on one side of the wall.

The majority (65%) of the main entrances into the living rooms of anteroom villas were located in the center of the wall, which offered a lucid view of the interior, and when entered, allowed the individual to be enclosed wholly by the environs of the space, causing an instantaneous distinctive impression of the shape, size, and occupants of the living room (Koltsida 2007: 58, 86). The remainder (35%) of anteroom villas had living room doorways located off to the side of the wall, which gives an individual a vague notion of the interior, even
while standing in the threshold, and does not surround the visitor consistently, creating a feeling of incursion into a private area (Koltsida 2007: 58, 86). Even though a doorway in the center of the wall was less private, the numerous loggia and antechambers between the living room and the main entrance to the residence still concealed the chamber from the outside world. On the other hand, the central doorway was convenient for the social function of the room, and for this reason, the lintel and doorjambs of the main entrance to the living room were frequently constructed out of stone and engraved with decorative motifs and inscribed with the name and titles of the house owner (Peet and Woolley 1923: 6).

Besides the main entrance from the loggia, the living rooms of anteroom villas in Egypt typically contained four to six more thresholds, which connected the space to almost every other room in the structure, demonstrating that the living room was the focus of all domestic activities, as the “heart” of the abode (Koltsida 2007: 58, 86). The quantity of doorways in an Egyptian house was intimately linked with the socio-economic status of the edifice and the residents, and even though the amount of thresholds in the living rooms of anteroom villas was high, they were always positioned symmetrically around the room, with each doorway facing another on the same axis on the opposite side of the hall (Koltsida 2007: 59, 86). If the quantity of thresholds was odd-numbered, a niche, false door, or permanent feature was located directly opposite, again reflecting the Egyptian preference for symmetry, order, and balance (Koltsida 2007: 59, 86).

One of the most significant features of the living room in Egyptian houses of the New Kingdom were one or two low mudbrick platforms, occasionally enclosed by partitions, situated against one or more of the walls (Frankfort and Pendlebury 1933: 34, 50). In anteroom villas, these daises, also called benches, mastabas, or diwans, were typically rectangular-shaped, between 10-20 cm high, and usually included only one example, although two platforms were
also known, and about 10% of the houses were completely lacking a dais (Koltsida 2007: 49, 59). These platforms could hold furniture like tables or chairs, as evidenced by impost stones or actual items discovered on top of the dais, or could be utilized as furniture themselves, with individuals squatting or kneeling on mats (Koltsida 2007: 87).

The most widespread position for the dais in large villas was in the center of the rear wall of the living room, directly across from the main entrance, where, according to artistic representations, the head of the household would sit in the place of honor (Koltsida 2007: 87, 92). For this reason, the dais has been interpreted as a male status symbol and the living room as a stringently elite male-gendered space, restricted to the master of the house and his high socio-economic status male acquaintances (Meskell 1998: 229; 2000: 433). However, this theory has been argued against, as the living room was considered the only proper chamber in the house for sitting and dining, and so all members of the household must have utilized the room, which is further demonstrated by the presence of items related to female gendered-activities (Koltsida 2007: 91-92).

After the dais, the second-most important element in the living rooms of Egyptian houses was the hearth, which was typically the focal point of the chamber, around which the dais and other furniture would be arranged. If a central column occupied the focal point of the room, then either a portable brazier would take the place of the hearth, or the hearth would be located elsewhere in the space (Koltsida 2007: 88). As cooking was habitually concentrated in other areas of the residence, the hearth in the living room was instead a gathering place for guests, visitors, and the residents of the house (Therkorn 1987: 102-110; Westman 1991: 18). Another frequent permanent construction in the living rooms of anteroom villas were lustration slabs, which were large rectangular-shaped (average 1.33 x 2 m) stone platforms with a slight hollow in
the center of the surface for a water-jar (Peet and Woolley 1923: 6, Pl. V). The slabs were placed against the wall of the living room with the surface enclosed by a 10-12 cm high coping wall with a 50 cm wide opening through which an individual could cleanse their face and hands (Crocker 1992: 16). A few of these platforms were outfitted with a small basin at the side that would drain through a channel into another room (Borchardt and Ricke 1980: 93, Pl. 27).

Several features of the living room, such as niches, altars, and offering tables, demonstrate that cultic rituals occurred in the space. The walls of the room were typically constructed out of mudbrick and featured one, two, or four niches, as well as painted linear and geometric motifs (Frankfort and Pendlebury 1933: 32-33, 39, 49-50; Peet and Woolley 1923: 28-29; Ricke 1932: 30, Fig. 28). Raised mudbrick platforms that functioned as altars were also frequently discovered in the living rooms of anteroom villas in Egypt, where these constructions were surrounded by a low wall that was approached by a series of steps (Stevens 2003: 149-168). These altars were rectangular-shaped, with dimensions ranging from 0.80 to 1.2 m in width, 1 to 2 m in length, and 45-90 cm in height (Frankfort and Pendlebury 1933: 12, 50, 68, Pls. XVIII, XX; Borchardt and Ricke 1980: 103, 107, 187, 202, 208, 219, Fig. 30, Pls. 29-30, 55, 60).

Cult objects, including stelae, statues, and busts, were placed inside of the wall niches and on top of the altars, both of which occasionally had a stone offering table below that were also rectangular with the average dimensions of 73 x 59 x 36 cm (Peet and Woolley 1923: 18, Pl. VI; Stevens 2003: 156-159). Limestone stelae, such as the Ax iqr n ra variety, and statues were dedicated to one or two deceased relatives in living memory, deities, or the royal family, while anthropoid busts represented earlier generations of ancestors (Baines 1989: 131-149; Bruyère 1939: 171, 195, Fig. 66; Demarée 1983: 164, 282, 290; Friedman 1985: 82, 94-97; McDowell 1999: 95-109). The cult of deceased relatives and ancestors was an imperative aspect of
household ritual, as they could intercede on behalf of the living, were intermediaries with the deities, and were apotropaic to the residents of the domicile (Baines 1991: 123; Borghouts 1994: 119-130).

The living room in four-sided villas of Egypt was also always a square-shaped chamber situated in the center of the building directly behind the loggia and surrounded by smaller rooms on all sides, which were entered through four to five doorways in the living room, again illustrating that the chamber was “the focus and centre of all domestic activities” (Koltsida 2007: 65-66). Also akin to anteroom villas, a central entrance to the living room was preferred, and in 63% of these residences the main threshold to the chamber was situated in the midpoint of the party-wall with the loggia, with the remaining examples lying off-center (Koltsida 2007: 65). On the other hand, columns were discovered in only 13% of these slightly smaller villas than those of the anteroom variety, and this also applied to daises, lustration slabs, and cultic constructions, demonstrating that the presence and quantity of these features was related to socio-economic status (Koltsida 2007: 67).

Unlike the anteroom villas, only half of the four-sided villas in Egypt contained a dais or hearth, with the former feature found much less frequently than the latter (Koltsida 2007: 65-66). The majority (69%) of living rooms with a dais had only one, while two examples in one chamber were rare, and a total of 16% of the residences were completely lacking a dais (Koltsida 2007: 66). Lustration slabs were generally smaller (average 0.80 x 1.25 x 0.10 m) than those of the anteroom villas and were frequently replaced by a stand for a water jar or an entrenched vessel emplacement, which has been interpreted to signify “a strongly-felt need to maintain a social gesture of the richer segment of society” (Crocker 1992: 16; Kemp 1987: 14). Although mudbrick altars were discovered in lesser amounts in four-sided villas, the size (1-1.2 x 2-2.3 m)
was generally analogous with comparanda from the larger villas (Borchardt and Ricke 1980: 134, 281, Pls. 33, 93). Only 18% of four-sided villas contained wall niches, which were painted and utilized in the same manner as those in the anteroom villas (Frankfort and Pendlebury 1933: 32, 38, 51; Peet and Woolley 1923: 34).

Like the larger villas, the living rooms of Egyptian tripartite houses were square-shaped, the largest chamber (4-6 x 3-6 m) in the house, and positioned in a central location, but were only enclosed by rooms on two sides, rather than all four (Valbelle 1985: 119). The living room was still obstructed from the street though the front room and perhaps an antechamber, but a sense of privacy and protection from outside forces must have been less than that of the anteroom and four-sided villas (Bruyère 1939: 241, 252, 313, 316, 325). Although the main entrance to the living room could also be the same as the threshold for the entire structure, most of these doorways were located in the party-wall with the front room, with the overwhelmingly majority positioned closer to a corner rather than the midpoint of the wall (Peet and Woolley 1923: 58, 75). This position is in stark contrast to the central main doorways of the living rooms in the large villas, and is usually attributed to the idea that men of a lower socio-economic status spent most of the day at a worksite outside of the residence, leaving the domicile to the female members of the household, who spent most of their time in the living room performing domestic activities, necessitating a more private entryway to the chamber (Koltsida 2007: 87). On the other hand, this sense of privacy might have not been gender-based, and if work was occurring in the front room of the smaller houses, then the occupants might have actually been seeking social interaction (W. Wendrich 2013, pers. comm., 25 May).

The main doorway to the living room was typically the largest in the interior of the building, measuring 0.70-1.15 m wide and 30-40 cm deep, and most frequently had a mud
doorsill, but could also feature a wooden or stone threshold, doorjambs, or lintels, which could be painted or engraved with the name and titles of the house owner or carved into decorative motifs like the cavetto cornice (Bruyère 1939: 244, 255, 259, 294, 305, 331; Peet and Woolley 1923: 58, 72, 74, 76, 81). Like those of the anteroom and four-sided villas, the doorways in the living rooms of tripartite houses in Egypt were symmetrically arranged, aligned on the same axes, and directly connected with most of the other chambers of the house, with the majority containing one to three more doorways beyond the main entrance, a few less than those of the larger villas (Koltsida 2007: 72-73, 87).

The walls surrounding the living rooms of tripartite houses in Egypt in the New Kingdom were constructed out of mudbrick, stone, or both materials, were 30-40 cm thick, two bricks wide, occasionally whitewashed or mud-plastered, and sometimes decorated with paintings or panels illustrating human figures and private and royal names written in hieratic (Bruyère 1939: 231, 241, 243-244, 246, 250-252, 286, 308, 316, 321-322, 325; Kemp 1986: Fig. 1.2; 1987: 44; Peet and Woolley 1923: 57, 88, 90-91). Since other rooms in tripartite houses rarely featured decorative motifs, the living rooms must have been significant as not only the center of activities for the abode, but also a marker of socio-economic status for the building and its residents.

Living rooms were always roofed in tripartite houses and these ceilings were constructed out of a combination of different techniques and materials including wooden beams, long sticks, palm leaf ribs, twigs, mud, plaster, brushwood, and mats (Kemp 1986: 8, Fig. 1.6; Peet 1921: Pl. XXVII; Peet and Woolley 1923: 57-58, 7376, 79, Fig. 6). Tripartite living room roofs were rarely supported by columns, which could be either the trunk of a palm tree or a limestone shaft set onto a stone base ranging from 50-75 cm in diameter and 10-35 cm in thickness,
reflecting the high-value of these features that were common in the larger houses (Bruyère 1939: 252, 285, 291, 313, 331, Fig. 156; Peet and Woolley 1923: 28, 58, 81, 84, 87-89).

Less than a quarter of tripartite houses in Egypt in the New Kingdom had a living room that contained a dais, which were generally positioned against the front wall, occasionally against a side wall, and very rarely at the rear wall of the chamber (Bruyère 1939: 243-244, 246, 251-252, 259, 288, 297, 311; Kemp 1986: 5; Peet and Woolley 1923: 82, 84, 86). The preference for a frontal dais in tripartite houses contrasts with the rear daises for the large villas, and these differences have been connected to the privacy issues surrounding a gendered population and use of the chamber, which for the villas slanted toward males, while the smaller houses were oriented more in the direction of female occupants, as described earlier (Koltsida 2007: 87). The tripartite house dais was constructed similarly to those in the villas and was between 0.80-1 m wide, 10-20 cm tall, built of mudbricks, sometimes enclosed or edged by coping walls of mudbrick or stone, occasionally mud-plastered or topped by a mat, and sometimes surrounded by a stone pavement (Bruyère 1939: 66, 243-244, 246, 251-252, 259, 275, 288, 297, 311; Kemp 1986: 5, Figs. 1.1, 1.4; Peet and Woolley 1923: 82-84, 86).

Generally only one dais was found in the living room of an Egyptian tripartite house and these were typically L-shaped, with the projection of the L occasionally containing a hearth or two to four rectangular (0.50 x 0.25 m) impost stones that would have secured furniture or a canopy on the dais (Peet and Woolley 1923: 72, 83). The function of the dais was the same for both the tripartite houses and large villas in Egypt in the New Kingdom, where the platform was not only the main sitting place for the entire house, but could be used for nighttime slumber as well, and evidence of repair illustrates its sustained usage (Kemp 1986: 5, Fig. 1.1; McDowell 1999: 45; Peet and Woolley 1923: 62, Figs. 9, 10). Furniture frequently discovered on the daises
of living rooms in tripartite houses includes stone and wooden tables, chairs, stools, and headrests (Kemp 1986: 5-7; Peet and Woolley 1923: 71, 77, 79, 83, 85-87).

The second-most important aspect of Egyptian living rooms was the hearth, and in tripartite houses, this element was typically located in the center of the chamber or near the dais, upon which the hearth was also occasionally situated (Peet and Woolley 1923: 73). Less than a quarter of this residence type contained a hearth, which were usually comprised of a shallow bowl-shaped ceramic or mud basin surrounded by a mud ring or mudbrick margin and were discovered filled with ashes, carbon, and pottery sherds (Bruyère 1939: 259; Peet and Woolley 1923: 62, 71). Lustration slabs in tripartite houses were less frequent and smaller (0.59-0.95 x 0.27-0.56 m) than those of the large villas, and usually consisted of a solid stone, sometimes with a drainage hole leading to a subterranean vessel underneath, placed on the floor or dais of the living room (Kemp 1986: Figs. 1.1, 1.4; Peet and Woolley 1923: 62, 77, 79, 87, 89-90; Pendlebury 1951: 100). On the other hand, large ceramic store jars, which held liquids for both cleansing and consuming, were commonly discovered in living rooms, occasionally as a sunken emplacement near a wall or corner of the chamber (Bruyère 1939: 260-261, 265, 275; Kemp 1986: 7, Fig. 1.1; Peet and Woolley 1923: 72, 74, 77-80, 86, 89-91).

Cultic constructions, such as niches, altars, and offering tables, were also placed in the living rooms of tripartite houses in Egypt in the New Kingdom, although their number was much fewer than those of the high socio-economic status anteroom and four-sided villas. While some of the smaller (18-25 x 27-35 x 12-17 cm) wall niches were certainly for lamps, as evidenced by the sooty marks above, many of the larger (34 x 48 x 45 cm) examples would have held ancestor busts or stelae, of which many survive, reflecting a similar ritualistic purpose as those in the larger houses (Bruyère 1939: 162-165, 251-252, 259-260, 285, 290-292, 298, 309, 315-316, 318,
Altars, consisting of 40 x 60 x 65 cm mudbrick platforms set upon stone slabs, and stone altars were also occasionally discovered in tripartite houses, but were found in fewer numbers than in the villas (Bruyère 1939: 271, 281, 292, 310, 315, 331, 335; Demarée 1983: 145-146, 148-149; Peet and Woolley 1923: 75).

According to these cultic finds, a particular function of the living room was dedicated to ritual, which could be related to deceased relatives or ancestors, seasonal festivals, or social ceremonies celebrating the hallmarks of life, like birth, puberty, and death (Stevens 2003: 156-159). Other constructions and objects discovered in the living rooms of Egyptian tripartite houses of the New Kingdom demonstrate that other domestic activities were performed in the space. Eating and drinking equipment, including both closed and open-form ceramic and stone vessels, were common in the living rooms of all types of Egyptian houses, showing that this chamber was the main space for the residential dining of the occupants of the house, as well as the entertaining of guests (Bruyère 1939: 260-261, 265, 275; Kemp 1981: 84; Koltsida 2007: 53-54; Peet and Woolley 1923: 72, 74, 78-81, 85-86, 89-91).

Evidence of spinning, weaving, and sewing is also frequently present in the living rooms of tripartite houses, where spinning bowls, wooden weaving sticks, spindle whorls, and bronze needles were discovered, as well as the foundations for both horizontal and vertical looms (Koltsida 2007: 54, 90). These bases, which were also sometimes found in the front rooms of tripartite houses, were comprised of two or four cubical stone blocks with carved sockets, which would have held a horizontal beam of the loom (Kemp and Vogelsang-Eastwood 2001: 60-61, 373; Peet and Woolley 1923: 60-61, 75, 78). In some houses, these socketed stones were entrenched in a wall, with another hole located across the room in the opposite wall, in order to
secure a horizontal girder for an upright loom (Peet and Woolley 1923: 79-80, 82-87).

Horizontal looms were not permanent features and could be easily assembled and dismantled, whereas the two-beamed vertical counterparts were small and could therefore become a permanent feature of a living room in an Egyptian house (Eyre 1998: 173-191; Hall 1986:19; Vogelsang-Eastwood 2000: 277). Since the production of textiles was primarily a practice associated with women in Egypt, typically defined by artistic and textual references, the living room of tripartite houses must not have been a strictly male-gendered space (Kemp and Vogelsang-Eastwood 2001: 491; Winlock 1955: 30-33). Other domestic activities associated with women, such as animal husbandry and grinding, were also performed in the living rooms of tripartite houses in Egypt, as evidenced by the querns, mortars, mud mangers, troughs with barley remains, and tethering stones discovered in the chambers (Bruyère 1939: 250-251, 255, 296; Peet and Woolley 1923: 81). The remainder of finds in the living room were related to occupational work, like tools, items of personal adornment, like jewelry, and other quotidian objects (Koltsida 2007: 54-55).

Unlike anteroom and four-sided villas and tripartite houses, the living rooms of the smallest and simplest type of Egyptian residence, the three-room house, was always the same chamber as the front room (Koltsida 2007: 74). On the other hand, these spaces were also square-shaped and the largest room in the building, which is analogous to those of the larger residences. Also paralleling the villas and tripartite houses, every chamber in the structure was accessible through the living room, which usually contained a total of three thresholds, demonstrating the significant nature of the space as the center of domestic activities. In the overwhelming majority (92%) of living rooms in three-room houses, the main entrance to the chamber was also the main entrance to the entire abode, which was almost always placed near a
corner and was rarely located in the center of a wall, akin to the similarly sized tripartite houses (Koltsida 2007: 74).

This off-center entrance for both types of smaller houses in Egypt reflects the necessity for privacy in a room that was much less protected from the outside world, with either only one (tripartite houses) or no (three-room houses) layers of separation between the focal room of the house and the exterior street. A corner entrance to the living room would also provide more privacy for the female occupants of the house, who performed numerous domestic tasks in the space while the male residents were at worksites outside of the residence during the day, unlike the elite of both genders, who had the opportunity to remain at home (Koltsida 2007: 87).

The amount of hearths in living rooms of three-room houses was only slightly less than those of tripartite houses, three-sided houses, four-sided villas, and anteroom villas, illustrating that the existence of a hearth was not related to the size or socio-economic status of the structure or its residents (Koltsida 2007: 75-76). On the other hand, there were half as many daises in the living rooms of small houses than there were in the large villas, which must mean that these features represent symbols of status and wealth (Koltsida 2007: 76). Other status symbols that were more rare in three-room and tripartite houses include columns, lustration slabs, altars, and niches, all of which were only found in less than a dozen of the small residences (Koltsida 2007: 77, Fig. 3.46.a; Pendlebury 1951: 100). The presence of ceramic vessel emplacements and troughs in the living rooms and front rooms of three-room houses show that animal husbandry was practiced in these chambers, paralleling those of the tripartite houses (Borchardt and Ricke 1980: 88, 250-252).

As previously mentioned, Building 1700 at Beth-Shean did not have one large room in the center of the edifice, but instead had two long narrow rooms (2.5 x 9 m and 1.2 x 9) (UME
1715 and 1716) that took up the middle portion of the structure (Figures 5.5 and 5.6). Although anteroom villas and four-sided villas without a single centralized chamber have been discovered in Egypt, certain characteristics of Building 1700 demonstrate that the building could indeed have originally contained only one chamber in the center, and that this room was later divided into two sections through the addition of a mudbrick wall (Figure 5.7). Both the UME and the HU had difficulties in dating Building 1700, mostly due to the fact that the structure was heavily damaged by later pits and walls, and that there also appears to be two different phases of construction in the edifice that are not easily distinguishable.

On the UME’s plan of Beth-Shean in Level VI (Iron IA) and Late Level VI (Iron IB), these two strata are clearly labeled for each structure in the northern area of the site, with the odd exception of Building 1700 (Figure 5.1). Walls with hashmarks on the map belong to Late Level VI, while the unmarked examples belong to the earlier stratum. It is noteworthy that Building 1700 is the only structure without any marked Late Level VI walls, when edifices to the north and west, including Building 1500 and the proposed anteroom to Building 1700, all contain walls from both levels. Of course this could mean that the structure was either not used in Late Level VI or not modified in any way during that period, but the UME does show that several pits (HU 10203, 10204, and 10259) in the building belong to a later level (Figure 5.5). The HU corroborated that the pits were indeed later than Level VI, and Mazar suggests that they might be dated to Level V (Iron II), when a large architectural complex was built over the area (2009b: 91) (Figure 5.6).

More confusion arises from HU’s re-excavation of Building 1700, where Mazar discovered that a wall (HU 10272) on the western side of the structure clearly postdates Stratum N-3a (=Level VI), whereas the northeastern corner (HU Walls 98411 and 98443) of the structure
seems to be contemporary with a Stratum N-3a building (NB) to the north (2009b: 90) (Figure 5.6). If Building 1700 does indeed belong to Stratum N-3a, then there would be a 1.5 m difference between the floors of the building and those belonging to a contemporary building to (NC) to the north, which is marginally improbable but not entirely impossible. On the other hand, dating the building to Stratum N-2 (=Late Level VI) is contradicted by the continuity of Stratum N-3a walls in the building, the absence of Iron IB ceramics, and the presence of Egyptian and Egyptianized material culture in the structure, in a period post-dating the Egyptian occupation of Beth-Shean, when the disappearance of Egyptianized materials is widespread across the site.

Regardless of whether Building 1700 dates to Stratum N-3a or Stratum N-2 (or both?), there must have been more than one stage of construction in the edifice, as Mazar asserts that “two constructional phases were detected in several places” (2009b: 86, 89). Unfortunately though, he does not elaborate further as to exactly which walls or areas belong to which phase of construction or even where two different phases were identified with the exception of one wall (HU 10213) on the western side of the building that could belong to a later phase, as it does not run parallel to any other walls in Building 1700, and was in fact constructed so misaligned and close to another wall that a V-shaped gap ran between the two (Figure 5.6). This wall would have also blocked the entrance to the room in the northwestern corner of the structure, again revealing it to be a later addition.

More evidence for a later phase of construction or use arrives from the fact that some of the limestone doorsills were discovered in secondary locations in the building by both the UME and the HU (Figures 5.5 and 5.6). Based on all of this evidence, it stands to reason that there might be additional walls in the structure that belong to the later phase of construction.
Examining the characteristics of walls in Building 1700 reveals two general types based on the use of stone foundations. Excluding the western wall (HU 10272) that was reused from an earlier period, all of the exterior walls were thick mudbrick walls built on stone foundations, whereas all of the interior walls were 1.4 m wide walls without stone foundations, with the exception of two cases. These two slightly thinner 1.3 m wide walls included one (HU 10232) running east-west through the northwestern corner room (the proposed interior antechamber) and another (HU 10208) running north-south through the center of the structure, which created the two central chambers in the building (Figures 5.5 and 5.6).

It is possible that all of these walls were built at the same time, but since stone foundations were used for all of the exterior walls and mudbrick for almost all of the interior walls, it is noteworthy that two of the interior walls had stone foundations. Therefore, it is possible that the two thinner interior walls with stone foundations date to a later phase of construction, which would mean that the interior antechamber was not actually subdivided and was therefore analogous in shape, size, and layout to Egyptian examples in anteroom villas. This would also mean that the wall running down the center of the structure was added later, and that Building 1700 originally had one large central chamber similar to the living rooms of anteroom villas in Egypt (Figure 5.7). This theory might be further corroborated, or contradicted, through examining the room in light of the Egyptian examples outlined above.

Like the living rooms of Egyptian anteroom villas, the proposed central chamber (UME 1715 and 1716) of Building 1700 would have been located in the middle of the structure, directly behind the loggia, and surrounded by smaller rooms on all four sides, which would protect the focal chamber of the house from the outside world (Figure 5.7). No columns were found in either of the two sections of the central room, but as over half of all anteroom villas in Egypt
lacked columns, the absence of this feature is not significant. Also analogous to Egyptian villas, this room would have also been the largest in the structure, on the other hand, the chamber would have been rectangular-shaped (about 5 x 7), which, while not unknown, contrasts with the overwhelmingly favored form of Egyptian living rooms. The fact that both the western and southern walls of the central chamber were destroyed by later pits might slightly lengthen or shorten the overall dimensions of the chamber, but not enough to transform the room into a square.

The Egyptian ideal entrance from the loggia to the living room situated in the center of the front wall can only be circumstantially corroborated for the central chamber of Building 1700, as most of the front wall (HU 10216 and 10225) was destroyed by later pits (HU 10204 and 10259), however, the three sections of the wall that remain near the northern corner (HU 10216), just south of the center (HU 10225), and the southern corner, show that doorways were not located in these areas, which leaves the midpoint of the wall open for a main entrance to the chamber (Figure 5.6). The presence of at least two other doorways in the room is quite a few less than the living rooms of Egyptian anteroom villas, where four to six thresholds led to the surrounding rooms, however, the damage to the walls of the chamber does not allow a complete reconstruction of every entrance. The two doorways in the central room of Building 1700 led to the northern and eastern areas of the edifice, and a third probably led to the southern part, but was destroyed by a later pit. The doorway in the eastern wall (HU 10209) contained a large limestone T-shaped doorsill, which was a high-value item common in the living rooms of large houses in Egypt (Figure 5.5).

The most important aspect of an Egyptian living room in a house of high socio-economic states was the dais, where the residents of the house would sit, dine, entertain guests, and
perform household duties in the living room. A rectangular-shaped feature on the plans of Building 1700 shows many similarities with the daises discovered in large Egyptian villas. Unfortunately, the feature is not mentioned by the UME, James, or the HU, but does appear on both the UME’s and HU’s plans, and is also visible in one of the HU’s photographs (James 1966: Fig. 77; Mazar 2009b: Fig. 3.4; Photo 3.19) (Figures 5.5 and 5.6). This feature is located against the rear wall (HU 10209) of the central room (UME 1716), just south of the doorway leading to the eastern section of chambers, and according to the plans, is about 1 m wide and 2.5 m long and enclosed on the northern, southern, and eastern sides by a 50 cm wide border. The construction material of the feature and the border is unknown, but in the HU’s photograph, the border appear to be manufactured of mudbrick, while the center of the feature is hollow, due to the probes excavated inside in order to expose the walls of an earlier structure (Mazar 2009b: Photo 3.19).

Almost every characteristic of this feature parallels the aforementioned traits of daises discovered in the living rooms of anteroom and four-sided villas in Egypt in the New Kingdom. The placement of the feature against the rear wall corroborates with the preferred location for the dais in large Egyptian houses, where, because it was located directly across from the main entrance to the room, it was considered the place of honor for the owner of the house to sit when receiving guests or visitors at the residence, who would be directed to the living room. The size of the feature in Building 1700 fits well within the average range of 0.80-1 m widths of daises in all types of Egyptian houses, and the length is similar to the average (2 m) of those located against the rear wall in the larger villas. Egyptian daises were constructed out of mudbrick and could have coping walls of mudbrick or stone on the three exposed sides, similar to the border around the feature in Building 1700.
While there is no information regarding the discovery of a hearth, lustration slab, or niche in the central room of Building 1700, a few other finds likely show evidence of a domestic cult having been practiced in the chamber (UME 1715 and 1716). On UME’s plan of Building 1700, a rectangular-shaped solid feature appears at the southern end on top of the proposed dais just inside the southern and western borders (Figure 5.5). This 50 x 75 cm feature is of a size and shape similar to the large stone offering tables discovered in Egyptian houses in the New Kingdom, where they were also discovered in the living room and occasionally on top of the dais, as previously mentioned. This feature does not appear on the HU’s plan, however, a stone of the same shape and size appears in a photograph of the proposed dais, where it sits on top of a wall just above the original location of the 50 x 75 cm feature on the UME’s plan, suggesting that the excavators removed the stone from its original location and placed it on the wall just after removal (Mazar 2009b: Photo 3.19).

Other evidence of cultic practices in the central room of Building 1700 comes from the discovery of a large basalt bowl and ceramic duck-head in the chamber. Large stone bowls were used for a variety of utilitarian and secular purposes, however, numerous examples have been discovered in temple and mortuary contexts in Egypt, where they held liquids for lustration rituals or were receptacles for libations (Bonmann 1991: 21, 29, 32; Habachi 1965: 70-73; Pinch 1993: 301-302; Wall-Gordon 1958: 168-175). Furthermore, fragments of stone basins and bowls were also commonly discovered in the living rooms of Egyptian houses, where they occasionally bore painted and inscribed prayers to deities, images of worshipers, and offering formulae, again suggesting a ritualistic function related to the domestic cult (Stevens 2003: 157). Ceramic duck-heads are another frequent find in Egyptian houses of the New Kingdom, where they were

\^{93} FitzGerald reports that a large stone block similar to the one discovered in the living room of Building 1500 “has been observed lying some distance to the east,” which could refer to Building 1700 (1932: 143). Unfortunately, no such stone appears on the UME’s plan or was found during the HU’s reexcavations in the area.
originally attached to offering bowls or incense burners used in ritualistic contexts (Bruyère 1927: 33; Kemp 1978b: Fig. 6.206; Nagel 1938: 172-176). Moreover, at least thirteen more ceramic duck-heads were found in the temple precinct of Beth-Shean, substantiating their cultic function at the site (James and McGovern 1993: 172-173).

Building 1500 at Beth-Shean clearly has one defined central room (UME 1586) that is both square-shaped and the largest chamber (8.2 x 8.8 m) in the structure, all of which parallel the living rooms of four-sided villas in Egypt in the New Kingdom (Figures 5.3 and 5.4). The focal room of Building 1500 would have been roofed, as evidenced by the discovery of two huge round column bases positioned in the almost exact center of the room, about 1.5 m apart from one another and each about 1.85 m from the northern and southern walls, and 3.5 to 4.0 m from the eastern and western walls. These 1.5 m diameter bases were manufactured out of limestone and would have been a remarkable status symbol for the house and its residents, especially in view of the fact that only a small percentage of four-sided Egyptian houses contained a column and even the larger anteroom villas typically only featured one.

Even more markers of high socio-economic status would have come from the main doorway to the central room, which was clearly located in the archetypal location for large Egyptian houses: the center of the front wall (HU 10904) shared with the loggia (Figures 5.3 and 5.4). This threshold contained a limestone T-shaped doorsill constructed out of two joined stones and was the second largest doorway in the structure at 1.95 m in length, which was only smaller than the doorway in the antechamber leading into the front area of the house. Furthermore, a stump of uninscribed limestone doorjamb set on the narrow northern protrusion of the doorsill and fitted into the recess of the wall was still in position, and two fragments of inscribed doorjambs were found lying on top of the doorsill.
The upper fragment contained a hieroglyphic text in two columns bordered by vertical incised lines. The text of column one reads …iwnw wADw n=k aHaw n nwt nxt.ty mi mAat (?) mi (?) and column two reads …ng=k rS[wt] <Hr> aqw m Hnw=z nn xam z(y) Day…. The first column translates as “…Heliopolis, the lifetime of victorious Thebes flourishes for you like mAat and like…” and the second column “… you rejoice joyfully entering within it; there are no enemies drawing near it….” The lower fragment was inscribed with a few hieroglyphic signs reading …n nwt wsr…, meaning “to/for the powerful city.” Each of these textual fragments mentions an Egyptian or unnamed city and highlights one of the fundamental concepts of Egyptian culture, namely, the maintenance of mAat in the land, especially through the repelling of the enemies of Egypt and their associated chaos. Perhaps an interpretation of these fragmentary texts could suggest that the house owner wanted to stress how he was personally and actively sustaining mAat in the cities of Egypt, even while residing abroad, through the fulfillment of his occupational obligations overseas in Beth-Shean and Canaan.

These doorjambs, which were located on the protrusions of the threshold, would have faced the loggia and would therefore have undoubtedly been observed by any individual entering the front room (UME 1702) of the house, and particularly by those entering into the focal chamber (UME 1586). Placing inscribed doorjambs and lintels around the main exterior threshold of an Egyptian house was undoubtedly a marker of a high socio-economic status for the general public, which included anyone passing by the residence or within viewing distance of the front of the house. On the other hand, placing inscribed doorjambs and lintels around a threshold located in the interior of the house went one step further in solidifying the great wealth and prestige of the house owner, as these decorative motifs and engraved texts would have only been viewed by invited guests or received visitors, for example, calling on business matters.
At least four doorways, one in each wall, in the central columned room of Building 1500 led into the nine surrounding smaller rooms, and a fifth possible doorway could have been located in the northwestern corner of the room, but a Byzantine cistern had destroyed that portion of the wall (HU 88911) (Figures 5.3 and 5.4). This high quantity of thresholds was common for Egyptian living rooms in large villas, where the majority of domestic activities were performed, and the fact that at least one more doorway was inscribed with texts demonstrates the significance of the space. An inscribed fragmentary limestone doorjamb was discovered southwest of the southernmost column base, near the stone T-shaped threshold leading to the southern group of rooms. This doorjamb fragment was painted and inscribed with hieroglyphs enclosed by parallel vertical incised and painted lines. The fragmentary hieroglyphs on the doorjamb read …k Htp r st=f n…, meaning “… content in his place of….”

A mudbrick dais was not documented by the UME in their excavation of the central chamber of Building 1500, however, the most likely position of the dais, against the rear wall (HU 88916) directly opposite the main entrance to the room, was covered by a Late Level VI wall on the UME’s plan of the structure (Figure 5.3). This later wall traveled from the center of the rear wall of the room, through the columns, and up to the main entrance, essentially blocking the doorway and splitting the room in half, not unlike the aforementioned proposed Late Level VI wall that divided the focal chamber of Building 1700 immediately to the east of Building 1500. The width of the Late Level VI wall in the latter structure was about 1 m at the front of the room and through the columns, but then doubles to 2 m wide traveling back to the rear wall of the room (Figure 5.3). Therefore it is possible that an average sized 2 m wide dais was located in the midpoint of the rear wall (HU 88916).
No hearths or niches were recorded by the UME or found by the HU in the central room of Building 1500, but again, the preferred location for the hearth would have been in the center of the room between the two columns, where the Late Level VI wall ran and most likely destroyed any remains of a hearth. On the other hand, a large stone block was discovered by the UME in the southwestern corner of the chamber, and this appears to be an almost perfect example of an Egyptian-type lustration slab. This rectangular-shaped (about 1 x 2.5 m) stone stood on a platform of one mudbrick course along the western wall (HU 10904) of the room, just south of the main entrance (Figure 5.3). The interior of the upper face of the stone had been carved out, leaving a narrow upright ledge border, while the center of the stone was further hollowed out in a circular shape, and the southern end was marked with three round depressions. Stone lustration slabs in the living rooms of Egyptian houses ranged between 0.80-1.3 m in width and 1.3-2 m in length and typically featured a ledge and central circular depression, where a water jar would have been positioned.

Therefore, the stone found in the central chamber (UME 1586) of Building 1500 is almost indistinguishable from Egyptian lustration slabs. Several closed-form vessels also discovered in the central chamber might have been used in conjunction with the lustration slab. An Egyptianized beer jar came from the southwestern area of the room where the stone was located, but would not have been used to hold water, as the base was perforated. Instead, this vessel could have possibly been entrenched in the floor next to the lustration slab, where it would catch the used liquid and filter it under the floor, a feature also found next to the stone slabs in Egyptian houses of the New Kingdom. Other vessels discovered in this space include a Mycenaean IIIC globular stirrup jar, which was found in the southwestern area of the room near
the lustration slab, and a large storage jar and two juglets, one of which was found on the western side of the chamber.

Since Egyptian living rooms were the main dining areas for the household, the presence of several ceramic jars and juglets, as well as two Egyptianized simple bowls with red rims, a cup-and-saucer, and a chalice in the central chamber (UME 1586) of Building 1500 illustrates a further parallel with Egyptian focal chambers. Other finds from the room in Building 1500 are also comparable with the objects and associated domestic activities that took place in the living rooms of Egyptian residences. Cultic practices are evidenced by the discovery of a clay figurine fragment showing striding feet on a platform, while a spinning bowl, a bronze knob, and iron fragments of a weapon or a tool demonstrate that occupational and other labors occurred in the space. The remainder of items from the focal room of Building 1500 are all objects related to personal toilette or adornment including an engraved ivory comb, imported Egyptian alabaster pyxis, faience mandrake amulet, and blue paste biconical bead. A steatite cylinder seal inscribed with two ibexes around a tree-of-life motif and a conical-shaped stone seal with one vertical and seven horizontal inscribed lines might also be ornamental items, but could have also been related to occupational duties.

Unlike Building 1500, there is no clearly defined large central chamber in Building 350 at Deir el-Balah (Figure 5.12). The middle of the structure includes three rooms (1020, 1024, and 1065) consisting of two rectangular-shaped chambers of similar dimensions (2.25 x 3.7 m) side-by-side and a long narrow (1.6 x 5.2 m) corridor to the south. There is no indication that these three rooms had originally comprised one large chamber and the absence of finds in these spaces does not facilitate in ascribing their function as an Egyptian-type living room for the
house. As only the foundations of Building 350 were uncovered by the excavators, there is no information regarding the superstructure or floors in the edifice.

Brandl theorized that the northwestern chamber (350) was the “living room” of the house, but does not specify exactly why he applied this label to the room (2010b: 81). This room was square-shaped (3.5 x 3.7) and could have been entered through the wall shared with the proposed front room (1043), but other similarities with the living rooms of large Egyptian residences are few. The position of the room in the northwestern corner of the building strongly contrasts with the centralized living rooms of Egyptian villas, as this location would have not been protected on all four sides from exterior weather conditions or from the heat, dust, and turmoil of the outside world. On the other hand, the northwestern chamber was protected in the sense that a corner buttress was located on the exterior of the building in this area.

The decentralized chamber (350) also provides difficulties with the doorways and associated privacy of the space in comparison to Egyptian examples. If the main entrance to this corner room was compatible with living rooms in Egypt, the doorway would have been located in the wall shared with the front room (1043). This placement would cause an issue with the privacy of the living room, since the main exterior entrance to the building is theorized to also be in the front room, and any individual in this front room, where visitors or deliveries were taken, would have been able to see directly into the living room. However, if the main entrance to the edifice was located in the center of the exterior wall, positioning the living room directly behind would have allowed a full vantage of the room from the doorsill or even from the street. In this sense, a corner living room would have been more private than a centralized living room.

According to the layout of the structure, only two thresholds could have been located in this room (350), and this differs from the living rooms of anteroom villas in Egypt, which
typically contained five to seven thresholds, which connected the space to almost every other room in the structure, as the living room was the focus of all domestic activities and the “heart” of the abode (Figure 5.12). The quantity of doorways in an Egyptian house was linked with the socio-economic status of the edifice and the residents, and a living room in an abode of this size would have had at least twice or even three times as many thresholds as the room in the northwestern corner of Building 350.

Another contrast with the living rooms of all types of Egyptian houses in the New Kingdom was that the chamber (350) was not the largest in the structure, as this trait was reserved for the room (1056) on the opposite corner of the building, which Brandl surmised was a bedroom.94 The position of this room (1056) in the rear area of the structure also differs from the centralized location of the living rooms in Egyptian residences, and would have forced an invited guest to travel through a series of rooms and corridors before reaching the living room, where company was generally entertained in Egypt. The rectangular-shape (2.5 x 5.25) of the room is another non-Egyptian characteristic for the focal chamber of the residence, as it would not allow the residents and guests to sit equidistant from one another. In summation, there does not appear to be a room in Building 350 that can strongly correspond to an Egyptian living room, whether in a small house or a large villa.

The layout of Building NB in Stratum N-3a at Beth-Shean has already been compared to those of tripartite houses in Egypt in the New Kingdom. One large room (UME 1739) directly behind the front room (UME 1740) of the structure shares many similarities with the living rooms of Egyptian tripartite houses (Figures 5.8 and 5.10). This chamber (UME 1739) was square-shaped (3.5 x 3.5 m), and while the size of the chamber corresponds to the smallest

94 In reality, the southwestern corner room was the largest in Building 350, but this chamber was divided in half by a wide partition wall.
versions of living rooms in Egypt, it was still the largest room in the structure. The room was also centrally located, with chambers protecting the occupants on three sides of the room, offering only one less layer of protection than the large Egyptian four-sided villas. As previously discussed, the main entrance to the house could not have been located in this central room, as a niche was located on the exterior wall directly outside the chamber. Therefore, the privacy of the room was enhanced through individuals having to enter the front room of the house and turn 90°, before even gaining a view of the central chamber, which would not have been visible from the main doorway or the street.

These layers of privacy would be in accordance with those found in tripartite houses in Egypt, where the living rooms of small houses were believed to have been utilized mostly by the female members of the household during the daytime, while the men spent most of the day at a worksite outside of the residence, necessitating a more private entryway to the chamber. The position of the doorway between the front room and the central chamber in Building NB would have furthered this privacy even more, as features in the shared-wall (HU 98418) would have only allowed a corner threshold and entrance to the room, barely allowing a narrow view of the opposite corner of the focal chamber, and only if one were standing near the rear wall of the front room. A doorway in this location would have been about 75 cm wide, which is analogous to the smaller-sized doorways to the living rooms in Egyptian tripartite houses.

The central location of the room (UME 1739) would have facilitated its function as the focal point for all domestic activities in the house, as well as a social room for entertaining invited guests (Figures 5.8 and 5.10). Although the internal thresholds of Building NB were not established during excavation, at least two or three possible doorways could have been located in the central room, which would also access to almost every chamber in the house, as in all types
of Egyptian residences, although such a low number was more in keeping with the smaller houses, as the quantity of thresholds was relative to the socio-economic status of the abode and its residents. Like the living rooms of Egyptian tripartite houses, the internal walls surrounding the central chamber of Building NB were manufactured out of mudbricks, with an average blueprint and width of two header or stretcher bricks placed side-by-side.

An interesting feature believed to have been associated with the central chamber of Building NB was excavated by the UME in two of the walls of the room. Three recesses were discovered in the northern wall (HU 98431) of the room, and three more were found on the other side of the chamber in the southern wall (HU 98418), each with a large stone placed in the bottom (Figure 5.8). When the HU re-excavated the building, the three hollows and stones of the southern wall were still intact (Figure 5.10). There are no measurements provided for any of these recesses or stones by the UME or the HU, but on the UME’s plan of the building, the northern examples appear to be circular-shaped with diameters about 40 cm and about 30 cm between each hollow (Figure 5.8). On the HU’s plan, the southern stones in the depressions are clearly outlined, with each stone measuring an average 25 x 50 cm, with about 75 cm between the western wall (HU 98403) and the western stone, 25 cm between the western and middle stones, about 50 cm between the middle and eastern stones, and about 75 cm between the eastern stone and the eastern wall (HU 98406) (Figure 5.10).

James interpreted these recesses as post holes, in which wooden beams would have placed in order to support a roof (1966: 14). This theory would corroborate nicely with the fact that all of the living rooms in Egyptian tripartite houses were roofed. On the other hand, if the wooden beams placed in the hollows were vertically aligned and the spaces between them were left open, then the privacy of the room would be comprised, as any individual standing in the
front room of the residence would clearly be able to view the living room through the 25-75 cm
gaps between the posts and the walls. While the living room was considered a semi-public space
in Egyptian houses and therefore a semi-open wall might be passable, the rear suite of rooms
were always extraordinarily private places, and as the northwestern rear room (UME 1738) of
the Building NB would have also been open to the living room (UME 1739) and the front room
(UME 1740), this starkly contrasts with Egyptian cultural standards of a residence. On the other
hand, James could have meant that the beams in the hollows were horizontally positioned, but
this theory is untenable due to the fact that the recesses were located only 40-50 cm above the
floor.

While the support for vertical timbers for roof-support is an adequate suggestion for the
purpose of the depressions in the walls, another function might be suggested based on the
aforementioned Egyptian comparanda. In the living rooms of Egyptian tripartite houses in the
New Kingdom, two or four cubical stone blocks with carved sockets were frequently discovered,
and in some houses, these socketed stones were entrenched in a wall, with another recess located
across the room in the opposite wall. These stones and recesses would have secured horizontal
wooden beams for an Egyptian upright loom, which would have been a permanent feature of the
living room. The only drawback in applying this theory to the central room of Building NB is
that there are three recesses in each wall, instead of two or four. If a permanent loom had
utilized the center depressions, it would have been located in the middle of the chamber,
especially obstructing half of the room. On the other hand, since the use of space was fluid in
Egypt, an important industry could take precedence over living space, and in modern Egypt, for
example, a loom can take up an entire courtyard, causing the inhabitants of the house to step
around the beams (W. Wendrich 2013, pers. comm., 25 May).
Nevertheless, whether the post holes were employed for roof or loom supports, they were still an addition to Building NB in Stratum N-3a. It is clear that when the owners of the structure in Stratum N-3a modified the earlier N-3b building by constructing several new mudbrick walls, they also decided to incorporate the recesses with stone bases in the newly added southern wall (HU 98418) during the process of construction. On the other hand, since the northern wall (HU 98431) was reused from the earlier structure, the recesses added to this wall could only be hollowed out and lacked the built-in stone bases. As the previous area of the dual front/living room space would have been unroofed, the addition of these post holes to support a roof over the newly built living room (UME 1739) would have marked a rise in socio-economic status for the house and its residents, and the addition of a permanent loom would have also had the same effect (Figures 5.9 and 5.10).

The layout of Building 1131 at Deir el-Balah has also been shown to be similar to Egyptian tripartite houses in the New Kingdom, and the central room (1131 and 1135) in the structure also parallels that of Egyptian residences (Figure 5.13). The chamber actually consists of two different areas that, when joined together, form the largest room in the building. The eastern side (1135) of the space is a long rectangular (2 x 4.7) room that was entered from the antechamber of the structure, which also contained the main entrance to the edifice. The western side (1131) of the space is defined by a small square-ish (1.8 x 2.4) room that is directly south of the antechamber and for which no thresholds were discovered. The living rooms of smaller Egyptian houses were often subdivided into two spaces, where different activities would occur. Together, these two spaces form a square-shaped chamber measuring about 4.2 m wide and 4.7 m long, with a chunk removed from the northeastern corner of the space for the antechamber, and fall in the center of the range of living room dimensions in Egyptian tripartite houses.
This centrally-located room (1131 and 1135) was surrounded by adjacent rooms on two sides, protecting the space from the outside world and also offering more privacy for a small house (Figure 5.13). Like tripartite houses in Egypt, the main doorway to the room was positioned in a party-wall with the front room, near the corner of the wall. An entrance in this location would have not allowed an individual in the front room to see more than a narrow perspective of the northwestern corner of the central chamber (1135) across from the doorway. The threshold to the central room was also located on the opposite wall of the main exterior entrance to the residence, but was on a different axis, so that anyone standing in the street or even in the doorway would have not been able to see inside the central room. Again, this was an imperative feature of smaller Egyptian houses, which would grant the female members of the household privacy in the living room while performing domestic duties while the men were away at a worksite during the day.

Like that of living rooms in Egyptian tripartite houses, a beaten earth floor was discovered in the central chamber of Building 1131 and the internal walls of the room were constructed out of mudbrick with a thickness of one brick wide, which is equal to just under 50 cm (Figure 5.13). No dais or hearth was found in the chamber, but as the eastern one-quarter of the room was not excavated, these features could have been located in the unexcavated portion, or, as was the most frequent characteristic of small houses, not have been a part of the living room at all. The finds in the space consist of four open-form ceramic vessels, including two Egyptianized simple bowls and two two-handled craters, which, according to the interpretation of these forms in Egyptian houses, indicates that the chamber was used for dining, one of the most significant functions of the living rooms in Egyptian residences.
The layout of the smallest structure in this study, Building NB in Stratum N-3b at Beth-Shean, is analogous with that of Egyptian three-room houses in the New Kingdom. In the vein of three-room houses, one large chamber (HU 10440) was located across the front and middle portions of the residence, and this room functioned as both a front room and living room for the residents (Figure 5.9). This practice is represented by the lower socio-economic strata of Egyptian society, as these two types of living spaces were usually kept separate, even in small tripartite houses. The front chamber of Building NB was square-shaped (5.9 x 5.9), the largest in the edifice, and was accessible from every chamber in the building, all of which are analogous to the living rooms of Egyptian houses in general.

Akin with the overwhelming majority of small Egyptian residences, the entrance to the focal room (HU 10440) was located near the corner of the chamber, but unlike the majority, the threshold to the central room was also the exterior doorway for the whole edifice, a characteristic that only commonly occurs in three-room houses in Egypt. As was previously discussed, this corner entrance would allow more privacy for the occupants of the front-living space, which needed to function as both a public and semi-private space. Resembling other Egyptian three-room houses, the floor of the room was beaten-earth, and no high-value markers of socio-economic status, such as a columns, stone doorframe or doorsill, niche, dais, altar, or offering table, were discovered in Building NB.

On the other hand, the finds from the central room (HU 10440) of the structure clearly show the dual nature of the space. Three ceramic vessels were discovered in the room, including an Egyptian-style simple bowl with a red-painted rim, a hemispherical bowl with an incurving rim and burnished interior, and a storage jar with a thickened rim. The large storage jar could have been part of a ceramic vessel emplacement in the chamber, which was commonly employed
in three-room houses in Egypt to store drinking or washing water. Evidence of dining in the chamber arrives from the two open-form vessels discovered in the room, and this activity was specifically reserved for the living rooms of Egyptian houses.

The only other find in the room was a rectangular-shaped mudbrick feature (HU 98439) situated alongside the western wall (HU 98403) of the room (Figure 5.9). This partially subterranean installation was 0.75 m wide, 2 m long, and 34 cm deep, and coated on the interior with 3-4 cm of thick white plaster. The characteristics of this feature are almost perfectly analogous to the quern emplacements of Egyptian residences, wherein a grindstone would be positioned. Egyptian quern emplacements were rectangular mudbrick constructions with a plaster coating, ranging from 40-70 cm in width, 1-1.5 m in length, and an average of 40 cm in depth. These grinding installations were one of the most important aspects of the front rooms or courtyards of Egyptian houses of all types, and were typically discovered alongside evidence of animal husbandry, both of which practices required a more open environment. The proposed quern emplacement in the central chamber of Building NB demonstrates the purpose of the room as an open front room, and the ceramic vessels establish the chamber as a living room, reflecting the dual nature of the space, which is a typical feature of the focal chambers of Egyptian three-room houses in the New Kingdom.

6.8 REAR SECTION

The rear area of Egyptian houses typically contained at least one bedroom and one kitchen, although sometimes more than one room could be designated as such, and in many buildings it is hard to identify these spaces, often because they were located outside the main area of the house or were on an upper storey. For large Egyptian houses, including anteroom and
four-sided villas, the bedroom was always located in the rear sector of the residence, where it was the most private room in the structure, and so isolated from the public areas of the house that it has been called “the holy of holies” (Crocker 1992: 18, 21). The bedroom was rarely accessed through the living room, and a corridor or antechamber usually led to space, so it was even separated from the other chambers in the rear area of the abode (Crocker 1985: 60-61).

Oftentimes the bedroom in large Egyptian villas was surrounded by adjoining and dependent rooms, such as a bathroom, lavatory, or “dressing room,” conversely, the kitchen was habitually not situated near the bedroom (Koltsida 2007: 98, 107). The shape of the chamber was always rectangular and the dimensions varied based on the size of the residence. The threshold to the bedroom was always placed off-center, which offered even more privacy to the most private room in the house (Koltsida 2007: 107). The walls of the bedroom were typically built out of mudbricks and varied in thickness, while the floors of the chamber were occasionally laid constructed out of the same material (Tietze 1985: 59-60). The most significant aspect of the bedroom was the bed niche, which consisted of a one brick narrowing of the whole length of one of the short walls of the room and partly of the two adjoining walls, creating an average 1.4 m long recess (Borchardt 1907: 23-24; Frankfort and Pendlebury 1933: 8; Peet and Woolley 1923: 45; Petrie 1894: 21).

These bed niches were extremely common in large Egyptian houses, as only 3% of examples lacked a niche, however, some residences replaced the bed niche with other installations such as a dais or brick-laid area (Crocker 1985: 61). The dais could consist of a just a raised area of the floor, or could be an average 12 cm high mudbrick platform, on which the bed would be directly placed, or which would include four cones or a 20 cm high pier to support the bed (Borchardt and Ricke 1980: 294-295; Frankfort and Pendlebury 1933: 68, Pl. XXIV). In
a few houses, the space reserved for the bed was only designated by a mudbrick-laid area, which was comprised of one row of bricks across the inner short side of the chamber where the niche was usually located (Borchardt and Ricke 1980: 335-337). Although the presence of a special bed-niche, raised dais, or mudbrick section in the room demonstrates that the room was used for sleeping, a few scholars have suggested additional purposes for the space.

As the most private room of the house, Janssen proposed that the bedroom was a restricted area for ill household members, while Manniche suggested that the space was utilized for nocturnal and erotic activities (Janssen 1975b: 135; Manniche 1997: 110-111, Figs. 9, 53). Others have theorized that the chamber served ritualistic and explicitly female-gendered purposes, such as the site of the 14 day post-parturition purification, or the area of seclusion for sexually mature women during menses, both of which are mentioned in texts (Meskell 1998: 236; Sethe 1924: 34). Conversely, some have argued that the secluded place of menstruation was actually located outside the village, or that the word for “menstruation” should actually be translated as “purification” in these texts (Janssen 1980: 141-143; Sendison 1977: 295-297; Toivari 2000: 150; Wilfong 1999: 420, 424). In reality, the rooms were probably both multifunctional and multi-gendered, as textual and artistic representations illustrate that men and women shared beds (Leospo 1988: 148-150).

Besides the few purposes just mentioned, the significant secondary function of the bedroom, as the most private chamber of the house, was the storage of precious objects (Borchardt and Ricke 1980: 87). In many instances, a bedroom can be identified through the discovery of storage spaces and valuable items in a chamber. These containers could include boxes, chests, cupboards, cellars, and pits of many different shapes and sizes, some of which were quite large (0.57 x 1.55 m) and lined with mudbricks (Borchardt and Ricke 1980: 87; Peet
and Woolley 1923: 29). On the other hand, certain installations and objects were never or rarely discovered in bedrooms, including items related to cooking, animal husbandry, weaving, or ritualistic activities, as well as windows, staircases, and hearths (Koltsida 2007: 108-109).

The function of the kitchen in Egyptian houses focused on cooking and food preparation, although other activities were performed in the kitchen as well. In the majority of large Egyptian villas, both of the anteroom and four-sided type, the kitchen chamber was placed in an enclosure outside of the house (Borchardt and Ricke 1980: 18-307 passim; Frankfort and Pendlebury 1933: 5, 9, 11-13, 19-20, 22, 30, 35-36, 45, 47; Peet and Woolley 1923: 17-18, 22). These enclosures were open courtyards typically located in front of the residence and could include partition walls segregating off kitchen spaces with ovens and grinding emplacements (Kemp 1995: 17-19, Fig. 1.11). Kitchens were rarely situated in the interior of anteroom villas, but were slightly more common inside of the slightly smaller four-sided versions.

When inside of a large villa, kitchens were generally located in the corner of the building and were always accessible through the living room in the center of the residence (Frankfort and Pendlebury 1933: 21; Pendlebury 1951: 116). The most common installations found in Egyptian kitchens of the New Kingdom were ovens and hearths, which were either box- or circular-shaped, and up to four ovens could exist in one kitchen (Borchardt and Ricke 1980: 32-33, 72, 165; Frankfort and Pendlebury 1933: 19; Peet and Woolley 1923: 19, 34). Obvious indicators for a domestic kitchen include features or objects full of charcoal, as well as blackened walls and floors (Borchardt and Ricke 1980: 38). Occasionally, the kitchen would have a mudbrick-lined sink with a drain below the floor leading to a subterranean vessel or outside of the house (Peet and Woolley 1923: 32). In many examples, areas of the kitchen were separated off by mudbrick
screen walls, which would segregate separate installations, like a hearth and an oven (Peet and Woolley 1923: 33).

The rear section of rooms in smaller Egyptian houses, including the three-sided, tripartite, and three-room varieties, ranged in dimensions from about 10-15 square meters (Koltsida 2007: 94). The walls of these areas were an average of 34 cm wide, contained no exterior openings, windows, or doors, and were sometimes party-walls with a neighboring house or the city enclosure wall (Koltsida 2007: 94). The rear section of rooms in smaller houses were generally comprised of two or three chambers, usually including at least one kitchen and one bedroom, and occasionally a second dependent chamber (Peet and Woolley 1923: 63). Like the larger Egyptian villas, the bedrooms of three-sided, tripartite, and three-room small houses were always located in the rear portion of the house, where the most privacy was gained (Crocker 1992: 21). The majority of bedrooms in these house types were rectangular-shaped with dimensions ranging from 4.5 to 12 square meters, although square-shaped examples are also known (Koltsida 2007: 94, 107).

Unlike the larger villas, the bedrooms of small Egyptian houses typically had direct access to the semi-public living room located in the center of the house, on the other hand, like the larger residences, these thresholds were always positioned off-center in an effort to afford more privacy for the occupants (Koltsida 2007: 95, 107). The entrance to the bedroom was usually located near a corner of the rear wall of the living room, ranged in width from 0.65-1 m and in depth from 20-40 cm, and could contain stone, wood, or mud thresholds and doorframes (Bruyère 1939: 257, 265, 285, 331; Peet and Woolley 1923: 78-79, 84). The majority of bedroom floors were made of packed earth and occasionally of mudbrick, while the walls could be manufactured out of mudbrick, stone, or a mixture of both, and plastered, whitened, or painted
with decorative motifs, which was a reflection of a higher socio-economic status (Bruyère 1939: 321-322; Peet and Woolley 1923: 63, 71, 74, 77, 87).

The most fundamental component of a bedroom in a three-sided, tripartite, or three-room house was the bed-support, which was never discovered in niche-form like those of the villas, but rather only as a dais, mudbrick-laid area, mud-paving, series of low walls, holes, or socketed stones. Even though these features are considered an essential characteristic that distinguishes a bedroom, they were still rarely discovered intact in small Egyptian houses (Koltsida 2007: 97). The dais, which is also known as the *lit-mastaba* or *dressoir*, generally consisted of a low (average 20 cm high) mudbrick platform that ran the entire length of a wall in the bedroom (Bruyère 1939: 244, 250; Peet and Woolley 1923: 78). These rectangular-shaped daises were occasionally mud-plastered, contained sunken ceramic vessel emplacements, and were 0.90 m to 1 m wide and 1 m to 2.5 m long (Bruyère 1939: 275). Socketed stones, which would have held horizontal beams for a bed-frame, could be placed on the dais or on a mudbrick or mud-plastered area in the chamber (Kemp 1986: 7; Peet and Woolley 1923: 79). In other instances, the bed frames were supported by two short (average 60 cm high) mudbrick walls or large (average 40 cm diameter) post holes in the walls about 15 cm above the floor (Peet and Woolley 1923: 80-81).

Like the bedrooms of the anteroom and four-sided villas, those in smaller Egyptian houses functioned not only as slumbering chambers, but also had a significant secondary purpose in the safekeeping of costly items, as evidenced by the many high-value objects and containers discovered in these rooms, including numerous storage pits in the floors and horizontal mudbrick projections on the walls for shelf supports (Bruyère 1939: 253, 331; Peet and Woolley 1923: 78, 83). These costly items included many different types of personal adornment, stone vessels, and
raw materials, such as pieces of metal, chunks of pigment, and lumps of gum (Koltsida 2007: 97-98). Pottery emplacements and dining equipment were found more frequently in the smaller houses than the larger versions, demonstrating that smaller houses and smaller spaces were necessarily of a more polyvalent nature, whereas larger houses and larger spaces could be more restrictive and segregated in function (Peet and Woolley 1923: 89).

This is also true in the sense of bathrooms and lavatories, which in the large anteroom and four-sided villas were always in a separate chamber adjoining the bedroom, whereas in three-sided, tripartite, and three-room smaller houses, the bedroom itself was generally used for washing, as it was the most private space in the residence (Koltsida 2007: 109). Lavatory areas in bedrooms were usually designated by large stone baths, which were an average of 0.97 m wide, 1.35 m long, and 0.19 m deep, smaller stone basins, ceramic vessel emplacements in the floor, and/or stone pavements to protect the floor from water runoff (Peet and Woolley 1923: 84-85). On the other hand, cultic installations and objects, like niches, false doors, offering tables, and altars were rare or nonexistent in the bedrooms of all types of Egyptian houses, whether small or large (Bruyère 1939: 261; Peet and Woolley 1923: 89, Pl. XXIII).

The same statement can also be applied to the absence of troughs and mortars, or anything connected to animal husbandry or grinding, in the bedrooms in Egyptian residences (Bruyère 1939: 243, 256, 302, 326; Peet and Woolley 1923: 74, 82). These activities would have been performed in the open areas of the house, such as the front rooms of three-sided or tripartite houses, or the dual front-living rooms of three-room houses. While spinning or sewing could take place in the bedroom, any features or objects associated with weaving or manual labor, such as looms, weaving sticks, borers, drills, or other work-tools, were uncommon in these chambers (Koltsida 2007: 98). Other markers of non-bedrooms in Egyptian houses include staircases or
exterior openings, windows, and doors, although sooty lamp niches (20-40 cm wide, 25-40 cm tall, and 15-25 deep) were commonly discovered in the walls of these chambers, located about 0.50 to 1.6 m above the floor (Bruyère 1939: 261; Peet and Woolley 1923: 80-82).

The kitchens in small Egyptian houses, including the three-sided, tripartite, and three-room varieties, were primarily used for food preparation and cooking and were therefore most frequently located in the rear section of the house, nearby the bedroom and with direct access to the living room, where the majority of dining occurred (Borchardt and Ricke 1980: 152, 182; Kemp 1986: 7; Peet and Woolley 1923: 22; Verhoenen 1984). This position is in sharp contrast to the kitchen spaces in large Egyptian villas, which were almost always located outside of the house and a far distance from the bedroom, although this placement was also occasionally observed in the small houses, but only of the three-sided and tripartite types (Borchardt and Ricke 1980: 18, 47, 166-167, 178, 200, 321, 325; Frankfort and Pendlebury 1933: 17, 26; Peet and Woolley 1923: 21-22). In the smallest variety of three-room houses, the kitchen area could be situated in an area of the dual living-front room, essentially giving the space a triple nature (Borchardt and Ricke 1980: 196; Bruyère 1939: 73; Peet and Woolley 1923: 64-65).

Kitchens in all types of Egyptian residences in the New Kingdom were rectangular-shaped, and those in the small houses ranged between 2 to 4 m in width and 2 to 4 m in length, equaling about 4 to 16 square meters of total space (Koltsida 2007: 110, 121). The main entrance to the kitchen was typically located in a rear wall of the living room, was 0.65-1 m wide, 20-40 cm deep, and positioned near the corner of the wall in order to obstruct a clear view of the interior to any occupants of the living room (Koltsida 2007: 110-111, 121). The kitchen was sometimes entered through a corridor linking the chamber with the living room, and rarely contained another threshold, which usually led to a second kitchen, the bedroom, or the front
Many kitchen floors were manufactured out of packed earth, but examples also exist in stone or mud-plaster, and these floors were sometimes covered with ashes or charcoal and located at a higher level than the surrounding rooms, due to the continual replastering (Bruyère 1939: 242-244, 293, 309, 312; Kemp 1986: 7; Peet and Woolley 1923: 71-72, 75-76, 78, 80-83, 86, 89). The walls of kitchens in small Egyptian houses could be constructed out of mudbrick or stone, which could in turn have a coating of mud-plaster and be blackened from the smoke debris of cooking (Bruyère 1939: 242-246, 250, 273, 284, 304-305, 331; Peet and Woolley 1923: 77).

Egyptian kitchens in all varieties of residences lacked a permanent roof, with many just open to the sky or covered with a light thatch awning sometimes coated with mud or painted plaster, which allowed most of the smoke from cooking to be released outside (Borchardt and Ricke 1980: 191, 234; Meskell 1998: 233; Peet and Woolley 1923: 74-75, 81-82).

The most significant components of Egyptian kitchens were ovens, hearths, and fireplaces, which are the most basic and initial elements in identifying a kitchen area, as cooking was the primary activity performed in the space (Samuel 1994; 2000: 537). One or two ovens were a common fixture in the kitchens of Egyptian houses and were found in two varieties consisting of a simple box-like mudbrick structure employed for baking bread in molds, or a pre-formed dried clay cylinder positioned in the corner of the room and surrounded by mudbricks and mortar (Borchardt and Ricke 1980: 152, 182, 249; Bruyère 1939: 244, 246; Kemp 1989: 241-252; Peet and Woolley 1923: 72-73, 76-77, 79-83, 86-87, 89, 91). Egyptian kitchens also frequently contained hearths, which were sometimes discovered in conjunction with an oven, and were in the form of a shallow (40-50 cm deep) square-shaped tray that was placed on a mudbrick.
foundation (Borchardt and Ricke 1980: 117; Frankfort and Pendlebury 1933: 26; Peet and Woolley 1923: 64, 72-75, 77, 81-84, 86-88, 91).

Box-hearths are sometimes mistaken as troughs or quern emplacements, but these latter installations were usually rectangular-shaped, plastered, and not blackened or covered with ashes or charcoal (Kemp 1987: 6, 40; Peet and Woolley 1923: 64). Quern emplacements are commonly discovered in the kitchens of large Egyptian villas and in the front rooms of small residences and also sometimes in the kitchen, where they were separated from the rest of the space by a 15-60 cm high mudbrick partition wall that was occasionally plastered (Bruyère 1939: 284; Peet and Woolley 1923: 82, 86-87). These segregated bread-preparation areas contained limestone mortars, which were occasionally sunk into the floor, surrounded by stones, placed on a mudbrick platform, and accompanied by amphorae, silos, and 10-70 cm tall bins (Bruyère 1939: 244, 246, 266, 331; Kemp 1987: 1-6; Peet and Woolley 1923: 64, 71-72, 74-75, 79, 81, 83-84, 86, 88).

Another common feature in the rear sections of three-sided, tripartite, and three-room small Egyptian houses in the New Kingdom were staircases, which led to the roof or an upper storey and were commonly located in the kitchen or a separate chamber (Peet and Woolley 1923: 60). When located in the rear section of the house, these stairways were not linear, but positioned around a central mudbrick pillar, with each flight supported by a wooden pole embedded in the brickwork of the pillar and fixed on the other side in a hole cut into the walls of the chamber (Peet and Woolley 1923: 58, 79, 83-84, 87-90). These pillars were an average size of 50 x 70 cm and were from 0.70 to 1.45 m away from the nearest wall (Kemp 1986: Fig. 1.12A). The staircase itself was constructed out of thickly plastered mudbricks or rarely stones and was comprised of several flights of 1-6 steps, which were each 60-85 cm long, 15-30 cm
wide, and 17 cm high, with the entire set of stairs from 1.25-1.35 m tall (Bruyère 1939: 257, 293; Peet and Woolley 1923: 78-79, 83-84, 86-90).

A large L-shaped cupboard was situated underneath many of the stairways, and these were filled with a variety of kitchen-related materials such as charcoal, barley husks, and almonds (Kemp 1986: 7; Peet and Woolley 1923: 79, 83, 85, 88-91). Other storage containers also frequently found in the kitchens of all sizes of Egyptian houses, and included large ceramic jars, baskets, boxes, bins, and cellars, which held solid and liquid comestibles and materials for cooking like charcoal and wood (Christophe 1967: 177-179; Janssen 1975a: 348-349, 455-493; Serpico and White 2000: 390-429). Silos were occasionally discovered in small Egyptian houses, but were a frequent occurrence in the open courtyards of the large villas, especially of those belonging to governmental employees, whose paid rations consisted of varying amounts of grain (Janssen 1975a: 455-493; Lloyd 1933: 2-3; Peet and Woolley 1923: 37-50; Ricke 1932: 44-45; Tooley 1995: 36-41).

Lamp recesses (23 x 18 x 12 cm) in the walls and rectangular-shaped mudbrick mastabas (0.60 x 1.2 m) employed as workbenches were occasionally found in Egyptian kitchens (Bruyère 1939: 286; Kemp 1986: 7, Fig. 1.1; Peet and Woolley 1923: 82, 87, 89). Installations and objects that were rarely discovered in Egyptian kitchens include items related to weaving or spinning, personal adornment, or cultic activities (Bruyère 1939: 244; Koltsida 2007: 114). Although meat was prepared in the kitchen, animal keeping and slaughter was restricted to the courtyard or the front room of the house, and both activities might have been performed outside of the city proper (Janssen 1975a: 165-179; Kemp 1984: 40-59; 1986: 34-75; 1987: 47-67). The most frequently discovered items in the kitchens of all types of Egyptian houses were related to food, especially bread and beer, preparation, cooking, baking, and dining, including closed and
open-form ceramic vessels, utensils, pounders, mortars, baking dishes, quernstones, and braziers, as well as the foodstuffs themselves (Helck 1975: 789-792; Koltsida 2007: 114; Peet and Woolley 1923: 86).

Because of these associated activities, the kitchens of Egyptian houses were considered gendered- and sometimes aged-spaces, as young females generally performed food preparation and grinding in Egypt (Théodoridès 1977: 289-290; Toivari 2000: 224; Lesko 1994: 36; Roehrig 1996: 15). Furthermore, Meskell has linked the kitchen to women of a lower status, such as servants (1998: 233). The gendered and stratified nature of the kitchen has been disputed according to the theory that males typically produced beer in Egypt and the majority of servants worked outside of the residence in the agricultural fields (Černý and Gardiner 1957: LXXXIII-LXXXIV; Janssen 1980: 146-147; Koltsida 2007: 122; McDowell 1992: 195-206).

The rear section of Building 1700 at Beth-Shean, which has a similar layout to anteroom villas, is comprised of at least four rooms (Figures 5.5-5.7). Two of these rooms were located in the southeastern area of the structure and could possibly be a long narrow corridor that leads to a bedroom in the southeastern corner of the building, but since these two chambers remain almost entirely unexcavated, this theory cannot be substantiated (Figures 5.5 and 5.7). On the other hand, the other two chambers in the rear section of Building 1700 were excavated by both the UME and the HU and so can be investigated in terms of identification as an Egyptian-style bedroom. One of these rooms (UME 1224) was located east of the living room (UME 1715 and 1716), from which there was direct access through a wide T-shaped threshold near one end of the wall (HU 10209) (Figure 5.5). Although this chamber was situated in the rear area of the residence, such a wide entrance directly to the living room completely contrasts with the private
and isolated bedrooms in all types of Egyptian houses, and especially those of the large villas, where space less confined.

The northeastern corner of this room (UME 1224) was separated off by two partition walls, one of which contained a T-shaped stone threshold (Figure 5.5). Inside of this corner area, another thinner partition wall divided the space in half. This entire chamber could have functioned as a kitchen or lavatory, with the walled corner area consisting of a quern emplacement or bathroom, both of which were commonly segregated from the main kitchen or lavatory in Egyptian houses. This theory will be discussed more fully below regarding a kitchen in the house. Nonetheless, whether this space was a kitchen or lavatory, it does not appear to have any characteristics of a bedroom.

The only other chamber (UME 1718) in the rear section of Building 1700 was located in the northeastern corner of the building and had no direct access to the living room, all of which were common traits of bedrooms in Egyptian houses (Figures 5.5-5.7). This chamber would have been isolated and private, as the only entrance was likely in the room (UME 1717) directly to the west, which in turn had its own doorway to the living room. Therefore, an individual entering Building 1700 would have had to cross six different thresholds and travel through five different rooms (exterior anteroom, interior anteroom, front room, living room, and adjacent room) before entering the bedroom of the residence. A few features related to the floor and eastern wall of this chamber might be associated with its use as a bedroom. The floor (HU 10433) in the eastern area of the room (UME 1718) consisted of stone pavement, which could correspond to similar flooring designating a special area of the room as the space for a bed, which was common in the rear areas of Egyptian bedrooms in houses of all varieties (Figure 5.6). This stone pavement in this chamber was located in the rear area of the room, where the
beds were typically placed, and would have provided a firm surface to support a bed and also would have been a, albeit private, symbol of high socio-economic status for the building and its occupants.

Another feature in the eastern area of this room (UME 1718) might be connected to a bed-support. On both the UME’s and HU’s plans, the rear wall (HU 98443) of the chamber is fronted by a 0.75-1 m wide installation (HU 98413) that runs the length of the wall (Figures 5.5 and 5.6). Neither the UME or the HU describe the feature in detail, but it does appear in the HU’s list of walls for the area and is drawn on the plan as though it were manufactured out of mudbrick. According to the elevations provided in the lists of loci and walls, the top of this mudbrick installation was about 32 cm above the stone pavement below. It does not seem likely that this feature was a wall, because it does not continue into the next room, appears to be built up against the inside of an exterior wall of the building, and was much thinner than the other walls in Building 1700. It is possible that this mudbrick installation was a dais or support for a bed, as the location, material, width, length, and height are all similar or identical to the examples in the bedrooms of Egyptian houses of the New Kingdom.

Further evidence that the northeastern corner room (UME 1718) was an Egyptian-bedroom might arrive from the aforementioned room to the south (UME 1224), which could either be a kitchen or lavatory for Building 1700 (Figure 5.5). If this chamber functioned as a kitchen, its location in the interior of the house would directly contrast with the kitchens of Egyptian anteroom villas, which were almost always positioned outside of the structure in the courtyard. When inside large villas, the kitchens were usually in the corner of the residence, rectangular-shaped, and contained a hearth and/or oven. In contrast, the chamber (UME 1224) in question of Building 1700 was located in the center of the rear section, was square-shaped, and
contained a spinning bowl and an amulet, both of which belong to categories of items not discovered in Egyptian kitchens. On the other hand, the plan of this room mimics those of lavatories in large Egyptian villas, where the internal segregated area functioned as a bathroom. If this was a bathroom, its location next to the bedroom would also mimic the layout of anteroom and four-sided villas in Egypt in the New Kingdom.

Since the room just described does not appear to be a kitchen, and no other rooms inside of Building 1700 contained a hearth or an oven, the next obvious location to investigate would be in the courtyard at the front of the residence, where the Egyptian kitchens of anteroom villas were typically positioned. This area was split into three loci (UME 1584, 1585, and 1588), including the proposed exterior antechamber of Building 1700, by the UME and was not re-excavated by the HU (Figures 5.5 and 5.7). Pottery and objects discovered in these three loci demonstrate that the space functioned as a cooking, spinning, and work area, similar the courtyards of large Egyptian residences. Over 30 vessels were discovered in this enclosure, consisting of both open and closed forms, including two cooking pots and a two-piece stand used as a brazier. These vessels most likely illustrate that at least part of the space was dedicated to the cooking and preparing of food.

On the UME’s plan, the northwestern corner of the enclosure is separated off by at least one partition wall, creating a rectangular-shaped (about 2.5 x 5 m) space (UME 1588) (Figure 5.5). In this space are two undesignated features comprised of a 1.5 m diameter circle situated in the center of the chamber and a rounded (about 0.75 x 1 m) feature in the northwestern corner. The central feature is too large to be a hearth or an oven and is probably a later intrusive pit, however, the dimensions and shape of the corner feature are similar to those of ovens in Egyptian houses, as is its location in the corner of a segregated space associated with cooking.
and food preparation. Therefore, it is possible that the courtyard of Building 1700 contained an Egyptian-style kitchen space, which included a segregated area (UME 1588) with an oven in the corner.

The rear area of Building 1500, whose layout corresponds to an Egyptian four-sided villa, contained at least seven rooms (Figures 5.3 and 5.4). One of these rooms in particular has similar features to the bedrooms of large villas in Egypt in the New Kingdom. This chamber (UME 1599-East) is located in the southeastern corner of the structure, is rectangular-shaped (3.9 x 5.5 m), and is one of the most isolated and private chambers in the entire edifice. The only known entrance to the chamber was through a doorway in the eastern wall (HU 48011), where a high-value T-shaped stone threshold had been placed, and in order to reach this room, an individual entering the building would have had to cross seven thresholds and travel through a total of six rooms. The room itself was split in half by a mudbrick partition wall (HU 10929), and against the southern short wall (HU 10937) of the eastern half, a rectangular feature is indicated on the UME’s plan (Figure 5.3). This feature is just over 1 m wide and 2 m long, and runs the entire length of the wall, all of which traits are analogous to the aforementioned bed platforms in Egyptian houses of the New Kingdom.

The eastern half of the room appears to be dedicated to storage, as a 75 cm diameter circular stone installation (HU 10940) was found in the corner of this area. This installation was at least 72 cm deep and was discovered by the UME and also subsequently re-excavated by the HU (Figures 5.3 and 5.4). It is not known what was originally found inside of the feature, as the UME excavated the entire room as one locus, but a total of seven items were found in the chamber. Two Egyptian-style simple bowls with red-painted rims from the room could have been used for dining, as was often the case in bedrooms in Egypt, and a bronze bodkin.
demonstrates that sewing might have occurred in the room, as was also the case in Egyptian bedrooms. Two limestone lids were also found in the chamber and could have belonged to a set of high-value stone vessels, whose contents might have been related to the daily toilette of the occupants.

Two other high-value items from the room (UME 1599-East) were related to personal adornment, consisting of a stone uraeus amulet and a faience plaque engraved with the image of a Canaanite deity. It is possible that all of these high-value items were purposely kept in this chamber because it was the most isolated and private room in Building 1500, as was commonly the practice in Egyptian bedrooms. The location of this room just east of a subdivided chamber that Mazar identified as a lavatory and bathroom also parallels the close distance between bedrooms, lavatories, and bathrooms in large Egyptian residences (Figure 5.4). On the other hand, bedrooms were usually situated quite far from the kitchens of large Egyptian villas, and the kitchen of Building 1500 does appear to be located on the northern and opposite side of the house as the just proposed bedroom in the southern area.

This chamber (UME 1701) had direct access to the proposed central living room of the building, and this was an important trait of Egyptian houses, as the one of the primary uses of the living room was for dining (Figures 5.3 and 5.4). The chamber was rectangular-shaped (3.2 x 4.35 m), the average size of the largest types of Egyptian kitchens, and was entered through a threshold positioned in the corner of the room, offering more privacy to the occupants of the kitchen against the semi-public nature of the living room. A rectangular-shaped (0.75 x 1.2 m) mudbrick feature (HU 88924) was discovered against the western wall of the chamber, and, based on the bottom levels of the surrounding walls, was originally about 40 cm tall (Figure
5.4). According to Mazar, this installation was filled with ash, and the entire beaten earth floor of the chamber was covered with patches of ash, pottery, and bone fragments (2006c: 77-78).

Unfortunately, the HU does not specify which ceramics or bones were discovered in this chamber, and in the locus list, nothing was recorded for the loci associated with the mudbrick installation, floor, or the room in general. The size, shape, and material of the mudbrick feature (HU 88924) closely mimics that of Egyptian bread-ovens or box-hearths. This oven or hearth, along with the ashy fill, pottery, and bone deposits in the room, strongly suggest that the chamber (UME 1701) functioned as a kitchen space for food preparation and cooking. The position of this room immediately east of a chamber (UME 1587) that the HU identified as a staircase also parallels the layout of Egyptian houses, where kitchens and stairways were often located in the same area or even in the same room (Figure 5.4).

The rear section of rooms in Building 350 at Deir el-Balah, whose layout is similar to a four-sided Egyptian villa, was comprised of three chambers (1011, 1055, and 1056), one of which Brandl designated as a bedroom (1056) (2010b: 80) (Figure 5.12). This room (1056), positioned in the southwestern corner of the building, would have been isolated and private, and even more so due to the entrance likely being positioned in the northeastern corner of the room, confining the visibility of the room from the threshold to only a small corner across from the doorway. Furthermore, this doorway led to a corridor (1065) that connected the southwestern corner room (1056) with two smaller chambers (1060 and 1061) to the south, identified as a bathroom and lavatory, two room-types which were also commonly found connected to the bedrooms in large Egyptian villas. On the other hand, the room (1056) does not appear to contain any sort of bed niche or platform, and the only two finds in the room consist of two
ceramic figurines, which do not link the chamber with Egyptian bedrooms, as cultic and low-value objects were rarely found inside these spaces in Egypt.

Only one room in Building 350 contained an object remotely connected with food preparation. This chamber (1055) was located immediately north of the just proposed bedroom (1056) of the structure, and this close proximity between the two starkly contrasts with the far distance between the bedrooms and kitchens of Egyptian four-sided villas of the New Kingdom (Figure 5.12). The objects discovered in this room include a stone knob, flint quernstone, basalt plate, and chunk of copper derivative blue pigment. While the knob, quernstone, and plate can be linked to the storage, grinding, and presentation of foodstuffs, the complete absence of ceramic vessels and the presence of the blue pigment seems to designate the room as more of a storage chamber, which was the original designation for the space provided by Brandl (2010b: 80). Therefore, there is not a single room in Building 350 that can be strongly identified as a kitchen area for cooking or preparing food, and according to Egyptian parallels, this fact presents a resilient impediment in designating the structure as a domestic residence.

The rear section of Building NB in Stratum N-3a at Beth-Shean, which closely resembles the layout of an Egyptian tripartite house, consists of two chambers (Figures 5.8 and 5.10). The room (UME 1738) in the northwestern corner of the building was rectangular-shaped (1.5 x 3.5 m) and could only have been entered through a doorway near the corner of the wall (HU 98431) shared with the central chamber (UME 1739) of the building, as the center of the wall would have been blocked by the three posts originally located there. The form of the room was the preferred shape for bedrooms in Egyptian tripartite houses, and the dimensions correspond to the smaller sized Egyptian bedrooms. Although the corner entrance linking the room with the main
living room of the building contrasts those of large Egyptian villas, this was the most common
doorway position in smaller Egyptian houses, especially those of the tripartite variety.

An Egyptian-style bed-area or platform might have been located in this room (UME 1738), as the HU’s plan shows a rectangular-shaped (0.50 x 1.1 m) feature in the northwestern corner of the chamber, which might correspond to a square-shaped (1.1 x 1.1 m) stone feature located in the same area on the UME’s plan of the building (Figures 5.8 and 5.10). Unfortunately, the HU does not mention this feature anywhere in the text describing Building NB in Stratum N-3a and since it is not labeled with a locus number, no elevations or finds can be associated with the feature. On the other hand, the position, size, and shape of the feature are similar to those of the bed platforms in Egyptian bedrooms.

Furthermore, this feature was not present in the earlier Stratum N-3b version of the building, and like several other aforementioned alterations made to the structure, might reflect a change in the socio-economic status of the owner, who was able to add the high-value stone or mudbrick bed-platform to the newly renovated house (Figures 5.9 and 5.10). The only object listed as coming from the chamber (UME 1738) was a steatite biconical bead, which might correspond to the Egyptian practice of storing high-value items in the isolated and private bedroom space. As with Building 350 above, there does not seem to be a clearly defined kitchen area devoted to cooking and food preparation in Building NB of Stratum N-3a. In Egyptian tripartite houses, kitchens were usually located next to the bedroom in the rear section of the house, but the adjacent chamber (UME 1743-North) to the proposed bedroom is completely devoid of features, pottery, and other objects.

Building 1131 at Deir el-Balah is also similar in layout to Egyptian tripartite houses of the New Kingdom, with two chambers located in the rear area of the structure (Figure 5.13).
Unfortunately, only a small area of one of the rooms was excavated. This rectangular-shaped (1.5 x 2 m) chamber (1064) was located in the southeastern corner of the building and could have been entered from the proposed living room (1131 and 1135) to the north or from the mostly unexcavated room to the east. Two ceramic vessels were discovered in association with a beaten-earth floor in this room, including an Egyptianized simple bowl and a two-handled storage jar. These two finds could be associated with a bedroom or a kitchen in Egyptian tripartite houses. The chamber in the southwestern corner of the house was more square-shaped (2 x 2.1 m) and was also directly connected with the central proposed living room of the building, although it was slightly larger and perhaps a better candidate for a kitchen. As previously mentioned, this room was almost completely unexcavated and so the function remains inconclusive.

The rear area of Building NB in Stratum N-3b at Beth-Shean contains two rooms (HU 10441 and 10442), which are located north of the proposed large dual front-living room (HU 10440), which connects the layout of the structure to an Egyptian three-room house (Figure 5.9). The chamber (HU 10441) in the northwestern corner of the building was rectangular-shaped, with dimensions (1.5 x 3.5 m) measuring among the lower sizes of Egyptian bedrooms, which would be fitting for the smallest type of house. Most of the floor consisted of beaten earth, with the exception of a 75 cm patch of stone pavement that runs the length of the eastern wall of the room. This stone-paved area might have marked a special zone for the bed, which would have been firmly supported by the stones underneath. Items found in the room include a large barrel-shaped krater and an Egyptianized beer jar, both of which could have been associated with secondary functions of the bedroom as a space for storage, dining, and ceramic vessel emplacements, especially since the base of the beer jar was not perforated.
The other room (HU 10442) in the rear area of Building NB in Stratum N-3b also featured a stone pavement, but this flooring covered the entire area of the room, which was square-shaped (1.5 x 1.5 m) (Figure 5.9). The shape and dimensions of this room contrast with those of Egyptian kitchens, even in the smallest three-room houses. On the other hand, the ceramic vessels discovered in the room connect the space with the cooking and preparing of food, including a cooking pot, a storage jar, an Egyptianized simple bowl with a red rim, and an Egyptian-style beer jar with a perforated base. Since the kitchen area of the majority of three-room houses in Egypt in the New Kingdom was located in the large central room at the front of the house, this might have been also been the case for Building NB, especially since a quern emplacement was discovered in the dual front-living room (HU 10440), which perhaps should be relabeled the polyvalent front-living-kitchen room.

6.9 SUMMARY AND CONCLUSION

In this chapter, which comprised the second portion of the study on residential contexts, the elements and features of Buildings 1500 and 1700 at Beth-Shean and Buildings 350 and 1131 at Deir el-Balah presented in the previous chapter were examined entirely from an Egyptian perspective and through the framework of cultural identity theory. First, the intellectual history of previous scholarship on the identity of the occupants and the function of the five Levantine structures was provided, which included aspects of ethnicity, status, gender, age, and occupation, as well as a discussion of architectural plan and construction techniques. Following this section, a thorough examination of the five types of Egyptian domestic architecture of the New Kingdom occurred, including anteroom villas, four-sided villas, three-sided houses, tripartite houses, and
three-room houses, followed by close analyses of each of the five buildings at Beth-Shean and Deir el-Balah in light of Egyptian dogma and praxis in regards to residences.

This included a side-by-side comparison of these edifices with contemporary houses in Egypt, including aspects related to the socio-economic status and occupation of the owners, the function(s) of the structures, and the locations of comparanda in Egypt. This portion of the study was divided into sections that initially reflected more broad architectural features of the buildings, including the size and layout, position of the main entrance, and the location and function of rooms, and then contracted into an analysis of each individual chamber positioned in the front, middle, and rear sections of the edifices. The discussion of the architectural features of each building included a study of the significance, location, orientation, decorative elements, size, and shape of these features in both Egypt and the Levant. The analyses of the structural divisions of the buildings examined the function of each division, as well as each individual room, and also included a discussion regarding the utilizers of the room (gender, age, socio-economic status, and occupation), the number of rooms in each division, and the shape, size, walls, decoration, thresholds, floors, furnishings, roofing, subdivisions, and pottery and objects discovered inside.

For the larger types of Egyptian houses, the living room was consistently located in the center of the building and surrounded by rooms on all four sides, and was a semi-public space, where the owner of the house would entertain guests while seated on a dais directly across from the main entrance to the room, which was typically located in the center of the wall and contained a high-status stone lintel and engraved doorjambs. Other high-status stone features in these rooms include stone columns and lustration slabs. Similar chambers were examined in the large Egyptian-style Buildings 1500 and 1700 at Beth-Shean in this study, and these rooms were
not only centralized, but the focal chamber of the former structure also had a centered entrance with engraved stone elements, stone column bases, and a lustration slab, while that of the latter structure may have contained a dais against the back wall of the room.

In smaller Egyptian houses, the focal room was not surrounded and protected on all four sides, but was typically connected to almost every other room in the structure, as the chamber was the focus of all domestic activities. Another difference arrives from the location of the main entrance to the room, which was most commonly positioned closer to a corner rather than the midpoint of the wall, which is in stark contrast to the central main doorways of the living rooms in the large villas, and is usually attributed to the idea that men of a lower socio-economic status spent most of the day outside of the residence, leaving the domicile to the female household members, who spent most of their time in the living room performing domestic activities, necessitating a more private entryway to the chamber. Many of the features and objects in the focal rooms of the smaller houses show that many female gendered-activities took place in these chambers, for example, grinding, animal husbandry, and spinning. Grindstones, quern emplacements, spinning bowls, spindle whorls, and needles were discovered in several of the small Egyptian-style houses in this project, including both strata of Building NB at Beth Shean and Building 1131 at Deir el-Balah. The off-center position of the entrance to the focal rooms of these structures also paralleled those in Egypt.

The research presented in this chapter not only provided detailed analyses of the New Kingdom Egyptian and Late Bronze Age and early Iron Age Levantine residential data sets, but also incorporated a progressing account of the implications and results of these analyses. The investigation of the buildings at Beth-Shean and Deir el-Balah from an Egyptian viewpoint and through the application of cultural identity theory analyzed how a New Kingdom Egyptian
would have functioned as a resident in these structures, and how similarities or variations
between these buildings and the houses in the Egyptian homeland would have determined or
affected life abroad in Canaan.
CHAPTER SEVEN. MATERIAL CONTEXT: THE EGYPTIAN AND EGYPTIANIZED CERAMIC ASSEMBLAGE AT JAFFA

7.1 INTRODUCTION

7.1.1 Introduction

The third case study in this project focuses on the Egyptian and Egyptianized ceramic assemblage from Jaffa, which begins with a descriptive presentation of the material, including a discussion of the corpus in terms of fabric, temper, firing, and manufacturing techniques, such as secondary trimming, string-cutting, two-step formation, perforation, rope-drying, and mass production.

A detailed typology of the Egyptian and Egyptianized ceramic assemblage from Jacob Kaplan’s in Jaffa follows, which includes simple bowls, large bowls, carinated bowls, flowerpots, small ovoid jars, slender ovoid jars, broad ovoid jars, short-necked ovoid jars, carinated jars, short-necked storage jars, and tall-necked storage jars. Each of these types is described according to the associated form, dimensions, manufacturing techniques, surface treatments, and chronological extent, and then systematically analyzed in view of comparanda from Egypt, as well as other sites in the Levant, including Beth-Shean and Deir el-Balah, which allow for an inter-regional comparison and evaluation. The remaining portion of the study is devoted to examining the function of these vessels, which first occurs through a collated review of previous scholarship that has discussed the purpose of Egyptian and Egyptianized assemblages at other Levantine sites.
This chapter concludes with a view of the material at Jaffa from an Egyptian perspective and under the lens of cultural identity theory, which analyzes and proposes a function and special significance of these specific Egyptian and Egyptian-style vessel types in the Levant at Jaffa.

7.1.2 Excavation and Publication History

All of the vessels in the Egyptian and Egyptianized assemblage from Jaffa that are analyzed in this chapter were discovered during Jacob Kaplan’s excavations in Area A, which is situated on the southern portion of the mound (Figure 7.1). This area was initially excavated under the direction of Jacob Kaplan between 1955 and 1974, and two decades later, excavations were renewed in 1997 and 1999 by Zeev Herzog on behalf of Tel Aviv University Institute of Archaeology (Herzog 2008: 1791; Peilstöcker 2011). The results of these excavations were published in a few preliminary reports and overviews of the material and stratigraphy (Herzog 2008; Kaplan 1959, 1972; Kaplan and Ritter-Kaplan 1993; Sweeney 2003).

The Jaffa Cultural Heritage Project (JCHP), which was established in 2007 under the direction of Aaron A. Burke and Martin Peilstöcker, has undertaken the task of not only publishing the archaeological material from Kaplan’s excavations, but also performing a thorough scientific analysis of the stratigraphy and complex history of the site (Burke et al. in prep.; Burke and Lords 2010; Burke, Peilstöcker, and Pierce in prep.; Peilstöcker and Burke 2011). The directors of the JCHP have graciously granted access to the corpus of Egyptian and Egyptianized material from Kaplan’s excavations in Jaffa for analysis and publication.95

95 A revised and expanded version of this chapter will appear in Burke, Peilstöcker, and Pierce in prep.
Figure 7.1: Excavated Areas at Jaffa
(Courtesy of the Jaffa Cultural Heritage Project)
7.1.3 Stratigraphy and Chronology

Three relevant strata (JCHP Phases 3a-4b and Kaplan Levels VI-IV) in Area A provide contexts for the Egyptian and Egyptianized corpus from Jaffa. Kaplan divided the Late Bronze Age remains encountered in Area A into Levels VI (Late Bronze Age I), V (Late Bronze Age IIA), and IVA and B (Late Bronze Age IIB) (Kaplan and Ritter-Kaplan 1993). In Level VI, Kaplan found the remains of walls, floors, and a pit that contained fragments of late Middle Bronze Age II and early Late Bronze Age I pottery (Locus 300) (Kaplan and Ritter-Kaplan 1993: 657). The non-monumental architecture of Level V consisted of sections of walls and what Kaplan designated as a “stone silo,” (Locus 306) which he dated to the Amarna Period (Kaplan 1972: 79; Kaplan and Ritter-Kaplan 1993: 656-57).

In Level IV, the central feature of Kaplan’s fieldwork in the southern portion of Area A was comprised of the remains of a monumental gateway engraved with the full titulary of Ramses II (Level IVB), and subsequently re-used as curb stones for a later gate (Level IVA). In addition to the deposition of the inscribed blocks and the destruction debris, these gates are distinguished by the color of the mudbricks, as well as their inclusions. While the earlier gate was constructed of red-orange bricks that were devoid of artifacts, the builders of the later gate used ash and occupational debris as mudbrick material, which resulted in bricks of a gray color (Kaplan and Ritter-Kaplan 1993: 656; Burke et al. in prep.). Subsequent re-construction and maintenance of the gate, which employed the gray mudbricks (Late Bronze Age IIA-B, Phase 96 Locus designations noted here are the result of work by the Jaffa Cultural Heritage Project and do not appear in Kaplan’s publications.

97 Kaplan originally assigned the first version of the Ramses II gateway to Stratum V and the subsequent gate with the engraved blocks in secondary use to Stratum IV (1972: 81-82). Later synthetic treatments divided Level IV into two phases, based on the destruction and re-use of the gate elements, and discussed only a few architectural features south of the gate in relation to Level V (Kaplan and Kaplan 1976; Kaplan and Ritter-Kaplan 1993).
3b, Kaplan Level IVA), witnessed the installation of the Ramses II gateway façade, as well as another destruction that prompted additional repairs to the structure and passageway (late Late Bronze Age IIB, Phase 3a) (Burke et al. in prep.).

Kaplan’s stratigraphy has been thoroughly examined for publication and greatly refined as a result of the ongoing JCHP excavations in Kaplan’s Area A (Burke et al. in prep.). These excavations indicate that the monumental gateway exhibits four phases of construction, destruction, and repair (Phases 3a-4b), with correlations to architecture south of the gate. No observable destruction levels separate the pre-Egyptian phase at Jaffa (Late Bronze Age IA, Kaplan Level VIb) from the later levels, in which Egyptian and Egyptianized pottery dominates the ceramic corpus recovered during Kaplan’s excavations, although this does not preclude the likelihood of a destruction to the earliest phase of the gate (Late Bronze Age IB, Phase 4b) that necessitated the repairs and construction marking the succeeding phase of gate use (Late Bronze Age IIA, Phase 4a).

Located south of the gate, the destruction debris (Loci 304, 308, 309, 318, and 319), from which the bulk of the pottery in this study originates, corresponds to Phase 4a of the gateway (Kaplan Level IVB). This phase ended in a massive conflagration that resulted in both the demolition of the gate complex and the structures to its south toward the mid-14th century BCE (Figure 7.2; Burke et al. in prep.). While some of the vessels within the Egyptianized corpus are stylistically dated to the Late Bronze Age IB, their presence in the Late Bronze Age IIA assemblage is understandable given the likelihood that the assemblage functioned from the late 15th through the early 14th centuries (Burke et al. in prep.).

98 Kaplan noted that earlier wares from these levels south of the gate included Cypriot Monochrome, Base Ring I, and vessels painted with bichrome decoration (1960: 122).
Figure 7.2: Architectural Plan of the Monumental Gate (Phase 4a) and Architecture to the North and South. Note the location of Loci 308, 309, and 310 in Squares H9-K10. (Courtesy of the Jaffa Cultural Heritage Project)
The area immediately south of the gate has been identified as a kitchen serving Jaffa’s Egyptian garrison (Burke and Lords 2010: 19, 25; Burke and Mandell 2011: 268-69; Burke et al. in prep.). This identification is based on the plethora of ceramic forms found in this narrow exposure (5 x 10 m in extent), which includes vessels for food preparation, consumption, and storage (Burke et al. in prep: Table 2). In addition, Kaplan uncovered a pit with vessels in situ that might have been used as an open-fire kiln, wasters, and part of a potter’s wheel within this food preparation complex, which demonstrates an association between ceramic production and foodways (Burke and Lords 2010: 22-24, Figs. 17-22; Burke et al. in prep.). The number of restorable vessels and the deposition of the finds in this kitchen complex, especially the pottery left within the open-firing pit, testify to the sudden destruction of both the Phase 4a gate and this area.

In sum, while Kaplan’s stratigraphy provides a neat tripartite division of Jaffa’s architecture and pottery, which corresponds to the periodization of the Late Bronze Age, further revision of the stratigraphic sequence by the JCHP reveals that the complexity of the construction and maintenance of the gateway in light of hostile actions (see Burke et al. in prep. for a discussion of the gate in relation to insurgency). A complete reevaluation of the stratigraphy and material from the Ramses II gate portion of Area A, including a revised chronology, is in preparation (Burke, Peilstöcker, and Pierce in prep.). An analysis of the assemblage according to parallels from Egypt and Canaan provides stylistic dates ranging from the Late Bronze Age IB to the Iron Age IA, which corroborates the chronology of the context and relative strata of the Egyptian and Egyptian-style ceramic corpus at Jaffa.
7.1.4 The Assemblage

The Egyptian and Egyptianized ceramic assemblage from Jaffa is one of the largest early collections of this material corpus in the southern Levant. The pottery from Jaffa includes Egyptian forms that were locally produced in Canaan, as well as vessels imported from Egypt. The locally-produced group, commonly designated as Egyptianized or Egyptian-style, forms the bulk of the assemblage and consists of vessels of Egyptian form, which were manufactured locally utilizing technology commonly associated with Egyptian pottery. This study utilizes the three-tiered system developed by Mario Martin for identifying Egyptian-style pottery in the Levant, including characteristics related to the morphology (vessel shape), technology (fabric, formation techniques, decoration, and firing), and context of ceramics (Martin 2011: 23). The imported group of pottery from Jaffa is produced from Egyptian marl clays, which are typical for these vessel types in Egypt. The quantity of imported wares correlates with other coastal sites in the southern Levant with Egyptian and Egyptianized ceramic assemblages, for example, Ashkelon (Martin 2008: 245, Figs. 10-12) and Tel Mor (Martin and Barako 2007: 151, Fig. 4.9), where a higher number of imported vessels are discovered than at sites further inland, for example, Beth-Shean (James and McGovern 1993: 239; Martin 2005: 314-319; 2009: 462) and Tel Sera' (Martin 2011: 223-224, Fig. 116).

The assemblage at Jaffa includes many forms also found at other sites with Egyptian and Egyptianized pottery in the southern Levant, as well as a few rare and unique types. The locally-produced Egyptianized group is comprised of both open and closed forms. Open forms include

99 Many of the exemplars discussed below include complete or restorable vessels found in the debris loci south of the gate, which is believed to have constituted a garrison kitchen. Some items within the overall Egyptianized corpus from Kaplan’s excavations in Jaffa were found in other contexts that were not documented as well as those from the area south of the gate. While these more fragmentary pieces may come from loci currently unknown, an analysis of these vessels still contributes to the overall discussion of Egyptianized pottery at Jaffa.

100 I would like to thank Mario Martin for his preliminary assessment of several of the Egyptian and Egyptian-style vessels at Jaffa, and for his fruitful discussion of the assemblage in general.
simple bowls, large bowls, carinated bowls, and flowerpots (Figure 7.3:1-8). Simple bowls, which are the most ubiquitous type in the corpus, have a plain or everted rim, which distinguishes two basic subgroups. The large bowls are also separated according to rim-type, which can be either everted, ledged, or ridged. Carinated bowls and flowerpots are the two remaining open forms. Closed forms in the assemblage consist of both locally-produced and imported vessels (Figures 7.3:9 and 7.4:1-6). The former group includes ovoid jars, which are separated into small, slender, and short-necked varieties, while the latter group consists of carinated jars and storage jars, which are categorized as tall-necked or short-necked.

In the following section, an overview of fabric types and manufacturing techniques common across most of the locally-produced Egyptianized assemblage at Jaffa is described. More detailed information related to fabric and technology will be provided under each vessel type, as well as a comprehensive typology and description of the morphology, measurements, decoration, surface treatment, stylistic dating, and parallels from Egypt and Canaan. A separate section describing previous theories regarding the associated use and function of several individual vessel types follows the ceramic typology, along with a new proposed function for the Egyptianized assemblage as a whole.

7.2 FABRIC AND TECHNOLOGY OVERVIEW

7.2.1 Fabric

According to the system traditionally used in designating different fabric types in Egypt, two main groups of natural clays are used in the production of pottery: Nile and marl (Nordström 1986: 629-634). The former group, also called Nile alluvium or Nile silt, are composed of
Figure 7.3: Late Bronze Age and early Iron Age Egyptian and Egyptianized Open Forms and Carinated Jar at Jaffa

<table>
<thead>
<tr>
<th>Registration Number</th>
<th>Context</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MHA 1936</td>
<td>Sq. D8</td>
<td>Simple bowl with plain rim</td>
</tr>
<tr>
<td>2 MHA 1935</td>
<td>Sq. F7</td>
<td>Simple bowl with red painted everted rim</td>
</tr>
<tr>
<td>3 MHA 5322</td>
<td>Sq. G6, L.304</td>
<td>Simple bowl with splash-decoration</td>
</tr>
<tr>
<td>4 MHA 4838</td>
<td>Sq. F6, L.318</td>
<td>Large bowl with ledged rim</td>
</tr>
<tr>
<td>5 MHA 2301</td>
<td>Sq. G6, L.304</td>
<td>Large bowl with plain rim and perforated base</td>
</tr>
<tr>
<td>6 MHA 1938</td>
<td>Sq. I7</td>
<td>Large bowl with ridged rim</td>
</tr>
<tr>
<td>7 MHA 5279</td>
<td>Sq. F6, L.309</td>
<td>Carinated bowl</td>
</tr>
<tr>
<td>8 MHA 2238</td>
<td>Sq. G6, L.304</td>
<td>Flowerpot</td>
</tr>
<tr>
<td>9 MHA 2297</td>
<td>Sq. G6, L.308</td>
<td>Carinated jar</td>
</tr>
</tbody>
</table>
Figure 7.4: Late Bronze Age and early Iron Age Egyptian and Egyptianized Closed Forms at Jaffa

<table>
<thead>
<tr>
<th>Registration Number</th>
<th>Context</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 MHA 5269</td>
<td>Sq. F6, L.318</td>
<td>Small ovoid jar</td>
</tr>
<tr>
<td>2 MHA 2298</td>
<td>Sq. G6, L.308</td>
<td>Slender ovoid jar</td>
</tr>
<tr>
<td>3 MHA 4232</td>
<td>Sq. H3</td>
<td>Short-necked ovoid jar</td>
</tr>
<tr>
<td>4 MHA 5286</td>
<td>Sq. G6, L.308</td>
<td>Broad ovoid jar</td>
</tr>
<tr>
<td>5 MHA 5255</td>
<td>Sq. F6, L.318</td>
<td>Tall-necked storage jar</td>
</tr>
<tr>
<td>6 MHA 2303</td>
<td>Sq. G6, L.308</td>
<td>Short-necked storage jar</td>
</tr>
</tbody>
</table>
elements carried by Nile waters and usually consist of large amounts of silica, while the latter, also called desert-clay or.tafla,. are clays originating from limestone characterized by calcium carbonate (Aston 1998: 35-38; Nordström and Bourriau 1993). In Egypt, the choice of clay used to manufacture pottery is directly related to the shape and function of each vessel type. Nile clay types are mainly utilized for utilitarian household wares, while the clays in the marl family are reserved for fine table-ware and the transport and storage of commodities.

Locally-produced Egyptianized vessels from Jaffa only reproduce characteristic Egyptian Nile clay pottery forms, a pattern also established at other southern Levantine sites like Aphek, Beth-Shean, Tel Mor, and Tel Sera‘ (Martin 2004: 274-277; 2011: 24). While some of the Egyptian-style vessel types can be tied to an Egyptian tradition based solely on form as, for example, flowerpots or ovoid jars, other ceramics like simple bowls are of a basic shape that is also prevalent in the Canaanite pottery corpus and cannot be readily distinguished based only on morphology (Figures 7.3:1-3, 8 and 7.4:1-4). Therefore, other Egyptianizing factors, like fabric characteristics, manufacturing techniques, and surface treatments must also be taken into consideration in order to truly differentiate between Egyptianized and Canaanite pottery.

An examination of the fabric of Egyptianized vessels in the southern Levant illustrates that certain local clays were specifically chosen based on properties that imitate those of typical Egyptian Nile clays. Petrographic studies performed at Aphek have even demonstrated that the clay used for Egyptianized vessels came from a different location than that utilized for the Canaanite assemblage (Martin, Gadot, and Goren 2009: 362). This is also the case at Jaffa, where a microscopic study of the colors, sections, densities, temper, and inclusions of Egyptian-style pottery appeared visually different from the Canaanite assemblage. Nile clays in Egypt are naturally ferruginous and siliceous, which causes them to fire to a reddish or reddish-brown
surface color (Aston 1998: 61-63). The fabric of Egyptian-style vessels in Jaffa range in shades from light red (Munsell 2.5YR 6/6) to strong brown (Munsell 7.5YR 5/6), while those in the Canaanite assemblage are much paler in complexion, with overtly cream and yellow undertones. The Canaanite fabrics also tend to be denser and are commonly marked by quartz and limestone inclusions. Other clear visual distinctions between the fabric of the Egyptian-style and Canaanite groups, such as temper and core, are directly related to manufacturing techniques commonly associated with an Egyptian pottery tradition.

7.2.2 Temper

All of the open forms in the Egyptian-style assemblage from Jaffa are marked in appearance by a large amount of organic temper in the form of chopped straw or animal dung with vegetal inclusions, which are clearly visible to the naked eye in two forms (see Figure 7.3:1-8). Intact remnants of chopped straw in the fabric appear as whitish-yellow fibers on the surface and in the section of the vessel. However, if the straw or vegetal material has been fully combusted during the firing process, elongated burnt-out cavities are all that remain, giving the fabric an especially porous matrix. In Egypt, the addition of organic matter in the form of chopped straw or animal dung in large amounts is a characteristic property of pottery manufactured from Nile clays.

The addition of temper to clay was advantageous for a number of reasons, many of which made the pottery ideal for mass production (Arnold 1993: 105). Incorporating straw increases the plasticity of the clay, which makes it more manageable to mold on the wheel, as well as permitting a quicker and more regular drying procedure. The inclusion of temper was also valuable to the firing process, as the porosity of straw allows for a freer penetration of hot gases
through the vessel wall, which permits steam to escape from the vessel to prevent bursting, and allows for shorter and faster firing, all of which result in a more uniformly fired product (Arnold 1993: 105).

A large quantity of straw temper is also commonly found in Egyptianized vessels from other sites in the southern Levant, including Aphek, Ashkelon, Beth-Shean, Deir el-Balah, Tel Mor, and Tel Sera‘ (Killebrew 1998: 273; Martin 2004: 274-277; 2008: 262; 2009: 438-439; Martin, Gadot, and Goren 2009: 376). However, this technique cannot be considered purely Egyptian in use, as a few Canaanite forms, especially bowls and kraters, are also produced from fabrics containing organic temper. On the other hand, studies performed on Egyptianized and Canaanite pottery with straw temper from the sites of Ashkelon, Beth-Shean, and Tel Sera‘, have demonstrated that the technique should be considered an Egyptian convention that spread to or influenced the Canaanite pottery tradition (James and McGovern 1993: 245; Martin 2006: 141; 2008: 263; 2009: 439). First, Egyptian-style vessels always contain a larger amount of straw temper than Canaanite vessels, both in the frequency of vessel types and the quantity of straw (Martin 2011: 98). Second, this type of temper is rare in Canaanite pottery discovered in early Late Bronze Age levels prior to the appearance of Egyptianized wares, but gradually increases throughout the 13th century BCE and toward the 12th century BCE, which coincides with an increasing Egyptian presence and influence.

7.2.3 Firing

In Egypt, pottery manufactured from Nile clays tends to be fired at lower temperatures, ranging from 600-800°C (Aston 1998: 37). Egyptian-style pottery in the southern Levant appears to mimic this procedure, evidence of which is visible on the surface and in the section of
the vessels. A low firing temperature can be indicated by the incomplete combustion of organic material in the fabric, which in the case of straw, appears as the whitish-yellow fibers described above. In an oxidizing atmosphere, organic matter usually combusts between 380-600°C, corresponding to the lowest temperatures typically utilized in Egypt for Nile clay ceramics (Nordström and Bourriau 1993: 155). The presence of thick dark cores in the section are another indicator that not all of the organic temper was fully oxidized (Rice 1987: 88). The majority of the Egyptian-style vessels at Jaffa with organic temper contained both combusted and non-combusted straw remains, with cores ranging in color from dark bluish gray (Munsell GLEY2 4/10B) to black (Munsell Y 2/1) representing at least 50% of the section, all of which suggests a lower firing temperature.101 Similar findings appear at Aphek, Beth-Shean, and Tel Mor (Cohen-Weinberger 1998: 409; Martin 2009: 439; Martin and Barako 2007: 133; Martin, Gadot, and Goren 2009: 376). As with the addition of straw temper, the practice of utilizing low firing temperatures increases in popularity over time, and it has been postulated that this Egyptian technique had a direct influence on the local Canaanite pottery industry (James and McGovern 1993: 245).

7.2.4 Other Technologies

Other types of manufacturing techniques commonly associated with an Egyptian pottery tradition are also found among the Egyptian-style pottery assemblage at Jaffa, but tend to be restricted to specific vessel types. Examples of these techniques include secondary trimming, string-cutting, two-step formation, perforation, rope-drying, as well as features related to an

101 Possible evidence for firing techniques at Jaffa arrives from the discovery of 20 Egyptianized flowerpots in the aforementioned pit that appears to be an open kiln filled with stacked vessels (Locus 304), where six Egyptian-style bowls were also discovered (Burke and Lords 2010: 18-24). Other finds related to pottery production at the site include part of a potter’s wheel and at least eight Egyptian-style large bowls that are kiln wasters, with warped rims and walls, brittle and cracked fabric, and discoloration (Burke and Lords 2010: 22-24).
overall coarse appearance, like fingerprints, superfluous clay, an uneven stance, and warped walls. Certain surface treatments and decorative elements found on the Egyptianized pottery from Jaffa are also tied to certain forms found in typical Egyptian pottery production. These characteristics, as well as the manufacturing techniques just listed, will be described in detail for each vessel type that bears the characteristic. It is important to note that many of the technologies mentioned in this paragraph, as well as aspects regarding fabric, temper, and firing described above, are also found within the Canaanite ceramic repertoire.

Therefore, each of these characteristics taken in isolation cannot truly be considered indicators of Egyptian technological practices, however, when several of these traits appear together on one vessel type, a case for a strong affinity to an Egyptian tradition can be argued. For this reason it has been suggested that the craftsmen producing Egyptian-style pottery in the southern Levant were not local Canaanites emulating Egyptian Nile clay wares, a variety not considered prestige or high-value, but rather Egyptian potters with a training and knowledge of the forms, fabrics, tempers, firing procedures, manufacturing techniques, surface treatments, and decorative elements of the New Kingdom Egyptian pottery industry (Cohen-Weinberger 1998: 411; James and McGovern 1993: 244-245; Killebrew 1998: 275; 2005: 79-80; Martin 2009: 438; 2011: 21; Martin, Gadot, and Goren 2009: 377).

For the Egyptianized ceramic corpus at Beth-Shean, Robert Mullins has refined this theory even further, proposing that Egyptian potters may have been present at the site in the Late Bronze Age IIB and later, but for the earlier periods (Late Bronze Age I-IIA), the vessels were being produced by Canaanites, who were emulating Egyptian forms (2007: 442). This theory is based on the similarities between Egyptian-style and Canaanite pottery at Beth-Shean in the Late Bronze Age I-IIA in terms of fabric, temper, firing, and technological characteristics, in contrast
to the differences in these traits between the two assemblages in later periods at the site (Mullins 2007: 442).

Even though the majority of vessels in the Egyptian and Egyptianized ceramic corpus at Jaffa are linked to an earlier period (Late Bronze Age I-IIA), the assemblage is related more to the later vessels at Beth-Shean in terms of the manufacturing techniques related above. According to Mullin’s theory, these similarities would demonstrate that the Egyptian-style vessels at Jaffa were produced by Egyptian potters, unlike those of the contemporary period at Beth-Shean. The differences between the use of Egyptian or Canaanite potters for the production of Egyptianized assemblages might be due to the geographical location and distance between the two sites (R. Mullins 2013, pers. comm., 22 May).

This phenomenon might be related to the patterns among the burial objects discussed in chapter four, where, for example, it was demonstrated that the tombs at the southern coastal site of Deir el-Balah contained more items manufactured out of Egyptian materials than those at the northern inland site of Beth-Shean. Therefore, if Egyptians were buried in the cemeteries at Beth-Shean and Deir el-Balah, it appears that their first choice for materials matched those of the homeland (carnelian, gold, and faience) and it is possible that these items were most likely also manufactured in the homeland. However, if they were not able to acquire these materials or goods from Egypt, they substituted them for more readily available local or locally-produced items of local materials (bronze, silver, onyx, etc.). Perhaps the Egyptians at the central coastal site of Jaffa had better access to Egyptian potters, who followed Egyptian production techniques more closely, than those at the northern inland site of Beth-Shean, who utilized local Canaanite craftsmen instead.
7.3 TYPOLOGY

7.3.1 Open Forms (Figure 7.3:1-8)

7.3.1.1 Simple Bowls (Figure 7.3:1-3)

Egyptianized simple bowls are also referred to as “shallow bowls, saucer bowls, V-shaped bowls, or, more generally, coarse ware bowls” and are usually divided into two types: those with a plain rim and those with an everted, or otherwise known as flaring or splayed rim (Martin and Barako 2007: 134). The former group, which makes up the majority (79%, n=38) of the simple bowls at Jaffa, includes vessels with rounded or, rarely, straight walls of a thin to medium thickness, while the walls of the examples with everted rims are mostly straight or slightly curved (MHA 1935 and 1936; Figure 7.3:1-2) (see also Burke and Lords 2010: 14-16).

The depth of both vessel types at Jaffa spans from shallow to medium, with heights ranging from 2.7 cm to 7.5 cm, averaging about 5.9 cm. The plain rims of simple bowls are usually rounded and slightly tapered, but are sometimes pointed, and rarely squared-off (MHA 1936; Figure 7.3:1). Rim diameters fall between 9.3 cm and 22.3 cm, with an average around 19.1 cm. The examples with an everted rim tend to have larger diameters averaging about 21.8 cm, with the full range spanning from 16.0 cm to 25.0 cm (MHA 1935; Figure 7.3:2). The majority (85%, n=34) of all Egyptian-style simple bowls with an intact base at Jaffa have a flat or flattened base, four of the smaller examples are disc-based, which also tends to correspond with a splash-decoration (described below), and two bowls are rounded on the bottom. Simple bowls are the
most ubiquitous Egyptianized vessel type at Jaffa, making up about 37% (n=57) of the total corpus.102

Simple bowls with a plain or everted rim are either undecorated or covered with three varieties of painted decoration. Decoration appears on 54% (n=31) of the simple bowls at Jaffa, with the second most common ornamentation being a band of red paint brushed or wiped onto the interior and/or exterior rim of the vessel, which appears on 42% (n=13) of the decorated bowls (MHA 1935; \textbf{Figure} 7.3:2). Bowls with this form of decoration are commonly called “lipstick bowls.” In Egypt, this form of decoration was applied with a brush or finger, and brush-strokes are visible on several of the examples from Jaffa (Aston 1999: 18). The color of the paint ranges from pale red (Munsell 10R 6/4) to red (Munsell 10R 4/6), with the majority falling into the latter category. While all of the vessels with this type of decoration are painted on the interior portion of the rim, about half also have paint extending to the exterior part of the rim.

The most popular form of decoration on simple bowls at Jaffa consists of a red-painted rim paired with splashes of the same paint spattered on the interior of the vessel (MHA 5322; \textbf{Figure} 7.3:3). 48% (n=15) of the decorated bowls are painted with these two embellishments, with half of the vessels painted only on the internal side of the rim and the other half on both the interior and exterior portions, similar to the numbers provided above for the red-rimmed bowls without splash decoration. In the past these splotches of red paint tended to be overlooked as a genuine decorative element and were instead considered a “mistake” due to carelessness by the potter. Now it is thought that these splashes were deliberately created using a stiff brush (Aston

102 Registration numbers (MHAs): 1812, 1921, 1922, 1924-1930, 1932, 1934-1937, 1939-1941, 2148, 2191, 2194-2196, 2197-2203, 2205, 2206, 2211, 2304, 2307, 2311, 3907, 3914, 4233, 4270, 4710, 4730, 4731, 4775, 5213, 5307, 5322, 5299, 5300, and 5323-5330. The quantity provided here, and elsewhere throughout the chapter for the other vessel types, include both complete and incomplete vessels.
The shades appearing as splash decoration are composed of either a weak red (Munsell 10R 5/4) or red (Munsell 10R 5/6). Only three of the simple bowls at Jaffa, all with a plain rim, were adorned with a third and final form of painted decoration, which consists of a red (Munsell 10R 5/6 or 2.5YR 5/6) slip covering the interior of two of the vessels, and both the internal and external surfaces of the third bowl. The few examples at Jaffa correspond with those of other southern Levantine sites like Tel Aphek and Tel Sera‘, where red-slipped bowls are discovered in smaller numbers than at northern sites like Beth-Shean, Tell es-Sa‘idiyeh, Megiddo, Tell Abu Hawam, Tel Dan, and Hazor (Martin 2011: 119). Irregular brush strokes on these vessels illustrate that they were probably being held during decoration, rather than completely submerged in the slip or painted while on the wheel.

Certain physical characteristics of Egyptian-style simple bowls demonstrate that there was a common set of manufacturing techniques used to create these vessels, including those related to mass production, secondary trimming, and string-cutting. The premise that simple bowls were part of mass production is indicated by the large quantity of examples, a high degree of shape and size standardization, and particular traits showcasing a careless manufacture, such as coarse fabric, warped walls, an uneven stance, and unsmoothed wheel marks. Other technologies used to the manufacture simple bowls are also found on other Egyptianized forms and are commonly associated with the Egyptian pottery industry. The presence of wheel marks in the form of horizontal grooves on the bases and exterior bottom half of the bowls is an indicator of secondary trimming or “turning.” This procedure consisted of first forming the bowl on the wheel, letting the vessel dry to a leather-hard state, and then returning the bowl to the wheel upside down, in order to scrape away superfluous clay from the base and lower part of the vessel with a sharp tool. This technique was utilized to manufacture Egyptian pottery beginning
in the 17th Dynasty, but is also found among Canaanite pottery from earlier periods, suggesting that the technique was passed from the southern Levant to Egypt (Arnold 1993: 63, 66; Martin 2011: 109). Many of the simple bowls at Jaffa also have an off-center spiral on the base, which would have formed when the vessel was removed from the wheel by string-cutting.

Although the manufacturing techniques just described are prominent across the Egyptian pottery industry in the New Kingdom, they are also a trait of certain Levantine ceramics, and therefore cannot be considered an isolated indicator of an Egyptianized ware (Arnold 1993: 63, 66). The overall shape of simple bowls is also so basic that it cannot be used as a sole marker of an Egyptian-style vessel. However, particular components of the form can give slight clues as to the style of the bowl, with most Egyptian-style bowls having a flat base, while those in the Canaanite tradition are usually set on an elevated disc- or ring-base, with incurved and internally thickened rims being popular on Canaanite bowls, in strong contrast to the plain or everted rims of Egyptian-style examples (Aston 2001: 169). In terms of decoration, although not as widespread as on Egyptianized examples, red-painted rims also appear in the Canaanite tradition, on the other hand, the splash form of decoration is unique to Egypt (Martin 2011: 119-120). While only a few of the above morphological, manufacturing, and decorative characteristics together may not indicate a simple bowl of Egyptian-style, many combined collectively on one vessel, including the fabric, temper, and firing elements discussed in the introduction, along with a certain chronological and geographical setting, can be a strong indicator that a simple bowl was created according to an Egyptian pottery tradition.

As with the Egyptianized corpus at Jaffa, simple bowls form the main component of every Egyptian ceramic assemblage in the New Kingdom, where they are widespread throughout the entire period. Parallels with a plain rim can be found at virtually every New Kingdom site in

Simple bowls with an everted rim were also widespread in Egypt during the New Kingdom, becoming popular towards the end of the period, and peaking in number during the Ramesside Period (Martin 2011: 37). Examples of simple bowls with everted rims can be found at Amarna (Rose 1984: Fig. 10.1:6; 2007: 203-206), Armant (Mond and Meyers 1940: Pl. 51:A2), Tell el-Dab’a (Aston 2001: Figs. 11:1, 13:1), Deir el-Medina (Nagel 1938: Pls. VII-VIII, XV), Elephantine (Aston 1999: Nos. 31, 81-87, 107, 193-195), Gurob (Brunton and Engelbach 1927: Pl. 33; Petrie 1890: Pl. 20:4), Malqata (Hope 1989: Fig. 1:g), Nubia (Holthoer 1977: Pl. 27), Qantir (Aston 1991: Pl. 47: 6, 10; 1997: Pl. 112:9; 1998: Nos. 196, 369, 423, 765, 624, 626, 629, 641, 691-698, 707-717, 722-728, 755-766, 1022, 1023, 1034-1044, 2307, 2389-2395, 2405; Aston and Pusch 1999: nos. 51, 60, 74-77), Saqqara (Aston 1991: Pl. 47:3-6; 1997: Pl. 112:8, 10, 11, 14; 2001: Fig. 6; Bourriau and Aston 1985: Pl. 35:5, 6; Bourriau et al. 2005: 24-25, Fig. 9:47), and Thebes (Aston, Aston, and Brock 1998: Nos. 326, 346; Petrie 1897: Pl. 17:8, 19).
Some morphological and decorative aspects of simple bowls are linked to certain dates in Egypt during the New Kingdom. The popularity of particular types of bases on these vessels changed throughout the period. For example, ring and disc-bases were only common in the first half of the 18th Dynasty, and while flat bases were widespread and round bases were rare across the 18th Dynasty, in the Ramesside Period, round bases appeared in greater quantity and were found in equal numbers with flat bases (Aston 2001: 169). If this stylistic dating sequence is applied to Jaffa, then an 18th Dynasty date would be the most accurate for most of the simple bowls at the site. A few of the bowls would date to the earlier part of the dynasty (disc-based examples), with two examples with rounded-bases possibly from the Ramesside Period, and the majority of the bowls dating across the 18th Dynasty. However, caution must be used in applying this type of comparative stylistic dating to flat bases, because this type was the most popular form of base on Egyptian-style simple bowls across all periods of the Late Bronze Age (with one exception, see Martin 2011: 28). Therefore, only those bowls with disc- and rounded-bases can be stylistically connected to the first half of the 18th Dynasty and the Ramesside Period, respectively.

The popularity of the three forms of decoration on simple bowls also changes throughout the New Kingdom in Egypt. Nevertheless, while red-painted slips and rims are both well-known, simple bowls with a splash-decoration are more uncommon (Aston 1998: 75-77, 220). Simple bowls with red-painted rims appear at the beginning of the 18th Dynasty, but are rare until the reign of Thutmose III, and become more widespread in the Ramesside Period, with a peak in popularity during the 20th Dynasty (Aston 1999: 18; Bourriau 1981a: 74). Therefore, the simple bowls from Jaffa cannot be given a more precise date in the New Kingdom based only on a red-painted rim or slip, due to the general prevalence of these decorative elements, however, the
time-span of the splash-decoration is a great deal more short-lived. Simple bowls embellished with splashes of red paint have only been discovered in Egypt, Nubia, and the Northern Sinai at the sites of Ezbet Helmi, Fadrus, Mendes, Saqqara, and Thebes, and only in contexts dating precisely to the reign of Thutmose III, with a few examples in the Sinai from the subsequent reign of Amenhotep II (Aston 2006). Using this dating criteria, the splash-decorated simple bowls from Jaffa should be dated to the mid-18th Dynasty, which also corresponds to the dates for disc-based simple bowls in Egypt given above, which is the most common base-type of the splash-decorated bowls from Jaffa.

Akin to Egypt and Jaffa, simple bowls form the bulk of every Late Bronze and early Iron Age Egyptian-style assemblage in the southern Levant. Similar examples of Egyptianized simple bowls with plain rims have been discovered at Tell Abu Hawam (Balensi 1980: Pl. 6:5-8), Aphek (Beck and Kochavi 1985: Fig. 2.3; Martin, Gadot, and Goren 2009: Figs. 10.1:6, 7), Ashdod (Dothan and Porath 1993: Figs. 11:1-3, 6-12, 16:1), Ashkelon (Martin 2008: Fig. 3:1-3, 5), Beth-Shean (James 1996: Figs. 49:9, 57:2, 4; James and McGovern 1993: Figs. 8:1-3, 12:8, 9, 13, 41:2, 48:1-10; Martin 2006: 142-144; 2009: 443-444; Mullins 2007: Fig. 5.14; Yadin and Geva 1986: Fig. 22:7), Tel Dan (Martin and Ben-Dov 2007: Fig. 3:1-5, 7), Deir el-Balah (Dothan 1979: 38 Ill. 83; Gould 2010: 12, 14, Fig. 2.1; Killebrew 1998: Ill. III:38:7, 14, 16), Tel Dor (Martin 2011: Pl. 31:7), Tell el-Far‘ah (South) (Duncan 1930: Types 12L4, 12R, 12T4; Starkey and Harding 1932: Pl. LXXXIII), Lachish (Tufnell, Inge and Harding 1940: Pl. 37:25), Megiddo (Loud 1948: Pl. 61:10, 11, 65:6, 68:14), Tel Mor (Martin and Barako 2007: Figs. 4.5:1, 4.6:1-2, 5-13), Tell es-Sa‘idiyeh (Pritchard 1980: Fig. 9.2, 3, 4), and Tel Sera‘ (Oren 1984: Fig. 4:1, 3).

Parallels with an everted rim in the Levant are found at Aphek (Beck and Kochavi 1985: Fig. 2:1, 2), Ashkelon (Martin 2008: Fig. 3:4, 6), Beth-Shean (James and McGovern 1993: Figs.
Although simple bowls are the most common form in the Egyptianized assemblage at Jaffa, they only make up about 37% (n=57) of the total Egyptian and Egyptian-style corpus, while at other sites with Egyptian-style assemblages, including Aphek, Ashkelon, Beth-Shean, Tel Mor, and Tel Sera‘, the percentages are much higher, from 78% to 98% (Martin 2008: 264; 2009: 461; 2011: 24). Such a differentiation in numbers may be due to geographical or chronological differences between the sites, or be related to an overall distinctive function of each site and assemblage.

Egyptian-style simple bowls in the southern Levant most commonly appear in 13th and 12th century BCE contexts, with the majority of the examples with an everted rim belonging to the latter period (Martin 2009: 444). The absence of the everted-rim bowls at sites with an Egyptian-style and Egyptian assemblage has been linked to the presence of Philistines, which is characterized by large amounts of locally produced Mycenaean IIIC pottery (Martin and Barako 2007: 138). Earlier examples of bowls with everted rims from 15th and 14th century BCE strata have so far only been discovered at Beth-Shean, Deir el-Balah, Hazor, Megiddo, and now also at Jaffa, although the dating and classification of the aforementioned sites have been questioned (Killebrew 1998: Ills. II:37:3, 38:12, 13, 15, 17, 42:8; Gould 2010: Fig. 1:9, 12; Martin 2011: 37;
Mullins 2007: Pl. 49:1, 56: 1-2). It has been noted that these earlier vessels are somewhat
dissimilar from the typical everted-rim bowls of 13th and 12th century BCE contexts, in that they
have thicker, slightly ribbed walls, which is also the case for several of the examples from Jaffa
(Martin 2006: 143). Possible reasons for the earlier appearance of these vessels types at Beth-
Shean, Deir el-Balah, and now Jaffa, are linked to the geographic and/or cultural affinity of these
sites to Egypt (Martin and Barako 2007: 138).

While certain stylistic traits of the simple bowls at Jaffa most certainly match exemplars
from the 13th and 12th centuries BCE, others, like the splash-decorated bowls with disc-bases,
must date to the 15th century BCE, making the collection at Jaffa one of the earliest in the
southern Levant. Splash-decorated bowls have been discovered in 15th and 14th century BCE
contexts at Tell el-‘Ajjul, Beth-Shean, Tell el-Far‘ah (S), and Tel Sera‘ (Mullins 2007: 445).
Like those discovered at other sites in the Levant, the splash decoration on bowls at Jaffa is
always accompanied by a red rim.

The other two decorative elements on the simple bowls from Jaffa also appear at other
sites in the southern Levant, where both red-rimmed and red-slipped bowls are discovered in
levels from the 14th century to the 12th century BCE, with an increase in popularity during the
13th and 12th centuries. Despite their widespread occurrence in most sites with an Egyptian-style
assemblage, at certain locations, like Beth-Shean, red-slipped bowls tend to be more prevalent in
earlier periods than red-rimmed versions, with slipped examples disappearing after the Late
Bronze Age IIB, when red-rimmed bowls become more pervasive (Martin 2009: 441-442). Red-
slipped Egyptian-style simple bowls are almost exclusively found in Late Bronze Age IIB
contexts across the Levant, including the sites of Tel Dan, Megiddo, and Tell es-Sa‘idiyyeh
(Martin 2011: 31-32). Like their counterparts at other sites in the Levant, the red-slipped bowls
from Jaffa have plain rims, as well as larger rim (above 16 cm) and base (above 7 cm) diameters and are of a finer workmanship than undecorated simple bowls or those with red rims. In terms of overall decorative styles, both Beth-Shean and Jaffa display similar amounts of decorated versus undecorated simple bowls, with the majority (between 54%-85%) being decorated, whereas the numbers are reversed at other sites, including Aphek, Ashkelon, Tel Mor, and Tel-Sera (Martin 2008: 249; Martin, Gadot, and Goren 2009: 375-376). These differences in numbers have been associated with a local trend at Beth-Shean, but instead could possibly be another illustration of the similarity of an Egyptian cultural affinity between Jaffa and Beth-Shean (Martin 2009: 441).

7.3.1.2 **Large Bowls (Figure 7.3:4-6)**

Large bowls form the second largest group (19%, n=30) in the Egyptianized assemblage at Jaffa. These vessels have straight to slightly curved thick walls and are separated into subtypes based on the shape of the rim, which is either plain/everted, ledged, or ridged. Over half of all of the Egyptianized large bowls have a plain or everted rim, and are related to the simple bowls with the same rim types described above, but have a greater depth, larger rim and base diameters, and many times a perforated base (MHA 2301; **Figure 7.3: 5**). The diameter of large bowls with a plain or everted rim ranges from 29.0 cm to 39.0 cm, with an average size of 33.0 cm. Those with a ledged rim have a similar rim diameter span of 30.8 cm to 40.0 cm, averaging 34.6 cm, which is also the average rim diameter for all three types of Egyptianized large bowls combined (MHA 4838; **Figure 7.3:4**). This rim type is created by folding over and downward the top of the rim so that a 2.5 cm to 5.0 cm (average 3.3 cm) ledge forms. The

103 Registration numbers (MHAs): 1819, 1931, 1938, 2208, 2210, 2212, 2213, 2301, 3903, 4729, 4838, 5130, 5143-5151, 5197, 5198, 5221-5224, 5306, 5318, and 5332.
ridged bowls tend to have the largest diameters, with an average of 38.5 cm, ranging from 33.0 cm to 44.0 cm (MHA 1938; Figure 7.3:6). These vessels have a ridge fashioned below the rim, which can produce anything from a slight bump to a prominent bar-like molding varying in width from 1.1 cm to 1.8 cm, with an average width of 1.4 cm.

The depth of all of the Egyptianized large bowls spans from 8.1 cm to 15.1 cm (average 11.6 cm), with the ledged rim examples representing the shallowest of the group and the ridged rim versions the deepest. All but two of the large bowls have a flat base, which tend to have a smaller average base diameter (10.1 cm) than the two examples with a ring base (14.3 cm). Like the rims, ledged rim bowls tend to have the smallest bases, while the ridged examples have the largest. Exactly half of the flat bases of the large bowls are also perforated, although this quantity is most likely higher due to the number of incomplete examples. Of the flat bases that were pierced, only one of the perforations was completely intact, providing a measurement of 1.9 cm in diameter (MHA 2301; Figure 7.3:5).

Only one of the Egyptianized large bowls from Jaffa is decorated (MHA 1938). This ridged rim vessel has a light red (Munsell 2.5YR 6/6) paint strip running fairly consistently around the interior rim of the bowl, which is also a common decorative form and color for simple bowls (Figure 7.3:6). Other similarities between the Egyptianized large bowls and the simple smaller versions include the manufacturing techniques of secondary trimming and string-cutting, indicated by horizontal grooves on the exterior bottom half of the bowls and an off-center spiral or concentric circle on the base, both of which techniques were described in detail in the section above on simple bowls.

An indicator of a manufacturing technique not found on simple bowls, but present on at least 34% (n=10) of the large bowls from Jaffa are rope or leaf impressions (MHA 1938; Figure
These impressions consist of one or two evenly spaced thin horizontal bands encircling above or on the rim and/or upper part of the exterior walls of the vessel. They most commonly appear on the ridged-rim versions, with half of the examples falling in this group, with the remainder almost evenly split between ledged-rim and plain/everted-rim large bowls. The horizontal bands vary in width from 0.4 mm to 0.6 mm, with an average width of 0.5 mm. Over half (60%, n=6) of vessels with rope or leaf impressions exhibit one band encircling the upper part of the exterior walls of the vessel, with another 30% (n=3) having a single band on or above the rim, and the remaining 20% (n=2) exhibiting two horizontal bands, either both above and below the rim, or both appearing on the body of the vessel.

These marks are not the result of deliberate engraving or scraping with a tool, but rather are the imprints of ropes or thin long leaves, with veins intact, being impressed into the wet clay. It has been suggested that the latter marks are the results of bands of leaves from date palms, wheat, barley, or reeds, with reeds being the most likely candidate due to the size of the depressions (Martin, Gadot, and Goren 2009: 379). These imprints have been linked to the Egyptian practice of tying twined ropes or leaves around the upper part of large unbaked vessels in order to hold them together and prevent deformation during the drying process, which is a hallmark of large bowls in New Kingdom Egypt (Arnold 1993: 91; Aston 1998: 110; Martin 2011: 110). Large bowls with rope or leaf impressions are also commonly found in the southern Levant at sites with Egyptianized assemblages, including Aphek (Martin, Gadot, and Goren 2009: Fig. 10.8), Beth-Shean (Martin 2011: 43, Fig. 58), Tel Dan (Martin and Ben-Dov 2007: Fig. 4:1-3), Deir el-Balah (Beit-Arieh 1985: Fig. 5:13; Gould 2010: 17, Fig. 2.1), Lachish (Tufnell, Inge, and Harding 1985: Fig. 5:13), and Tel Mor (Martin and Barako 2007: Fig. 4.7:6).
The technique of rope-typing large vessels during the drying process is also found in the Canaanite pottery tradition (mostly on kraters) and was initially thought to be the result of direct Egyptian influence, however, it is now believed that both areas developed this technique independently (Martin 2005: 205; 2009: 441; Martin and Barako 2007: 139). Therefore, the presence of rope impressions on a large vessel cannot be used as a sole indicator of Egyptianized pottery, but, as is the case for simple bowls, when a common Egyptian manufacturing trait is combined with other techniques like secondary trimming and string-cutting, as well as those characteristics involving fabric, temper, and firing described in the introduction, a strong affinity with the New Kingdom Egyptian pottery tradition can be established.

These characteristics must especially be taken into consideration as large bowls of this style also appear at sites not exhibiting a strong Egyptian presence or influence (Martin 2011: 41). Morphological and decorative traits of Egyptian-style large bowls can also add to this assessment, as the ridged rim examples do not appear in the Canaanite pottery tradition, where the rims tend to be internally or externally thickened and incurved or slightly ledged, contrasting the rounded or pointed everted and deeply ledged rims of Egyptianized bowls. The chronological and geographical setting of these vessels also plays an important role in this cultural evaluation.

Large bowls with a plain or everted rim are ubiquitous throughout New Kingdom Egypt, especially beginning in the reign of Amenhotep III and continuing throughout the 19th Dynasty, with a peak in popularity in the 20th Dynasty (Aston, Aston, and Brock 1998: 137-214). Sites with comparanda include Amarna (Rose 1984: Fig. 10.1:11; 2007: 197-199, 204-206, 212), Tell el-Dab‘a (Aston 2001: Fig. 11:2); Deir el-Medina (Nagel 1938: Figs. 2:41, 5:13, Pls. 7, 9, 12, 13), Elephantine (Aston 1999: No. 503), Malqata (Hope 1989: 21, Fig. 11), Qantir (Aston 1998: 196-201).
On the other hand, large bowls with ridged or ledged rims are less popular than the everted examples, and only appear in 18th and 19th Dynasty contexts, completely disappearing by the early 20th Dynasty (Aston 2001: 16; Aston, Aston, and Brock 1998: 137-214; Aston and Pusch 1999: 41). Comparanda with ridged or ledged rims can be found at the New Kingdom Egyptian and Nubian sites of Amarna (Peet and Woolley 1923: Pl. 47; Rose 2007: 201-202), Tell el-Dab’a (Aston 2001: Fig. 11:3); Deir el-Medina (Nagel 1938: Pl. 7), Elephantine (Aston 1999: No. 428), Malqata (Hope 1989: 21, Fig. 1), Nubia (Holthoer 1977: Pl. 26), Qantir (Aston 1998: Nos. 333, 428-447, 729; Aston and Pusch 1999: Nos. 31, 32), Saqqara (Bourriau et al. 2005: Fig. 5:10), and Thebes (Aston, Aston, and Ryan 2000: Nos. 14, 42, 43, 46, 47; Petrie 1897: Pl. 17:10).

Corroborating the timeframe for Egyptian examples, large bowls with a plain or everted rim in the southern Levant are the most widespread in the 13th and 12th centuries BCE (Martin 2011: 43). Examples have been discovered at Aphek (Gadot 2009: Fig. 8.60:1), Beth-Shean (James 1966: Fig. 55:10; James and McGovern 1993: Figs. 39:4, 41:3, 50:5; Panitz-Cohen and Mazar 2009: Pls. 1:7, 8, 20:15, 17, 18, 25:11, 29:5, 49:9), Tel Dan (Martin and Ben-Dov 2007: Fig. 4:1, 2), Deir el-Balah (Gould 2010: 17, Fig. 2.1; Gould, Dothan, and Adler 2010: 17), Tel Dor (Martin 2011: Pl. 31:6), and Tel Sera‘ (Martin 2011: Pl. 54:20).

Also paralleling their Egyptian counterparts, large bowls with ledged or ridged rims in the Levant are the most popular in the Late Bronze Age IB to IIA, and continue into the Late Bronze Age IIB, where they are found less often (Martin 2011: 44). Comparanda for these
vessels are found at Tell el-‘Ajul (Petrie 1932: Pl. XXVII:7U), Aphek (Gadot 2009: Fig. 8:31:9; Martin, Gadot, and Goren 2009: Fig. 10:1:9, 10), Tel Batash-Timna (Panitz-Cohen 2006: Pl. 17:1), Beth-Shean (FitzGerald 1930: Pl. XLV, 9; James and McGovern 1993: Fig. 8:11; Killebrew 1998: Ill. III:20:12; Mazar 2006a: Pl. 2:8; Mullins 2007: 446-447, Pls. 58:1, 63:7, 66:4; Panitz-Cohen and Mazar 2009: Pl. 1:9, 20:16, 29:4, 37:7, 39:9, 52:8, 63:5; Yadin and Geva 1986: Fig. 35:1), Tel Dan (Martin and Ben-Dov 2007: Fig. 4:3), Deir el-Balah (Beit-Arieh 1985: 45, Fig. 5:13; Gould 2010: 17, Fig. 2.1; Gould, Dothan, and Adler 2010: 17; Killebrew, Goldberg, and Rosen 2006: Fig. 14:5, 15:8), Gezer (Dever et al. 1986: Pl. 18:2, 21), Hazor (Yadin et al. 1961: Pl. 157:29, 31), Kamid el-Loz (Metzger 1993: Pl. 90:9-11), Lachish (Tufnell, Inge, and Harding 1940: Pl. 38:55, 56; Yannai 2004: Fig. 19.6:1, 2), Megiddo (Ilan, Hallote, and Cline 2000: Fig. 9.10:26; Martin 2009: Figure 1:7), Tel Mor (Martin and Barako 2007: Fig. 4.7), and Tel Sera‘ (Martin 2011: Pls. 52:12, 60:11, 12, 62:14).

Egyptian-style large bowls usually appear in small numbers in southern Levantine sites, especially when compared to the relative quantities of simple bowls, which can comprise up to 98% of Egyptianized assemblages at sites like Aphek, Ashkelon, Beth-Shean, Tel Mor, and Tel Sera‘ (Martin 2008: 264; 2009: 461; 2011: 24). At Jaffa large bowls accounted for 34% (n=30) of Egyptian-style bowls at the site, however, the number was less than 6% across all levels at Beth-Shean (James and McGovern 1993: Fig. 8:13; Martin 2006: 144-145; 2009: 446; Mullins 2007: 446-447; Yadin and Geva 1986: Fig. 35:1). Such a differentiation in numbers might suggest an overall distinctive function of each site and assemblage, or be related to certain geographically-related differences between the sites.

Another morphological difference between large bowls at Jaffa and other sites in the Southern Levant with Egyptianized assemblages concerns base types. While large bowls of all
three rim types may have ring or flat bases, the former are much more prevalent in the southern
Levant, although the latter type of base is more common at Jaffa, making up 86% (n=12) of the
bases of large bowls (Martin 2011: 41). Egyptian-style large bowls with perforated bases are
extremely rare in the southern Levant, making the six examples at Jaffa extraordinary.104
Examples with pierced bases have also been discovered at Deir el-Balah and Tel Mor (Dothan
1979: Figs. 126, 127, 133, 134; Martin and Barako 2007: Fig. 4.6:11). These differences in
numbers may be due to the fact that full profiles of Egyptianized large bowls are rare in the
southern Levant, but Jaffa has exemplars of at least one of each rim subtype. The lack of
decoration on large bowls at Jaffa corresponds with those found in other Egyptian-style
assemblages from other contemporary sites (Martin 2011: 121). Other large bowls with painted
red rims similar to the vessel at Jaffa are found at Beth-Shean, dating to the Late Bronze IIB and

7.3.1.3 Carinated Bowls (Figure 7.3:7)

Carinated bowls, otherwise known as “cooking bowls,” are medium- to large-sized bowls
either sharp or rounded and occurs at the middle of the body or somewhat higher. Examples of
this vessel type are both locally-produced in the Levant and imported from Egypt, but both
varieties are extremely rare in the southern Levant (Martin 2011: 44). Four carinated bowls were
discovered in Area A at Jaffa (MHA 5279 and 5319-5321) and all have a rounded carination that
curves outward anywhere from 3.7 to 4.2 cm (an average of 4.0 cm) below the rim, which
appears to always be slightly higher than the mid-point of the body of the bowl (Figure 7.3:7).

104 Registration numbers (MHAs): 2301, 5130, and 5144-5147.
Above the carination, the vessel wall slants gently inward until it reaches the rim, which is rounded and slightly everted on all four of the Jaffa examples, which are all large specimens with rim diameters ranging from 37 to 45 cm (averaging 40 cm).

Ornamentation that can appear on carinated bowls consists of either a strip of red paint circling around the rim or a red-slip on the upper body of the exterior of the vessel. All four of the carinated bowls from Jaffa (MHA 5279 and 5319-5321) are decorated on the exterior with a red (Munsell 10R 5/6) paint that extends from the rim of the vessel to just below the rounded point of carination (Figure 7.3:7). This red-painted decoration also extends over the rim and slightly onto the interior of the bowl, and was most likely applied with a brush, as brush strokes are visible in the paint on three of the specimens. Akin to the large bowls from Jaffa described in the preceding section, some of the carinated bowls from Jaffa were also marked by rope or leaf impressions (Figure 7.3:7). On the carinated bowls, these imprints consist of a single thin horizontal line encircling the exterior walls of the vessel on or near the point of carination. The horizontal bands vary in width from 0.4 mm to 0.5 mm, with an average width of 0.46 mm. Three out of the four carinated bowls from Jaffa (MHA 5279, 5320, and 5321) exhibit rope or leaf impressions, with two of the vessels showing imprints at the point of carination, while the third is impressed just below the point of carination on the exterior wall of the bowl.

As was stated in the previous section on large bowls, where more detailed information can be found on this specific manufacturing technique, these marks are not the result of deliberate engraving or scraping with a tool, but rather are the imprints of ropes or thin long leaves, often with veins intact, being impressed into the wet clay. These imprints have been linked to the Egyptian practice of tying twined ropes or leaves around the upper part of large unbaked vessels in order to hold them together and prevent deformation during the drying
process, which is a hallmark of large bowls in New Kingdom Egypt (Arnold 1993: 91; Aston 1998: 110; Martin 2011: 110). None of the other Egyptian or Egyptian-style carinated bowls in the southern Levant have been reported to exhibit rope or leaf impressions. Although the manufacturing technique just described is prominent across the Egyptian pottery industry in the New Kingdom, it is also a trait of certain Levantine ceramics, and therefore cannot be considered an isolated indicator of an Egyptianized ware (Arnold 1993: 63, 66).

As with simple bowls and large bowls, the general shape of carinated bowls is so basic that it also cannot be utilized as an exclusive indicator of an Egyptianized vessel. However, particular components of the form can provide hints as to the cultural affinity of the bowl, with all of the Egyptian-style carinated bowls from Jaffa having a rounded and slightly everted rim, while those in the Canaanite tradition are usually pointed, inverted, or considerably everted. Canaanite carinated bowls also tend to be smaller in size, with rim diameters that are typically less than 25 cm, while the rims of the Egyptian-style examples from Jaffa average about 40 cm in diameter. The form of the vessel body can also differ somewhat between Canaanite and Egyptian-style specimens, with a sharp folded, bent, ridged, or S-shaped carination at the midpoint of the vessel being popular on Canaanite bowls, in strong contrast to the smooth and rounded higher carination on the Egyptian-style examples from Jaffa. Above the carination, the walls on the Jaffa vessels turn inward in a fairly straight manner, while Canaanite carinated bowls are concave, S-shaped, curved, or turn outward.

In terms of decoration, although not as widespread as on Egyptianized examples, red-painted rims on carinated bowls also appear in the Canaanite tradition, on the other hand, the painted decoration on or above the carination is unique to Egypt. Types of decoration that appear more frequently on Canaanite carinated bowls include internal palm-tree motifs, external
vertical lines, metopes, and full red-slips. Handles also sometimes appear on carinated bowls in the Canaanite repertoire, but are completely absent from the Egyptian-style examples in the southern Levant. While only a few of the above morphological, manufacturing, and decorative characteristics together may not exclusively specify a carinated bowl of Egyptian-style, many shared jointly on one vessel, including the fabric, temper, and firing elements discussed in the introduction, along with a particular chronological and geographical setting, can be a strong indicator that a carinated bowl was manufactured according to an Egyptian pottery tradition.

Carinated bowls are especially popular in Egypt in the Ramesside Period, but also occur in the late 18th Dynasty and continue into the Third Intermediate Period (Aston 1999: 15; Hope 1989: 54). Carinated bowls of the variety discovered at Jaffa have also been discovered in Egypt and Nubia at Amarna (Rose 1984: 135, Fig. 10.1:8; 1987: 133, 142, Fig. 10.4; 2007: 77-79, 216-219, Types SE11, SE12), Deir el-Medina (Nagel 1938: Pls. V, VI), Elephantine (Aston 1996: Figs. 179, 181; 1999: Nos. 95-99), Malqata (Hope 1989: 21, Fig. 1r), Medinet Habu (Aston 1996: Fig. 175; Hölscher 1951: Pl. 56C), Nubia (Holthoer 1977: 113, Pl. 24: CC5/IR/0/h-i, CC5/IIR/0/h-i), Qantir (Aston 1998: Nos. 468-469, 851-852, 2370) and Thebes (Aston 1996: Figs. 160, 163, 176). Specimens with a red-painted decoration originating at the rim and terminating just past the point of carination and exhibiting rope impressions similar to those of the Egyptianized carinated bowls from Jaffa are also paralleled in Egypt (Aston 1996: Figs. 179, 181; 1999: 30).

Besides the four examples from Jaffa (MHA 5279 and 5319-5321), only three other Egyptian or Egyptianized carinated bowls have been discovered in the southern Levant. Two locally-produced Egyptian-style carinated bowls were found in HU Stratum N-4 (Late Bronze Age IIB) in Area N of Beth-Shean (Martin 2009: 446-447, Fig. 17, Pls. 7:2, 9:2). One of the
bowls from Beth-Shean exhibits a high and rounded carination, while the other is more sharply carinated at the mid-point of the body of the vessel. Above the carination, the walls of both bowls slant inward until reaching the rim on the latter example, and a short neck on the former. The pointed rims of these vessels have diameters of 20 cm and 17 cm, respectively. Both of the carinated bowls from Beth-Shean are painted with a red decoration, with one example having a red-slip on the exterior above the carination, and the other bearing a red band circling around the rim.

Only one example of an Egyptian carinated bowl has been discovered in the southern Levant. This imported vessel came from Phase 11a (Late Bronze Age IIB) of Area G in Tel Dor, and was manufactured out of Egyptian Nile B2 fabric (Stidsing and Salmon 2011: 176, Pl. 31:1). The carination on this bowl is rounded and located slightly higher than the mid-point of the body. The upper body of the vessel slants inward until reaching an everted and tapered rim with a diameter of 20 cm. A red and possibly burnished slip appears on the exterior body of the bowl and extends over the interior of the rim.

The two Egyptianized carinated bowls from Beth-Shean illustrate noticeably different morphological traits from the examples at Jaffa, although specific characteristics of each vessel, like the form of decoration, high-rounded carination, and inslanting upper body, are similar on the Jaffa carinated bowls (MHA 5279 and 5319-5321) (Martin 2009: 446-447, Fig. 17, Pls. 7:2, 9:2). These disparities in form are most likely due to the fact that the Egyptian and Egyptianized ceramic assemblage at Jaffa as a whole dates to an earlier period than the Late Bronze Age IIB examples from Beth-Shean. The carinated bowl from Tel Dor is much more morphologically analogous to the specimens from Jaffa (MHA 5279 and 5319-5321), but also differs in terms of
rim type and diameter. Again, the later Late Bronze Age IIB date of this carinated bowl might be the reason for the variations in size and form from the Jaffa versions.

7.3.1.4 **Flowerpots (Figure 7.3:8)**

“Flowerpots,” also called *Blumentopf* or *pot de fleur*, are so named due to their universal shape and generally perforated bases (Holthoer 1977: 83-86, Pls. 18, 50; Nagel 1938: 192; Steindorff 1937: 25). These Egyptian-style vessels are deep conical bowls with steep outsloping sidewalls ranging in height from 14.5 cm to 21.8, with an average depth of 18.6 cm (Figure 7.3:8). A total of 23 flowerpots were discovered in Area A at Jaffa, with all but three examples coming from Locus 304, which consisted of an open kiln filled with stacked vessels, indicating that flowerpots were unquestionably manufactured at Jaffa (MHA 2221-2239, 2302, 5218, 5312, and 5331) (see also Burke and Lords 2010: 18-19; Burke and Mandell 2011). This locally-produced Egyptianized pottery type is the third most common form in the Egyptian and Egyptian-style ceramic assemblage at Jaffa, comprising about 15% (n=23) of the collection.

The rims of flowerpots are either unmodeled or externally beveled, with the latter type appearing a great deal more frequently (MHA 2238; Figure 7.3:8). The average diameter of both rim types at Jaffa is 22.9 cm, with the entire group spanning between 19 cm and 27 cm in diameter. The bases of flowerpots are typically thick, heavy, and flat, with diameters ranging from 9.3 cm to 12.1 cm and averaging 10.6 cm. The base of this vessel type in the southern Levant is also usually pierced, although one specimen (MHA 5218) from Jaffa has an unperforated base. These punctures vary greatly in shape and size, with widths ranging anywhere between 0.5 cm and 6.1 cm. Although the shape of the perforations can roughly be described as round or oval, most examples are so crudely produced that they are
characteristically irregular and malformed. Flowerpots in Egypt and the southern Levant, including Jaffa, are habitually undecorated, although a few examples from Nubia exhibit a white-painted rim or the aforementioned red splash decoration observed on the simple bowls at Jaffa (Holthoer 1977: 85).

Several characteristics of flowerpots in Egypt and the southern Levant illustrate a common set of manufacturing techniques employed to hastily mass produce this vessel type. Along with the form, flowerpots are also noticeably marked as part of the Egyptian ceramic repertoire by a group of certain visual traits including: asymmetrical rims, wall ribbing, uneven stances, unsmoothed turning marks, superfluous clay lumps, string-cut bases, clay tongues, fingerprints, and irregularly-shaped perforations (MHA 2238; Figure 7.3:8). Several of the flowerpots from Jaffa possess rims that are asymmetrical in nature, with examples climbing higher or dipping lower on one side by a few centimeters or more. Deep spiraling undulations are also present on 91% (n=21) of the interior walls of all of the flowerpots from Jaffa, not only indicating that this intense ribbing was deliberately not smoothed out on this particular vessel type, but also that the flowerpots were manufactured using a wheel-coiled method as opposed to a wheel-thrown method.

The most distinctive visual characteristics of the flowerpots from Jaffa are related to the bases of the vessels, which are marked by traits revealing the use of certain manufacturing techniques that effected a rough and unfinished appearance. At least 48% (n=11) of the bases of this vessel type at Jaffa bear the deep grooves left behind after secondary trimming (“turning”) or the incised off-center spirals caused by string-cutting, both of which were also not smoothed away during the manufacturing process, and which were both described in detail in the section above on simple bowls. The rapid removal of the vessel from the wheel also resulted in
fingerprint-hollows around the lower walls of flowerpots, corresponding to the grip of the potter (Bourriaud and Aston 1985: 34-35) (MHA 2238; Figure 7.3:8). These deep gouges were intentionally not filled in or eliminated, and may have become something like a conspicuous “trademark” for flowerpots in Egypt and the southern Levant (Martin 2011: 111).

As previously stated, the bases of all but one flowerpot at Jaffa were roughly pierced, and this production step appears to have occurred before the vessels were fired, which is evidence that this feature was presumably preplanned in the conception of the ceramic type. Perforations created post-firing typically expose the layers of fabric in the section and, because they must be created using a tool, tend to be more uniformly shaped. Therefore, because the perforations in the flowerpots from Jaffa are highly irregular and show no signs of a fired section, they must have been pierced pre-firing. This manufacturing step could have been accomplished while the vessel was still on the wheel or after it had already been removed. For the former, when the vessel was ready to be detached from the wheel, the potter could have positioned the cord used for string-cutting high enough so that a thin base with a hole in the center would have resulted, with the perforation exhibiting the same orientation as deformations in the base itself (Martin 2006: 146).

The flowerpots from Jaffa do not illustrate this characteristic and so the perforations would have been executed either immediately after the formed vessel was removed from the wheel and still in a moist and malleable condition, or after it had dried to a leather-hard state. The potter would have employed a tool or finger to press a hole in the base, starting either from the interior or the exterior of the flowerpot. At least 65% (n=15) of the flowerpots from Jaffa bear clear indications that the perforations were implemented from the exterior of the vessel
towards the interior. This direction of piercing created surplus clay lumps and fabric smears, or “tongues,” on the interior of the base and lower sidewalls of the vessels.

In closely examining the bases of the flowerpots from Jaffa, I noticed that this part of the vessel was manufactured from a distinctive clay type and formed separately from the rest of the vessel. The clay used to shape the bases of this ceramic type was noticeably darker in color, contained much larger quantities of straw temper, and incorporated gritty sand into the clay matrix, which did not appear in the fabric of the vessel walls and rims. It is clear that many of the flowerpots from Jaffa have bases that were formed separately and then attached to the vessels using additional clay, which commonly resulted in cracks and fissures between the walls of the vessel and the adhered base section, superfluous clay lumps around the area of the join, and fabric “tongues” smeared across the seam line.

These same characteristics have been identified on shallow platters in Egypt at Amarna, where thick bases were hand-formed and then attached to independently made rims (Rose 2007: 141, 287, Type HB2). A flowerpot from Amarna might also have been manufactured using the same procedure (Rose 2007: 73, 213, Type SE4.2). Although this method of production has not been documented for other flowerpots from the southern Levant, a similar manufacturing technique might have been utilized to produce Egyptian-style beer jars, which share many traits with flowerpots and are believed to have replaced them following the 18th Dynasty (Aston 2002: 57; Martin 2011: 116; Mullins 2002: 449).

In Egypt and Nubia, flowerpots are restricted to the 18th Dynasty, where they are absent early on in the period, are the most widespread in the reigns of Hatshepsut to Thutmose IV, are rare during the days of Amenhotep III, and disappear after the Amarna Period (Aston 2002: 57; Williams 1992: 34-35). Flowerpots have been discovered at the Egyptian and Nubian sites of
Amarna (Kelley 1976: Pl. 67; Peet and Woolley 1923: Pl. 50; Rose 2007: 73, 213), Aniba (Steindorff 1937: Taf. 77), Argo (Holthoer 1977: 84), Tell el-Dab’a (Hein 1994: Abb. 11; 2001: Fig. 5:35), Deir el-Medina (Nagel 1938: Pls. XIII-XIV), Gurob (Brunton and Engelbach 1927: Pls. 22, 34), Haraga (Engelbach 1923: Pl. XLII), Tell Hebua (Dorner and Aston 1997: Pl. 1), Meidum (Kelley 1976: Pl. 59), Qau (Brunton 1930: Pl. 30), Qustul (Williams 1992: Figs. 1, 43, 109), Sai (Minault and Thill 1974: 91, Pl. 6), Sedment (Petrie and Brunton 1924: Pls. 62, 64), Semna (Dunham and Janssen 1960: Fig. 11), Sesebi (Holthoer 1977: 84), Soleb (Schiff-Giorgini 1971: Pls. 14-15), Thebes (Winlock 1932: Fig. 16), and Toschka (Simpson 1963: Fig. 14).

The same general chronological development of the flowerpot in Egypt and Nubia is also conveyed in the southern Levant, with the earliest examples appearing in the mid-15th century BCE, the greatest proliferation occurring in the Late Bronze Age IB, and a widespread disappearance of this vessel type by the 13th century BCE (Martin 2011: 48; Mullins 2007: 449). Egyptian-style flowerpots are rare in the southern Levant, with only one exemplar discovered at Tell el-‘Ajjul (Petrie 1931: Pl. XXXVII; 1932: Pl. XXVII), 23 at Beth-Shean (Mullins 2002: Pl. 57; 2007: Pls. 60, 64, 69, 75, 78), and one at Megiddo (Gonen 1992: 41; Guy and Engberg 1938: Pl. 59).

7.3.2 Closed Forms (Figures 7.3:9 and 7.4:1-6)

7.3.2.1 Carinated Jars (Figure 7.3:9)

Carinated jars are small jars with everted rims, short necks, and biconical bodies. All examples of carinated jars in the southern Levant, with the exception of one miniature version from Tel Sera’, have been identified as Egyptian imports (Martin 2011: 51, 66). In Egypt and
Nubia, these vessels are classified according to the diameter of the rim and the height of the neck, resulting in three categories: short-necked, ordinary, and wide-mouthed (Bourriau 1981b: 25-41; Holthoer 1977: 133-145). The bulk of carinated jars in the southern Levant belong to the ordinary type, which are further subdivided into broad-necked and narrow-necked variants. Seven carinated jars and fragments thereof of the former variety were discovered in Area A at Jaffa (MHA 2188, 2216, 2297, 5211, 5314, 5315, and 5317), including one complete vessel (MHA 2297; **Figure 7.3:9**) (see also Burke and Lords 2010: 17).

The complete carinated jar from Jaffa (MHA 2297) has a 4.3 cm tall straight neck ending in a broad shelf rim with a diameter of 9.4 cm. The degree of carination slightly differs between the seven exemplars at Jaffa, with two examples each being pointed, rounded, or squared at the point of carination. The maximum body diameter, which occurs at the mid-point of the vessel, ranges from 14.1 cm to 15.4 cm. This ceramic type has a convex base that can be either rounded and smooth or pointed and sharp, which causes the vessel to lean slightly askance when placed on a flat surface. In a fully upright position, the complete carinated jar from Jaffa reaches a height of 13.7 cm.

Carinated jars are typically covered with a cream- or red-colored slip and frequently burnished. The paler background coating has been associated with the imitation of alabaster vessels of the same form (Hodjache 1971: Pl. 59; Holthoer 1977: 137). Vestiges of a coating, ranging in color from pink (Munsell 7.5YR 8/4) to very pale brown (Munsell 10YR 8/3), appear on all seven examples from Jaffa, with at least five of the vessels also displaying horizontal burnishing marks (MHA 2188, 2216, 2297, 5315, and 5317). In addition, carinated jars are characteristically ornamented with red, brown, or black painted decoration, which occurs in two distinctive styles. The painted decoration can consist of either simple horizontal bands.
surrounding the neck and upper body of the jar, or a combination of horizontal bands, criss-crossed lines, and vertical striped bundles. The latter style appears more frequently and tends to overlay the paler cream-colored background, while the backdrop of the former is generally the darker red slip.

All seven of the carinated jars from Jaffa feature a pale background covered with weak red (Munsell 10R 4/2), reddish brown (2.5YR 5/4), or dark bluish gray (GLEY2 4/10B) painted decoration (see Burke and Lords 2010: Figure 12 for a color photo). The specific number of lines involved in the decoration varies between each vessel, nevertheless, a pattern emerges where each jar is painted with one to four lines in a criss-cross (X) shape, followed by three to nine vertical stripes in a bundle (MHA 2297; Figure 7.3:9). These painted shapes begin at the base of the neck and travel down to just past the point of carination. Two of the jars also bear a horizontal band around the base of the neck (MHA 2297 and 5211), to which the criss-cross and vertical bundle decoration is linked.

In Egypt, carinated jars are typically manufactured out of Marl clays, which are derived from an Upper Egyptian source (Bourriau 1981b: 25-41). Marl clay ceramics are fired at higher temperatures, around 800-1000ºC, with a surface that fires to a beige, pink, or light yellow color, and a section illustrating a dense homogenous groundmass with mineral inclusions and little or no organic matter (Nordström and Bourriau 1993: 175-178). The preferred Marl variants for carinated jars are types A2 and A4, which are categorized according to the coarseness of the groundmass and the nature of the inclusions. Marl A2 has a smooth groundmass with fine sand and limestone particle inclusions, while Marl A4 has a medium to coarse groundmass and a large quantity of fine to coarse sand and mica inclusions with a small quantity of straw.
The surface color of the carinated jars from Jaffa ranges from reddish-yellow (Munsell 5YR 6/6) to light red (2.5YR 6/6), which is markedly different from the fabric of the Egyptianized vessels described above. Mineral inclusions in the matrix of the jars include fine sand and limestone particles, which create a homogenous groundmass completely lacking in organic material. Following these observations, the fabric of the carinated jars from Jaffa should be assigned to the Egyptian clays of the Marl A2 group. Indicators of Egyptian manufacturing techniques among the carinated jars from Jaffa include the presence of wheel marks just below the maximum body diameter of five of the jars (MHA 2188, 2216, 2297, 5211, and 5317), which resulted from secondary trimming or “turning” (described above in the section on simple bowls), and the presence of cracks and an unsmoothed rib running along the interior of two of the vessels, which is the effect of a two-part manufacturing process (Holthoer 1977: 137).

In Egypt, carinated jars are found throughout the Second Intermediate Period and the entire New Kingdom, but are rarely discovered after the beginning of the Ramesside Period (Holthoer 1977: 133-145; Martin 2011: 66). Although the carination of the jars itself is not of chronological significance, certain morphological characteristics related to the neck of the vessel can provide tangible dating evidence. The carinated jars with a tall “ordinary” neck have a slightly later chronological range than those of the short-necked type, which are common only throughout the Second Intermediate Period and the early 18th Dynasty (Holthoer 1977: 133-134). The chronological distribution of the “ordinary” broad-necked variety of carinated jars commences in the late Second Intermediate Period, becomes widespread in the early to mid-18th Dynasty, peaks during the reigns of Hatshepsut and Thutmose III, decreases in popularity thereafter, and finally disappears before the start of the Amarna Period (Bourriau 1981b: 29-30;

The specific fabric composition and decorative style of carinated jars can also be significant chronological indicators. Vessels manufactured out of the Marl A2 variety of clay are the most ubiquitous in the late Second Intermediate Period and the 18th Dynasty in Egypt (Aston 1998: 64; Nordström and Bourriau 1993: 176). In terms of stylistic variation, the carinated jars that are undecorated never appear in contexts post-dating Thutmose III, whereas the decorated examples are widespread from the beginning of the 18th Dynasty through the reign of Amenhotep III (Holthoer 1977: 133-134). Furthermore, the chronological distribution of the decorated examples can also be subdivided according to the form of painted decoration.

The vessels adorned with criss-crossed lines and vertical line bundles are earlier than the variety with lone horizontal bands, which are prevalent only after the reign of Thutmose III up to the beginning of the Amarna Period, while the former are found in early to mid-18th Dynasty contexts, and never after the reign of Thutmose III (Holthoer 1977: 134). According to these morphological and stylistic chronological indicators, the tall, broad necks and criss-crossed and vertical line decoration of the carinated jars from Jaffa date them to the period from the late Second Intermediate Period through the reign of Thutmose III, with the most likely date occurring during the reigns of Hatshepsut or Thutmose III.

Carinated jars similar to those from Jaffa have been discovered in Egypt and Nubia at Abydos (Peet 1914: Pl. XXXIII), Amarna (Rose 2007: 136-137, 285, Type MG 3), Aniba (Holthoer 1977: 134, Pls. 30-32), Buhen (Holthoer 1977: 134, Pls. 30-32), Tell el-Dab’a (Hein 1994: 43, Fig. 12a), Ermenne (Holthoer 1977: 134, Pls. 30-32), Fadrus (Holthoer, Säve-Söderbergh, and Troy 1991: 30; Säve-Söderbergh and Troy 1991: 225-244), Haraga (Engelbach
1923: Pl. XLIV:78K), Sedment (Petrie and Brunton 1924: Pl. LX:51), and Toschke (Holthoer 1977: 134, Pls. 30-32).

Apart from the seven examples from Jaffa, 27 other carinated jars have been discovered in the Levant at the sites of Tell el-‘Ajul, Ashkelon, Beth-Shean, Tel Dan, Megiddo, Tel Sera’, and Yoqne‘am. 19 of these jars were found at Tell el-‘Ajul, which makes Jaffa’s corpus of Egyptian carinated jars the second largest in the southern Levant. The chronological distribution of this vessel type in the Levant parallels that of Egypt, with all of the carinated jars materializing in late Middle Bronze Age II and Late Bronze Age I-IIA contexts. The largest group of imported Egyptian carinated jars comes from Tell el-‘Ajul, where ten short-necked and nine ordinary examples were found, of which two of the former were discovered in Horizons 3-4, dated to the Late Bronze Age IA-IA/B (Fischer and Sadeq 2002: 122-123, Fig. 14:1-2; Petrie 1931: Pl. XLIII:32A6-9; 1932: Pl. XXX:32A4-32A16; 1933: Pl. XXXIII:32A7-32A11; 1934: Pl. XLVIII:32A4).

The rest of the carinated jars from southern Levantine assemblages were only found in single or double quantities. Two examples from Beth-Shean include one slipped and burnished jar from Stratum R-3 (Middle Bronze Age IIB) and a broad-necked vessel with vertical-line decoration from Stratum R-1 (Late Bronze Age IB-IIA) (Maeir 2007: Pl. 27: 13; Mazar 2003: 328, Fig. 5; Mullins 2002: 101, 263-264, Pl. 57:13; Mullins and Mazar 2007: 146-147). The former jar provides an important correlation between the end of the Middle Bronze Age at Beth-Shean and the beginning of the New Kingdom in Egypt, since, according to Manfred Bietak, this vessel type did not reach the Delta, and therefore probably also the southern Levant, until the 18th Dynasty (Maeir 2010: 50, 118, 128; Mazar 2003: 328, Note 4).
Two imported Egyptian carinated jars with painted decoration, one with vertical line bundles and the other with horizontal bands, were discovered at Megiddo (Guy and Engberg 1938: 82, Pl. 41:17). The former vessel has been dated to the reign of Thutmose III, with a potential extension into the 14th century, while the latter vessel was discovered in Stratum F-10a, which was initially dated to the Late Bronze Age IB, but could also extend into the Late Bronze Age IIA, in accordance with radiocarbon results from the site (Boaretto 2006: 551-552; Gadot, Yasur-Landau and Ilan 2006: 188, Fig. 12.4:5; Gonen 1992: 41; Kempinski 1989: 70).

Two examples of painted broad-necked carinated jars were found at Tel Dan and Ashkelon, both in Late Bronze Age I contexts. The vessel from Tel Dan bore vertical stripes and was discovered in Stratum VIII, whereas the vessel from Ashkelon was painted with horizontal bands and had been placed in a Phase 11 tomb (Martin 2011: 200, Pl. 43:7; Martin and Ben-Dov 2007: Fig. 4:4). An undecorated and short-necked example comes from the ceramic corpus of Stratum XXa (Late Bronze Age IA) at Yoqne‘am (Ben-Ami 2005: Fig. III.9:8; Ben-Tor and Ben-Ami 2005: 242-243). The final carinated jar from the southern Levant was a surface find at Tel Sera‘. This unique miniaturized version was the only carinated jar found to be locally-produced in the southern Levant (Martin 2011: 223, Pl. 50:12).

7.3.2.2 Ovoid Jars (Figure 7.4:1-4)

Egyptianized ovoid jars are a locally-produced form defined by an elliptical body shape, of which the maximum diameter is habitually located between the midpoint and lower third of the body, creating either a more plump ovate-shape for the former and a more elongated teardrop-shape for the latter. The point of carination on the body can be either gently curved or more sharply accentuated, but the bases of ovoid jars are typically rounded. Fifteen examples of
Egyptian-style ovoid jars were discovered at Jaffa, which is about 10% (n=15) of the entire Egyptian and Egyptianized corpus (MHA 2298, 4232, 5269, 5270, 5274, 5275, 5286, 5290-5293, 5297, 5298, 5336, and 5874) (see also Burke and Lords 2010: 16). These jars can be categorized into four types, including small, slender, broad, and short-necked varieties, which are distinguished based on height, breadth, neck type, and decorative elements.

The small variety of Egyptianized ovoid jars in the southern Levant, which are also called “beakers” or “situlas,” are characterized by a short height ranging between 14-24 cm and a narrow body diameter ranging between 7-12 cm, and rounded bases (Martin 2011: 57) (MHA 5269; Figure 7.4:1). The broadest area of these vessels is frequently located in the lower third of the body, although those with a slightly higher carination are more rounded, while those with a lower widest diameter are more angular. Three examples of the latter type of small ovoid jars were discovered in Area A at Jaffa (MHA 5269, 5270, and 5292), and although these were not complete vessels, the rims were probably plain or slightly flaring like those of intact southern Levantine and Egyptian jars of this type, whose rim diameters range between 5-9 cm. The maximum body diameters of the small ovoid jars at Jaffa were between 8 cm and 12 cm, with an average width of 9.7 cm.

The slender variety of Egyptianized ovoid jars in the southern Levant, which are also generally described as “bottles” or “date-shaped,” are taller and wider than the small versions, with heights ranging between 26-38 cm and body diameters between 14-18 cm, although the rim diameters (6-10 cm) are usually analogous with the small variety, as are the rounded-shape of the bases (Martin 2011: 59; Mullins 2007: 449) (MHA 2298; Figure 7.4:2). On the other hand, the rims are always everted and often externally thickened, and the widest part of the vessel is generally located higher than those of the small versions, and is always more rounded and gently
curved. Slender ovoid jars are the most ubiquitous type of Egyptianized ovoid jars in other southern Levantine sites, and this is also true for Jaffa, where ten examples were found (MHA 2298, 5274, 5275, 5290, 5291, 5293, 5297, 5298, 5336, and 5874). The rim diameters of the examples at Jaffa (8-13 cm, average 10.48 cm) are slightly larger than those at other Levantine sites (6-10 cm), while the body diameters are slightly smaller (12-14 cm, average 13.3), and the height (27.5 cm) of the one completely preserved example fits well within the range of other sites.

The broad variety of Egyptian-style ovoid jars in the southern Levant has a wider body diameter than the small and slender versions, which can sometimes result in a more globular shape (MHA 5286; Figure 7.4:4). These vessels are also taller, with a range between 45-60 cm in height, and while the majority of the bases are rounded, some examples exhibit a flattened tip (Martin 2011: 59). The rims are similar to those of the slender variety, with a pronounced and externally thickened eversion. Egyptianized broad ovoid jars are much less widespread than the small and slender versions, and only one example was discovered at Jaffa (MHA 4232). This almost complete vessel had a preserved height of 42 cm, with an everted rim of 11.3 cm in diameter, and maximum body diameter located at the mid-point of the vessel and measuring about 30.5 cm wide.

Egyptian-style short-necked ovoid jars in the southern Levant are marked by a restricted squat neck, which can be vertical or everted, ending in a plain rim, and an ovoid body that is either elongated or more globular-shaped (MHA 4232; Figure 7.4:3). These vessels range in size from small to medium, with heights between 19 and 39 cm, and the bases are always rounded (Martin 2011: 60). Egyptianized short-necked ovoid jars are extremely rare in the southern Levant, and the one example discovered at Jaffa supplements only three previously-
known jars of this type in the region (MHA 5286). The short-necked ovoid jar from Jaffa has a 2.3 cm tall everted neck that ends in a plain rim with a diameter of 13 cm. Although only 15 cm of the height was preserved, the style of the body appears to have been more of the elongated variety, due to the steep gradient of the shoulders below the neck.

Egyptian-style small, slender, and short-necked ovoid jars in the southern Levant can feature painted or incised decoration, whereas the broad variety remains undecorated. The Egyptianized broad ovoid jar at Jaffa was also undecorated (MHA 5286; Figure 7.4:4). Painted decoration occurs on small and short-necked ovoid jars in the form of a red slip that covers the entire exterior surface of the former type, or as red, blue, and/or white horizontal bands on the upper body of both types (Martin 2011: 57, 60, 121). None of the small or short-necked ovoid jars from Jaffa were decorated, and this probably relates to the chronological distribution of the painted vessels, which will be discussed below (MHA 5269 and 4232; Figure 7.4:1, 3).

Egyptian-style slender ovoid jars in the southern Levant are never slipped or painted but frequently bear two to three incised lines that encircle the neck of the vessels, which were created with a pointed tool or string, most likely when the vessel was still on the wheel (Martin and Barako 2007: 142; Mullins 2007: 450). About 71% (n=5) of the Egyptianized slender ovoid jars at Jaffa with an intact neck portion featured two (MHA 2298, 5275, 5293, and 5298) to three (MHA 5874) incised lines around the most restricted area of the neck of the vessel (e.g., MHA 2298; Figure 7.4:2).

Certain characteristics of the Egyptian-style ovoid jars from Jaffa exhibit evidence of the aforementioned Egyptianized manufacturing technologies of straw temper, wheel-coiling, and secondary trimming. Intact remnants of chopped straw and elongated burnt-out cavities of combusted straw were visible on the surface and in the section of the broad ovoid jar and 70%
(n=7) of the slender ovoid jars at Jaffa, however, these features were not present on the short-necked and small varieties (MHA 2298, 5290, 5291, 5293, 5297, 5298, and 5336). A low quantity and frequency of straw temper was also recognized among the Egyptian-style small ovoid jars at Beth-Shean (Martin 2011: 11, Note 121). The interior of 50% (n=5) of the slender ovoid jars and 100% (n=3) of the small ovoid jars at Jaffa exhibit ridges, demonstrating that these vessels were produced using a wheel-coiling, as opposed to a wheel-throwing, method, which was similar to the flowerpots above, although only present on the interior of the ovoid jars. Evidence of wheel-coiling was also discovered on the Egyptianized small ovoid jars at Beth-Shean (Martin 2011: 115). Horizontal grooves on the bases and lower areas of the vessels, which are the results of secondary turning, or “trimming” as described above in relation to simple bowls, were apparent on one of the small ovoid jars and 50% (n=5) of the slender ovoid jars from Jaffa (MHA 2298, 5290-5292, 5297, and 5298).

The standard ovoid-shape of these jars is an Egyptian characteristic, and while all of the examples in the Levant are locally-produced, their Egyptian counterparts are most frequently manufactured out of Nile clays, with the slender variety also rarely appearing in a marl-based fabric (Hein 2001: 133-134; Fig. 4:29; Martin 2011: 58-60). The small type of ovoid jars are widespread in Egypt and Nubia throughout the New Kingdom and into the Third Intermediate Period, examples of which have been discovered at Amarna (Rose 1987: Fig. 10.4:63109; 2007: Types SF1, SF4.1, SG2), Tell el-Dab’a (Hein 2001: Fig. 4:26), Deir el-Medina (Nagel 1938: Figs. 2:30, 32, 9:9-10, 10:14-15), Elephantine (Aston 1999: Nos. 115-116), Gurob (Brunton and Engelbach 1927: Pl. XXXIV:20E, H, O-P, R, 22F, H), Kahun (Petrie 1891: Pl. XXVII: 29, 34), Malqata (Hope 1989: 22, Fig. 2d), Nubia (Holthoer 1977: Pls. 38: Type JW1, 41:Types WD1, WG1); Qantir (Aston 1998: No. 1312, 1313, 1436, 2456; Aston and Pusch 1999: Nos. 35, 78,
The short-necked variety of ovoid jars in Egypt is slightly more restricted in chronological distribution, as this type only appears in the 18th and 19th Dynasties. Like their Levantine counterparts, these vessels are found less often than the small and slender versions in Egypt, including examples at Amarna (Rose 2007: 242, Type SH8.2) and Qantir (Aston 1998: No. 915), as well as Nubia (Holthoer 1977: Pl. 33, Type FU2). The chronological span of the slender and broad ovoid jars are even more ephemeral, as these varieties are only discovered in Second Intermediate Period and 18th Dynasty contexts in Egypt and Nubia, including Amarna (Frankfort and Pendlebury 1933: Pl. LIII:XV/13; Rose 2007: Types SG1.1-2, SG3, SH13), Tell el-Dab’a (Hein 2001: Fig. 4:29), Deir el-Medina (Nagel 1938: Figs. 39:1-2, 43:4, 53:2, 70:3), Ehnasya el-Medina (Petrie 1905: Pl. 37), Gurob (Brunton and Engelbach 1927: Pls. XXXIV-XXXV; Loat 1905: Pl. I:21-26), Haraga (Engelbach 1923: Pls. XLII-XLIII: Types 23-25); Tell Hebua (Dorner and Aston 1997: Pl. I:8-9), Malqata (Hope 1989: 22, Fig. 2h-i), Meidum (Petrie, Mackay, and Wainright 1912: Pl. 19:88-91), Nubia (Holthoer 1977: Pls. 35-37; Type JO1), Qantir (Aston and Pusch 1999: No. 97), Qurna (Petrie 1909: Pl. 41: 704), Riqqa (Engelbach 1915: Pl. 35), Sedment (Petrie and Brunton 1924: Pls. LX:24; LXII:92-93, 96-100), and Thebes (Petrie 1897: Pls. V:1, VII:12). Slender ovoid jars with incised decorative grooves do not appear in Egypt until the second half of the 18th Dynasty, beginning in the reign of Amenhotep II (Aston 2006: 72; Petrie 1906: 16).

Egyptianized small ovoid jars in the southern Levant are discovered in contexts that are contemporary with their counterparts in Egypt, throughout the Late Bronze Age and into the Iron Age I. A conspicuous change occurs in the form of these vessels throughout these periods, and
this shift can be used as a chronological marker (Martin 2011: 58, 248). In the Late Bronze I, Egyptian-style small ovoid jars have a noticeably rounded ovoid-shape, but gradually become more drop-shaped, until the Late Bronze Age IIB, when every small ovoid jar is marked by an angular carination at the maximum body diameter with a concave profile above (Killebrew 2005: 72). Since none of the Egyptian-style small ovoid jars from Jaffa are noticeably drop-shaped, they must date from the Late Bronze Age I to the Late Bronze Age IIA. Other examples of Egyptianized small ovoid jars in the Levant have been discovered at Tell el-‘Ajul (Petrie 1931: Pl. XLII:31K3-4; 1932: Pls. XXIX:31K6-7, XXXV:75N6; 1933: Pl. XXXII:31K4, K8-9), Ashkelon (Martin 2008: Fig. 13), Beth-Shean (FitzGerald 1930: Pl. XLV:1; James and McGovern 1993: Figs. 10:6, 13:14; Mullins 2002: Pl. 57:4; Panitz-Cohen and Mazar 2009: Pls. 9:3; 28:4; 30:4-5; 36:15; 41:16; 45:10; 54:15), Tell el-Far‘ah (South) (Duncan 1930: Type 75N2; Starkey and Harding 1932: Pl. LXXXVIII:75N1, 3-5, 7), Hazor (Ben-Tor et al. 1997: Fig. III:16.15; Garfinkel 1997: Fig. III.16:15), Tel Mor (Martin and Barako 2007: Fig. 4.10:2), and Tell es-Sa‘idiyeh (Martin 2011: Pl. 30:7).

The slender and broad varieties of Egyptianized ovoid jars in the southern Levant also have a similar chronological distribution to the examples from Egypt, with both types being discovered in contexts dating from the Late Bronze Age I to the Late Bronze Age IIA, with these types disappearing by the end of the 14th century B.C.E. Egyptian-style slender ovoid jars have been discovered in the southern Levant at Tell el-‘Ajul (Fischer 2001: 228, Fig. 6; Petrie 1931: Pl. XLII:31H2, 7-8; 1932: Pl. XXIX.31H3; 1933: Pl. XXXII.31.H8; 1934: Pl. XLVIII.31K19), Aphek (Gadot 2009: Fig. 8.34:3), Beth-Shean (Mullins 2007b: Pls. 47:5, 60:5, 74:16, 75:3-4, 78:9), Lachish (Tufnell, Inge, and Harding 1940: Pl. LIV:335), Megiddo (Guy and Engberg 1938: Pl. 57:10; Loud 1948: Pl. 60:7), Tel Mor (Martin and Barako 2007: Fig. 4.10:1), and Tel
The broad versions of Egyptianized ovoid jars are much rarer than the small and slender types in the Levant, where they have only been found at Tell el-ʿAjjul (Petrie 1933: Pl. XXXII:31H8; 1934: Pl. XLVIII:31H5), Beth-Shean (Mullins 2007: Pl. 60:4), Megiddo (Guy and Engberg 1938: Pl. 57:10), and Tel Michal (Negbi 1989: Fig. 5.7.14).

Unlike the small, slender, and broad types of Egyptianized ovoid jars in the Levant, examples of the short-necked variety have not been found in contexts that correlate directly with their counterparts in Egypt. Only three jars of this type have been discovered at Deir el-Balah (Dothan 2008: 136, IMJ 69.9.552), Megiddo (Loud 1948: Pl. 65:1), and Tell es-Saʿidiyeh (Pritchard 1980: Fig. 9:9), all of which date to the Late Bronze Age IIB or Iron IA. In Egypt, short-necked ovoid jars are also found in earlier periods contemporary with the Late Bronze Age I-IIA. The Egyptian-style short-necked ovoid jar from Jaffa most likely belongs to this earlier period, as it was found in the same locus (308) as three of the Egyptian carinated jars described above, which, according to their form and decorative style, must be pre-Thutmose III, making the short-necked ovoid jar from Jaffa the earliest Egyptianized example discovered in the southern Levant thus far.

7.3.2.3 Storage Jars (Figure 7.4:5-6)

Storage jars are large jars with thick everted rims, ovoid to globular bodies, and rounded bases, and because of their similarity in shape and size, they are also commonly called *zirs* after the Arabic term for modern large-sized vessels used to store water. All examples of storage jars in the southern Levant, where only a few examples have been discovered, have been identified as Egyptian imports (Martin 2011: 70). In Egypt and Nubia, these vessels are classified according to the short or tall stature of the neck (Holthoer 1977: 80-82). A total of five large Egyptian
storage jars have been discovered at Jaffa, including two of the short-necked variety (MHA 2303 and 5215), one of which is a complete vessel, and three of the tall-necked variety (MHA 5124, 5255, and 5268) (see Figure 7.4:5-6). The height of the complete Egyptian short-necked storage jar from Jaffa is 72.5 cm, which is similar to those discovered at other southern Levantine sites, as well as those in Egypt, which typically range between 56 and 75 cm tall (MHA 2303; Figure 7.4:6). The rim diameters of this vessel type in the Levant and in Egypt fall between 15-22 cm, and the examples from Jaffa are in the upper range, with an average rim diameter of 19.6 cm (19.5-21 cm), and therefore, along with the height, demonstrate that the Egyptian storage jars from Jaffa belong to the largest category of this vessel type.

In Egypt and Nubia, large storage jars are typically manufactured out of Marl clays, although examples of Nile clays are also extant, for example, at Amarna and Fadrus (Rose 2007: 98-99; Wodzińska 2010: 88-90). Marl clay ceramics are fired at higher temperatures, around 800-1000°C, with a surface that fires to a beige, pink, or light yellow color, and a section illustrating a dense homogenous groundmass with mineral inclusions and little or no organic matter (Nordström and Bourriau 1993: 175-178). The preferred Marl variants for large storage jars are types C and F, which are categorized according to the coarseness of the groundmass and the nature of the inclusions. Marl C has a fine and dense groundmass with abundant limestone particle inclusions and sand added as temper, while Marl F has a medium groundmass and a large quantity of fine to medium sand, along with some mica inclusions with a few red particles (Aston 1998: 66-67; Nordström and Bourriau 1993: 179-180). The surface color of the storage jars from Jaffa ranges from pale-yellow (Munsell 2.5Y 7/3) to very pale brown (10YR 7/4), which is markedly different from the fabric of the Egyptianized vessels described above.
The majority of large Egyptian storage jars are undecorated. However, the tall-necked variety of in Egypt occasionally feature an incised band circling the neck of the vessel. Two of the three examples of tall-necked storage jars from Jaffa (MHA 5255 and 5268) bear an incised decorative groove that traveled around the most restricted area of the neck (see Figure 7.4:5). These incised decorative elements are similar to those located in the same position on the Egyptian-style slender ovoid jars described above, and with the major exceptions of size and fabric, the Egyptian tall-necked storage jars share many features with the Egyptianized small slender ovoid jars.

Egyptian large storage jars of the tall-necked variety were manufactured using a two-part formation process, where the body of the vessel was hand-made, while the rim and neck were created using the wheel (Holthoer 1977: 81; Martin 2011: 70). The join between the wheel-made neck and the hand-made body is clearly visible on these jars, and this feature was also clearly noticeable on all three examples of Egyptian tall-necked storage jars from Jaffa (MHA 5124, 5255, and 5268), where a series of vertical smears covered and overlapped the area of the join (see Figure 7.4:5). Indicators of other Egyptian manufacturing techniques among the large storage jars from Jaffa include the presence of two rows of horizontal rope impressions encircling the mid-body of the complete example of the short-necked jar, which is also marked by secondary trimming or “turning” near the base of the vessel (MHA 2303; Figure 7.4:6). The rope impressions, which are 3.2 and 3.4 cm wide, are similar to those described above on the large bowls and carinated bowls, which is linked with the Egyptian practice of rope-drying, which was employed for large closed forms as well (Arnold 1993: 91; Aston 1998: 110).

In Egypt, large storage jars are found throughout the Second Intermediate Period and the 18th Dynasty, with a peak in popularity in the early part of the 18th Dynasty, after which they
gradually decline until they disappear by the end of the period (Martin 2011: 70). The fabric composition is an even further chronological indicator of this ephemeral vessel type, with those of Marl F rarely found toward the end of the 18th Dynasty, and those of Marl C receding even earlier in the period (Aston 2001: 181). Large store-jars similar to the examples from Jaffa have been discovered in Egypt and Nubia at Amarna (Rose 2007: 98-99, Type SH6), Aniba (Wolf 1937: 130, Type 23), Buhen and Semna (Reisner, Dunham, and Janssen 1960: Figs. 19:18.1.330, 28.1.187, 20:28-11-37), Tell el-Dab‘a (Aston 2001: Fig. 13:11; Fuscaldo 2001: 155, Fig. 4:30h; Hein 1994: 40, Fig. 11g-h; Hein and Jánosi 2004: 84, Fig. 57), Deir el-Ballas (Bourriau 1990: 63, Figs. 4.5:10), Gurob (Brunton and Engelbach 1927: Pl. 36:40A), Tell Hebua (Seiler 1997: 28, Pl. III, Fig. 5:ZN 94/103, 105), Memphis (Bader 2001: 185, No. 315, 189, No. 322; Bourriau 2010: 78, Fig. 18:1657, 2383), Nubia (Holthoer 1977: 81-82, Pls. 16:ST1, 17:ST3), and Sedment (Petrie and Brunton 1924: Pl. LX:276A, LXIV:26M).

Egyptian large store jars have rarely been discovered in the southern Levant, with only five total examples at two sites. Three complete vessels and two more rim sherds, which have been dated to the early 18th Dynasty, were found at Tell el-‘Ajjul (Petrie 1933: Pl. 33, Type 31Y20). While these vessels are contemporary with the most widespread period of those in Egypt, the one rim sherd of an Egyptian large storage jar from Tel Mor came from a Late Bronze Age IIB context, when this form had already declined considerably and was almost obsolete in Egypt (Martin and Barako 2007: Fig. 4.9:11). The addition of the five examples from Jaffa to the previous corpus of Egyptian large storage jars in the southern Levant essentially doubles the total assemblage of this vessel type.
7.4 FUNCTION

7.4.1 Simple Bowls (Figure 7.3:1-3)

The function of the simple bowls from Egypt and the southern Levant is generally associated with the presentation and consumption of food and drink. The smaller dishes are commonly shown in New Kingdom Egyptian tomb paintings held by patrons at a banquet while a server pours liquid into the vessel (see, for example, the 18th Dynasty tomb of Rekhmire at Thebes; Davies 1943: Pl. 42). Similar serving and banquet scenes also appear in the Levant on Late Bronze Age II carved ivories from Tell el-Far‘ah (S) and Megiddo (Kempinski 1989: 145, Fig. 43:25; Loud 1939: Pl. 4; Petrie 1930: 19, Pl. 55).

It has also been suggested that Egyptian-style simple bowls in the southern Levant had a votive function, due to the fact that several have been discovered in or around sacred contexts and are marked by an interior soot residue, possibly signaling their employment for incense or food offerings (Mullins 2007: 444). The use of simple bowls in this manner at Jaffa may be connected to the presence of several Egyptianized tall pottery stands at the site, whose Egyptian parallels, commonly called “cult stands,” often held an attached or detached simple bowl on the rim (Wodzińska 2010: Types New Kingdom 224-226, 231-233). Although any of the simple bowls from Jaffa could have rested upon these tall stands, those missing a lower portion could have once been attached, and those with uneven disc bases or excessive clay lumps on the bottom, both of which cause the vessel to sit at a severe angle, would be good candidates for bowls to be placed on a stand.

A more symbolic function of simple bowls has been tied to several examples discovered at Beth-Shean (Wimmer 1993; 1994), Deir el-Balah, Tell el-Far‘ah (S) (Goldwasser and
Wimmer 1999), Tel Haror (Goldwasser 1991), Lachish (Gilula 1976; Goldwasser 1991; Sweeney 2004; Tufnell 1958: 132-133, Pls. 44, 47), and Tel Sera‘ (Groll 1973; Goldwasser 1984) that bear painted Egyptian hieratic texts of an administrative nature. These texts record Egyptian regnal dates, the names of Canaanite rulers, Egyptian names and titles, Canaanite toponymns, and specific amounts of emmer wheat and barley, most likely recording the Egyptian taxation of Canaan.

The use of ostraca for record-keeping in Egypt is well-known, however, the use of whole vessels for this purpose is much rarer, and probably denotes a special function of the bowls (Gardiner and Sethe 1928: 27). It has been suggested that these simple bowls, along with those lacking texts, were symbolically used as offerings containing a grain sample that represented a figurative share of owed taxes (Martin, Gadot, and Goren 2009: 381). This idea has been linked to the discovery of several caches of simple bowls stacked in storerooms or pits at Aphek, Beth-Shean, and Tel Sera‘ (Martin 2006: 149-150; Martin, Gadot, and Goren 2009: 381). Two similar caches of Egyptianized pottery were discovered in Area A at Jaffa, one excavated by Jacob Kaplan in 1956 and designated as “pit of the vessels,” and the other containing 12 “Egyptian” bowls found in a “plastered receptacle” in a Late Bronze Age IIB wall niche excavated by Zeev Herzog in the late 1990s (Herzog 2008: 1792).

7.4.2 Large Bowls and Carinated Bowls (Figure 7.3:4-7)

The function of Egyptian-style large bowls in the southern Levant has typically been linked to food consumption and serving, especially in the display of certain provisions or in food processing, like mixing or grinding (Martin 2009: 461; 2011: 250). Carinated bowls in Egypt were commonly manufactured out of Nile clays and utilized as vessels for cooking (Aston 1998:
However, due to the fact that all of the Egyptianized and Egyptian examples discovered in the southern Levant, including those from Jaffa, lack any sign of burn marks, has lead to the supposition that carinated bowls were not employed in the process of cooking foodstuffs in the southern Levant (Killebrew 1998: Ill. II:70:3; Martin 2009: 447; Stidsing and Salmon 2011: 176, Note 224). It is likely that the imported versions from Egypt were considered more of a luxury item and used as part of fine table ware.

7.4.3 Flowerpots¹⁰⁵ (Figure 7.3:8)

Several different functions have been suggested for the Egyptian-style flowerpots in the southern Levant, with the most basic designation focusing on a “utilitarian” use, which is based on the rough and unembellished appearance of this vessel type (Martín 2011: 47-48). Flowerpots might have been employed as containers, but the widespread perforation in the base of these bowls eliminates their utilization for liquids, and their contents must have been restricted to dry, semi-dry, or viscous materials, such as fruit, tools, or dough (Holthoer 1977: 83; Lhote 1954, Fig. 45; Wreszinsky 1915: Pls. 48a, 249). The name of this vessel type actually arrives from the discovery of six flowerpots positioned inside of small hollows between larger tree pits in a garden complex at Tell el-Dab’a (Hein 1994: 39-40, Fig. 11a; 1998; Jánosi 1994: 30-31, Fig. 8). However, these examples had additional perforations in the sidewalls, and while a few examples from Nubia were also found containing the remains of roots, Holthoer proposed that plants were not intentionally planted in the flowerpots, but rather that the roots originated from germinating grain or fruit seeds, which the vessels once contained (1977: 84).

¹⁰⁵ For a review of the function of flowerpots in light of examples from Jaffa, see Burke and Mandell 2011: 266-268.
Holthoer noticed that some of the flowerpots from Nubia contained a layer of soot that adhered to the interior surface, which caused him to suggest their employment as incense burners, a theory that he believes is substantiated further by a few hieroglyphic signs and several artistic offering representations (Holthoer 1977: 83; Lhote 1954: Figs. III, 164). Moreover, in the Old Kingdom, similarly-shaped vessels were covered and used for fumigation, and in the New Kingdom, a deposit of Thutmose III included a flowerpot that contained incense (Épron et al. 1939: Pl. 55; Fakhry 1937: 28, Pl. 3).

Other theories surrounding the function of Egyptianized flowerpots in the southern Levant are associated with the production of comestibles. Mullins has noted the similarities between flowerpots and beer-jars, including the coarse execution, ribbed sidewalls, deep finger imprints on the exterior, and perforated bases, which he suggests might link the two types together in function (2002: 260). While this might be the case, especially since beer-jars tend to only be discovered in later contexts where they appear to replace flowerpots in the southern Levant, the parallels in the manufacturing techniques belies the fact that these two ceramic types have incredibly different shapes, with flowerpots having an open-form and beer-jars being a closed-vessel form. On the other hand, this does not necessarily demonstrate that these two vessel types were not utilized for the same purpose, but rather might indicate that whatever role they played might have shifted between the period in which the flowerpots are discovered (18th Dynasty) and when beer-jars become widespread (Ramesside Period).

Perhaps if these vessels were employed to produce a certain foodstuff, such as beer, the production process underwent changes in these periods, requiring a shift from an open vessel to a closed form. W.M. Flinders Petrie suggested over a century ago that an open vessel similar to that of flowerpots were utilized for the production of beer in Egypt. In his excavations at Rifeh,
he discovered a perforated conical bowl that contained a pressed cake of barley mash and grains, which he proposed demonstrated that this vessel type was “used to squeeze out the fermented beer from the gain, the cake being sufficiently tenacious not the break through the hole” (Petrie 1907: 23).

Other scholars have tied the function of flowerpots to the production of bread. Michael Homan suggested that this vessel type was used to bake bread, which could be expelled from the flowerpot through the insertion of a finger in the perforation in the base (2004: 89). Holthoer also proposed that these vessels could have been utilized as bread molds, based on the similarity of the conical shape of flowerpots to the bread molds depicted in Old Kingdom tomb scenes, which he asserted is supported by a hieroglyphic sign showing a flowerpot containing bread or dough (1977: 83; Steindorff 1913: Pl. 84). The bread baking process would have begun with the filling of an unperforated flowerpot with an unmodeled rim with dough and then covering this vessel with a perforated flowerpot with a modeled rim, which would permit a tight join when placed together in this manner (Holthoer 1977: 83, Fig. 61). The two vessels would then be placed in an open fire, with the perforation allowing the expulsion of air from the inside, baked, and the finished bread removed when the mold had cooled by lifting away the upper flowerpot, with the deep finger imprints in the base facilitating the handling of the vessels.

However, when Holthoer examined the flowerpots he found no evidence of secondary exposure to heat among any of the vessels, and consequently, concluded that they must have not been used in the production of bread. Instead, he proposed that the vessels were actually a symbolic representation of a bread offering, especially since they were commonly discovered together with beer-jars in graves in Nubia, essentially representing the bread and beer portion of the Egyptian offering formula, and that “this could indicate that the Egyptianized Nubians,
although not expressing it in writing, followed the prescriptions of the Egyptian *Htp di nsw*” (Holthoer 1977: 83).

Martin disagrees with this theory, stating that “the relation between flowerpots and Old Kingdom bread molds is already questionable” and “the association of flowerpots and beer jars as votive vessels in the Egyptian offering ritual is even less convincing,” mostly due to the fact that these two ceramic types are never discovered together in the Ramesside Period (2011: 48). While the connection between Old Kingdom bread molds and New Kingdom flowerpots might not be entirely plausible, it was common for the Egyptians to include empty ceramic vessels (or their wooden dummy equivalents) in tombs as a symbolic representation of the foodstuffs that would provision the deceased, illustrating that “symbolic approaches and interpretations could bridge the gap between aspiration and reality” (Baines and Lacovara 2002: 15).

7.4.4 *Carinated Jars* (Figure 7.3:9)

Egyptian carinated jars discovered in Nubia were discovered containing the remains of dom-fruits and honey-combs, and it is possible that these products were also exported to the southern Levant (Holthoer 1977: 133). On the other hand, it has also been suggested that more valuable commodities, such as various oils, would have been transported in these vessels, which had capacities ranging from 0.4 to 1 liter (Martin 2011: 250, 253; Martin and Agmon 2011: 255). Martin suggests that at Late Bronze Age I sites, like Megiddo, Yoqne’am, and Tel Dan, carinated jars might have been sent as gifts to Canaanite dignitaries (2011: 253). Since carinated jars in the assemblage from Jaffa also date to this early period, the vessels might have also represented Egyptian gifts. Due to the small size and asymmetry of carinated jars, it has also been proposed that they served a votive purpose (Holthoer 1977: 133).
7.4.5 Ovoid Jars (Figure 7.4:1-4)

The function of small, slender, broad, and short-necked ovoid jars has commonly been interpreted as tableware utilized during meals, where these vessels were connected with pouring and drinking liquids, as well as the short-term and small-scale storage of these and other commodities (Martin 2009: 461; 2011: 59-60, 250). These functions have been linked with ovoid jars through the use of similarly-shaped vessels in artistic representations in Old Kingdom, Middle Kingdom, and New Kingdom tombs (Paice 1997: 25, Figs. 10, 16a-b). The carrying capacities of these four types of ovoid jars varies according to the form, with the small variety holding between 0.3 to 1.1 liters (average 0.6 liters), the slender jars 1.9 to 3.1 liters (average 2.5 liters), the short-necked versions slightly higher at 3.2 to 6.5 liters (average 4.9 liters), and the largest variety, broad ovoid jars, holding 12.4 to 15.1 liters (average 13.8 liters) (Martin and Agmon 2011: 255).

7.4.6 Storage Jars (Figure 7.4:5-6)

As their name implies, these vessels, which had a capacity of about 45 liters, are typically connected with the storage of items (Martin and Agmon 2011: 255). Martin and Yaniv Agmon suggest that after they were imported to the southern Levant from Egypt and when “they reached their destination, they were clear[ly] intended to remain stationary” (2011: 255). At Tell el-Dab’a, the broken rim and neck portions of large storage jars were recycled as stands (Hein 1994: 40).
7.5 DISCUSSION

7.5.1 Large Bowls, Carinated Jars, Flowerpots, Storage Jars, and Ovoid Jars

While the above theories regarding the function of Egyptian and Egyptian-style ceramics in the southern Levant provide more-or-less plausible hypotheses regarding the use of these vessels, especially in Egypt, there is less of a discussion concerning the significance of these specific ceramics to the Egyptians. For example, the Egyptianized ceramic assemblages in Canaan are commonly described as utilitarian coarse-ware used in a kitchen or dining setting, but the question still remains as to why the Egyptians in the southern Levant would choose to produce their own pottery types when local Canaanite forms were readily available. Furthermore, there is still a question as to why some Egyptian forms were commonly imitated in the Levant, while others forms were not transferred abroad, either through importation or local production. The answer to these questions can be discovered through an examination of why or how these forms might be significant to the Egyptians residing and working abroad in Canaan, which requires not only a comprehensive study of individual vessel types, but also how the entire Egyptian and Egyptianized ceramic assemblage might have functioned together as a whole.

It is proposed that almost every vessel type in the Egyptian and Egyptian-style ceramic corpus at Jaffa could have played a significant role in the production, storage, serving, and drinking of Egyptian beer at the site, which would have necessitated the importation or local manufacture of these vessel types, including large ledge-rim bowls, carinated jars, pierced-bottom large bowls, flowerpots, storage jars, slender ovoid jars, small ovoid jars, and simple bowls. Beer was not only the most important form of liquid nutrition for the Egyptians, and one of the foundations of the Egyptian diet, but this foodstuff, and the ingredients used to produce it,
also played imperative roles in the economic and administrative systems of Egypt (Haring 2009; Helck 1971; Kemp 1989: 125). Taking these roles into consideration, an additional function for the Egyptianized simple bowls as measurers of grain is also proposed.

Although there are a few different theories regarding the details of the ancient Egyptian brewing process, the basic operational sequence can be reconstructed from the artistic record, including both two-dimensional and three-dimensional representations, textual information, and the material residues of brewing (Darby, Ghalioungui, and Grivetti 1977: 502–12; Hartman and Oppenheim 1950: 6-16; Hornsey 2003: 48-72, 83-86; Katz and Maytag 1991; Lutz 1922: 78-96; Samuel 1996; 2000). Unfortunately, the popularity of illustrating and modeling the brewing process waned before the start of the New Kingdom, so examples from the Old Kingdom106 and Middle Kingdom107 are typically utilized to supplement the three surviving tomb scenes of New Kingdom108 beer production. Artistic representations of the Egyptian brewing process typically begin with the mixing of a batch of dough, made from malting and then grinding barley and/or emmer wheat into flour, which would be mixed with heated water. After the dough was made, it next had to be made into little cakes, and at this stage, fruit or honey was added to the mix. Both fruits, especially dates, and honey served as the significant aspects of flavor, as well as a supplier of the essential sugars needed for the creation of alcohol (Darby, Ghalioungui, and Grivetti 1977: 543; Hornsey 2003: 62-63; Katz and Maytag 1991: 30-32; Kemp 1989: 123-24; Montet 1958: 87; Sagrillo 2001: 174).

106 Old Kingdom brewing scenes are found in the tombs of Mersyankh (Dunham and Simpson 1974: Fig. 11), Niankhnum and Khnumhotep (Moussa 1977: Taf. 23), Ti (Steindorff 1913), Asa (Davies 1902), Khentika (James 1953: Pl. IX), Idu (Simpson 1976), Khenty (Saleh 1977: Figs. 41-43, Pls. 11, 18), Mera (Petrie 1898), Pepi (Blackman and Apter 1953), and Pepiankh (Blackman 1924: Pl. XIII).

107 Middle Kingdom brewing scenes are found in the tombs of Daga (Davies 1913), Amenemhat (Newberry 1893: Pl. XXVI), Antefoker (Davies 1920: Pls. XI-XII), Khnumhotep (Newberry 1893), and Djehutihotep (Newberry 1892).

108 New Kingdom brewing scenes are found in the tombs of Rekhmire (Davies 1943), Nebamun (Säve-Söderbergh 1957: Pl. XXII), and Kenamun (Davies 1930: Pl. LVIII).
In Egyptian artistic representations, a large bowl or platter beside the large dough mixing vat served as a surface for the formation of the small dough cakes, as well as the integration of the fruit or honey into the previously-prepared batch of dough, which was accomplished through kneading these ingredients into the dough by hand. This step in the production process was deemed important enough that it was often described in a label just above the scene illustrating the incorporation of the sugars (see, for example, the tomb of Antefoker, Davies 1920: Pl. XI). Any of the almost 30 examples of ledged, ridged, plain, or everted rim large bowls could have been used for this purpose, especially those with a more shallow or flat interior (Figure 7.3:4-6).

The dates and honey used in the production of beer were kept in small baskets or jars nearby the mixing tray. Above, it was noted how the Egyptian carinated jars discovered in Nubia contained the remains of dom-fruits and honey-combs, demonstrating that fruit and honey were exported from Egypt to Nubia in these vessels (Holthoer 1977: 133). The same might also be true for the same vessel type in the Levant, of which seven exemplars were discovered at Jaffa, whose imported contents might have consisted of the sugars that would have been played an essential role in the production of beer that had an authentic Egyptian flavor (MHA 2297; Figure 7.3:9).

In the brewing process, after dates or honey were added to the dough cakes, they were allowed to rise, but were not baked, as ovens are never illustrated or modeled in Egyptian breweries, and the analyses of the morphology of the starches found in ancient Egyptian beer residues disqualify baking as a stage in the procedure (Samuel 2000: 555). After the dough had risen, the small cakes were dropped into a circular sieve, which was set over a large jar, and water poured over the top of the dough. As the water drained through the perforation in the sieve, the dough cakes would be agitated by hand so that they broke up and mixed with the
water. In Egyptian tomb scenes, the vessels typically illustrated in this step of the process consist of a conical-shaped bowl set in the mouth of a large ovoid, globular, or bag-shaped jar.

Two different types of Egyptianized vessels with pierced bases from Jaffa may have been used as a sieve in this part of the beer production process. The first of these are large pierced-bottom bowls, of which there are at least seven examples at Jaffa (MHA 2301; Figure 7.3:5). The bases of these vessels range in diameter from 9.5 to 12 cm and would have been small enough to fit just inside the mouth of a typical New Kingdom Egyptian store jar, which would have caught the material passing through the sieve. Another proposed pierced-bottom vessel that may have been employed as a sieve in the production of Egyptian beer at Jaffa are the almost two dozen Egyptian-style flowerpots, which were previously associated with the brewing process by W.M. Flinders Petrie, when he discovered a mashed barley and grain cake in the bottom of a similar perforated vessel (1907: 23) (MHA 2238; Figure 7.3:8).

According to Egyptian artistic representations, after the dough was broken up and washed through the sieve with water, the dregs that were trapped in the sieve were then pressed to eliminate any residual liquid. Fermentation was instigated through the yeasts in the unwashed jar that sat below the sieve, or by the augmentation of beer from a previous brewing procedure (Cutler and Cardenas 1947: 41; Geller 1992: 21; Samuel 2000: 555). In both tomb illustrations and models, the jars that caught the dough and liquid that passed through the sieve are large Egyptian storage jars or zirs, which were also used as fermentation vessels. Five large Egyptian storage jars from Jaffa could have served this purpose (MHA 5255 and 2303; Figure 7.4:5-6). After having fermented in these large storage jars for a few days, the final act of the process was to decant the beer into smaller jars and seal them with a disk or clay or a lump of mud plaster for
storage or transport (Darby, Ghalioungui, and Grivetti 1977: 547; Lutz 1922: 81; Montet 1958: 88; Samuel 2000: 555-556).

The shape of the jars used to store beer changes throughout Egyptian history. In the Old Kingdom, beer store-jars in artistic representations are depicted as narrow, neckless, bullet-shaped vessels, while those of the Middle Kingdom are more globular with a neck and rolled rim. The jars mostly commonly shown in New Kingdom tomb paintings as storing beer have an ovoid-shaped body, round base, and an everted rim. At least ten of these slender ovoid jars have been discovered at Jaffa, and the incised decoration around the neck of many of these vessels matches a similar horizontal decoration appearing on some of those in the Egyptian tomb paintings (see, for example, the New Kingdom tomb of Nebamun, Säve-Söderbergh 1957: Pl. XXII) (MHA 2298; Figure 7.4:2). These slender ovoid jars were not only employed as storage vessels for beer, but were also used to serve beer and other liquids at the table in Egyptian dining or banquet scenes (Paice 1997: 15, 25, Figs. 10, 16). Liquids were poured from these jars into cups of a similar shape to small ovoid jars, and since three Egyptianized versions of these were discovered at Jaffa, these were probably used as drinking cups as well (MHA 5269; Figure 7.4:1).

Almost all of the aforementioned ceramic types proposed to have been utilized in the production, storage, serving, and imbibing of Egyptian beer were of specific shapes that were not found in the Canaanite ceramic repertoire. For the Egyptians to consume this important component of their daily nutrition, they would have needed to either import or produce Egyptian beer, and importing such a staple item would be improbable, since emmer wheat and barley beers spoil within a week of decantation (Darby, Ghalioungui, and Grivetti 1977: 547; Jennings et al. 2005: 281; Katz and Maytag 1991: 33; Montet 1958: 88). Therefore, the Egyptians would
have needed to brew their own beer, and this necessitated either importing or producing the forms of pottery needed in its production. Since most of these vessels are utilitarian rough wares, which were not usually exported from Egypt, the remaining choice was to locally-produce the ceramics needed for production, and also import carinated jars filled with Egyptian fruit and honey to give the beer an authentic Egyptian flavor.

7.5.2 Simple Bowls and Large Bowls

While beer production might be a viable reason for manufacturing several of the Egyptianized vessels described above, the function of the most frequently-occurring Egyptianized ceramic type, simple bowls, appears to be more complicated (Figure 7.4:1-3). There must have been a reason why these Egyptianized simple bowls were manufactured when there were almost identical forms in the Canaanite ceramic repertoire. The aforementioned variations between Egyptianized and Canaanite bowls, namely, fabric, clay preparation, surface treatment, production techniques, decoration, and base-type do not seem to demonstrate any real strong difference that would indicate a certain function or compelling reason as to why producing an Egyptianized version would be preferred over using local Canaanite bowls. A possible explanation might be that the Egyptians just preferred to use Egyptian-style bowls, and since these vessels were never exported to Canaan, they locally-produced their own versions. However, a more complex use might be ascertained from the peculiarities of examples from other sites in Canaan.

Several examples of these Egyptianized simple bowls discovered at Lachish, Tel Haror, Tell el-Far‘ah (S), Deir el-Balah, and Tel Sera‘ bear painted Egyptian hieratic texts of an administrative nature (Goldwasser 1984, 1991; Goldwasser and Wimmer 1999; Groll 1973;
Sweeney 2004; Wimmer 1993, 1994). These texts record Egyptian regnal dates, the names of Canaanite rulers, Egyptian names and titles, Canaanite toponyms, and specific amounts of emmer wheat and barley. These texts most likely record the Egyptian taxation of Canaan. The use of ostraca for record-keeping in Egypt is well-known, however, the use of whole vessels for this purpose is much rarer, and probably denotes a special function of the bowls (Sweeney 2004: 1614-1615).

These bowls are clearly linked through their texts to the Egyptian collection of grain in Canaan, which leads to the possibility that some of these Egyptianized simple bowls were specifically manufactured to be used as measuring devices for grain. It would be impractical to assume that these small bowls were utilized in measuring the large amounts of grain gained from the taxation of the Canaanites, as these quantities can be equal to tens of thousands of liters. Instead, some of the bowls might be attached to the much smaller amounts of grain used in the production of bread or beer, the latter of which was just described as a likely function of the other Egyptianized vessels at Jaffa. If some of these simple bowls were used to measure grain, it follows that they might have also been used in the calculation and distribution of rations.

The system used by the Egyptian administration in the payment of municipal employees is well-known. Hundreds of ostraca, papyri, graffiti, and other inscriptions from Middle and New Kingdom administrative centers, temples, fortresses, settlements, and expedition routes illustrate how the Egyptians kept careful records of these state-sanctioned payments, which came out of the royal storehouses (Simpson 1973; Janssen 1975; Müller 1975; Smith 1990; Ezzamel 2004). The rations were made in-kind using various commodities, the most widespread across Egyptian history being bread and beer, and their main ingredients, emmer wheat and barley (Simpson 1973: 222; Janssen 1975: 344, 346). Depending on the period, the amount of the
rations was calculated in terms of loaves of bread, jars of beer, and measurements of emmer wheat and barley, one or all of which were distributed on a tri-monthly, or weekly, basis to workers (Kemp 1989: 125; Miller 1990, 1991). The quantity distributed to each state employee was determined by the minimum wage of the period and area, and profession and rank of the individual receiving the ration (Müller 1975: 249, 255). The lowest-paid workers were provided with the minimum wage, and those in a higher position would receive double, triple, or any number in ratio to the minimum wage depending on their occupation and rank (Kemp 1989: 126).

In the Middle Kingdom, the average daily ration for an unskilled Egyptian laborer working on a construction project in the Wadi Hammamat was 10 loaves of bread and 1/3 of a jar of beer, while the soldiers sent to safeguard the project were given 15 loaves and ¾ of a jar of beer daily (Ezzamel 2004: 523). Rations for Egyptian soldiers in the Middle Kingdom stationed abroad at the Nubian fortress in Uronarti were recorded on wooden dockets in the shape of various bread loaves, which kept track of the exact amounts of grain needed to make a certain number of loaves, averaging 13 loaves of bread per soldier per day (Simpson 1973: 220; Smith 1990: 204). The premise that the ration system was well established during the Middle Kingdom is evidenced by the fact that the ration amounts changed little in the New Kingdom, with a Ramesside inscription in the Wadi Hammamat again referencing rations of 10 loaves of bread per worker (Müller 1975: 255). However, instead of tallying rations by the week, they were then calculated according to the month, but still distributed on a weekly, or tri-monthly, plan. Another shift between Middle Kingdom and New Kingdom ration accounts is that records in the latter period focus less on amounts of bread loaves and beer jugs, and more on measurements of grain, which the worker could then trade for other commodities.
In the state-organized New Kingdom village of Deir el-Medina, a normal workman laboring in the tombs of the Valley of the Kings was paid a monthly ration of 4 khar of emmer wheat and 1.5 khar of barley, which, according to mathematical ration dockets, is equal in production value to about 9 loaves of bread and 1 jar of beer a day, which is almost identical to ration amounts in the Middle Kingdom (Černý 1954: 917; Helck 1963: 604; Janssen 1975: 460; Simpson 1973: 220; Smith 1990: 204). The Ramesside Papyrus Northumberland II gives the amount of barley provided as a weekly ration to six named soldiers, which amounted to 2 heqats, or about 10 loaves per soldier per day (Barns 1948). The specific amount and caloric intake of the average daily ration for an Egyptian state employee in the Middle and New Kingdoms has been analyzed according to modern food composition tables for emmer wheat and barley in the Middle East (Miller 1991). The average daily ration for one individual earning the minimum wage amounts to about 0.6 kilograms, which is equal to a caloric intake of about 2100 calories per day, a common daily quantity of consumption across past and present populations (Kemp 1989: 127; Miller 1991: 258).

Volumetric analysis performed with the assistance of George A. Pierce on vectorized profile drawings of every Egyptianized simple bowl with a complete profile (31 total) using computer-aided drafting (CAD) software shows that the average volume of the bowls from Kaplan’s excavations at Jaffa is approximately 0.87 liters, which is equal to 615 grams of barley. This quantity of barley is comparable to the daily quantity calculated from ration documents across the Middle and New Kingdoms in Egypt (see Janssen 1975, 1991; Kemp 1989: 117-128; Miller 1991).109 The largest bowls in this assemblage averaged 9.17 liters in volume, which is

109 The volume of the bowls was computed directly by the CAD software after drawn profiles of bowls were scanned, scaled, and digitized after which “solid” objects consisting of the empty space below the rims of the bowls, were created by revolving each digitized profile around a center axis. Adjustment to the derived solid compensated for uneven or irregular profiles when necessary. Following the creation of each solid object, the CAD software
approximately equal to one week’s worth of rations for an individual earning minimum wage. Therefore, it is possible that some of the Egyptianized simple bowls at Jaffa were specifically manufactured to measure out emmer wheat and barley rations from the Egyptian royal granaries to the soldiers and other personnel working in the city. While the exact location of the Egyptian granaries at Jaffa has not yet been discovered, the importance of these granaries is mentioned in several Late Bronze Age texts from Egypt and the Levant (see Burke 2011).

The earliest text referencing Jaffa’s grain storage is Amarna Letter 294, where Jaffa is described as possessing a “granary of the king,” which uses a phonetic spelling of the Egyptian word for granary, Snwšt (Moran 1992: 336-337). The letter describes how men had been sent to the city to serve and guard the Egyptian granaries, but that they had been overpowered. Jaffa is also referred to as being protected in Amarna Letter 296, where a man named Yahtiru, who had grown up in Egypt, writes to the king explaining how he has faithfully guarded the gate of the city (Moran 1992: 338-339). In the 19th Dynasty, Jaffa appears in an Egyptian hieratic text on Papyrus Anastasi I, where the city and its renowned beautiful agricultural fields are referenced as a stopping point in a list of key trading depots (Gardiner 1911: 6-30). Jaffa also appears in a ca. 1230 B.C.E. Akkadian letter found at Aphek, where the Ugaritic governor Taguhlina complains to his Egyptian counterpart Haya that a large amount of wheat, estimated at fifteen tons, had been delivered to Jaffa but was not yet repaid, again referencing the continued significant function of the city’s granaries (Singer 1983; Horowitz and Oshima 2006: 35-37). These texts illustrate the existence and importance of Egyptian granaries at Jaffa throughout the New Kingdom, and the possibility that a variation of the Egyptian word for Jaffa, Ypw, appears in a

calculated the mass of the object, resulting in the volume of the bowl. While this digital method of rendering profiles and determining volume provides a sense of accuracy given the possible precision of vector-based CAD software, the resulting volumes and average related here should be taken as “best estimates” given the number of steps and potential for human error between illustrating the actual bowl profile and obtaining the volumes of each bowl from the CAD software.
text on one of the abovementioned simple bowls with hieratic grain records, further substantiates this case (Sweeney 2004: 1602).

7.6 SUMMARY AND CONCLUSION

The Egyptian and Egyptianized ceramic assemblage from Jaffa, as described in this chapter, illustrates that there are close links between ceramic technological production and cultural identity. This chapter began with a descriptive presentation of the material, including a discussion of the corpus in terms of Egyptian manufacturing techniques related to a foreign or local fabric, organic temper, firing temperatures, and manufacturing techniques, such as secondary trimming, string-cutting, two-step formation, perforation, rope-drying, and mass production. It was demonstrated that some of the aspects regarding fabric, temper, and firing, are also found within the Canaanite ceramic repertoire and therefore cannot truly be considered Egyptian practices when observed in isolation; however, when several of these traits appear together on one vessel type, a case for a strong affinity to an Egyptian tradition can be argued.

This chapter also presented a comprehensive and detailed typology of the Egyptian and Egyptianized ceramic assemblage from Jaffa, which included simple bowls, large bowls, carinated bowls, flowerpots, small ovoid jars, slender ovoid jars, broad ovoid jars, short-necked ovoid jars, carinated jars, short-necked storage jars, and tall-necked storage jars. Each of these types was described according to the associated form, dimensions, manufacturing techniques, surface treatments, and chronological extent, and then systematically analyzed in view of comparanda from Egypt, as well as other sites in the Levant, including Beth-Shean and Deir el-Balah, which allowed for an inter-regional comparison and positioning of the city within a greater Egypto-Levantine context.
As a few of the Egyptian-style forms, like carinated bowls, broad ovoid jars, and large store jars, are remarkably rare in the Levant, and the assemblage at Jaffa not only essentially doubles the number of previously-known examples, but also contributes to the understanding of these types outside of Egypt. It was illustrated that the Egyptian and Egyptianized ceramic assemblage from Jaffa is one of the largest early collections of this material corpus in the southern Levant, with certain forms, like simple bowls with a splash-decoration, flowerpots, carinated jars, slender ovoid jars, and large storage jars, only appearing in the 18th Dynasty in Egypt and the Late Bronze I to IIA in the Levant.

The remaining portion of this chapter was devoted to examining the function of these vessels, which first occurred through a collated review of previous scholarship that have mentioned the purpose of Egyptian and Egyptianized assemblages at other Levantine sites, and concluded with a view of the material at Jaffa from an Egyptian perspective and under the lens of cultural identity theory, which analyzed and proposed new functions and a special significance of these specific Egyptian and Egyptian-style vessel types in the Levant at Jaffa. I proposed that almost every vessel type in the Egyptian and Egyptian-style ceramic corpus at Jaffa likely played a substantial role in the production, storage, serving, and drinking of Egyptian beer at the site, as beer was not only a staple in the Egyptian diet, but this foodstuff, and the ingredients used to produce it, also played imperative roles in the economic and administrative systems of Egypt.

The simple bowls that form the main component of the Egyptianized group in the Jaffa corpus are also associated with these foodstuffs, and I suggested that they performed both administrative and quotidian tasks in measuring and distributing emmer wheat and barley rations from the Egyptian royal granaries to the soldiers and other personnel working in the city. The discussion of the forms, manufacturing techniques, function, and significance of the Egyptian
and Egyptianized ceramic assemblage at Jaffa illustrates the close and multifaceted links between issues of cultural identity and the production sequence and technology employed in pottery manufacture, as well as the foodways and administrative systems of the individuals who produced and utilized such pottery.
CHAPTER EIGHT. CONCLUSIONS

8.1 INTRODUCTION

Because chapters four, six, and seven represent a melding of detailed analyses and comprehensive conclusions for each of the three case studies in this project, this chapter brings together the aspects of cultural identity theory that were outlined in chapter two in relation to specific examples from the results of each of the case studies. In this way, the bridge between the theoretical framework and the analyses and conclusions of the mortuary, residential, and ceramic data sets can be presented and summarized in a more concrete manner, without resorting to the overly broad generalizations that were apparent in previous studies on the material. Because not all of the results are repeated in this chapter, the reader is advised to consult the analyses and conclusions recorded in chapters four, six, and seven to gain a more detailed understanding of how the data sets pertain to cultural identity.

In this chapter, examples of the creation, maintenance, and exhibition of cultural identity are presented through three inter-connected, and many times overlapping, categories of evidence, including temporality, materiality, and spatiality. Each of these overarching categories is founded on a hierarchy of several subcategories, and examples from the mortuary, residential, and ceramic contexts for each of these are provided below. All of these subjects clearly interact and intersect with one another in a variety of ways, and so a few examples in a section toward the end of the chapter will illustrate how materiality and spatiality cannot truly be segregated and must actually be integrated in order to establish a thorough viewpoint of all aspects of cultural identity. The functionality and significance of space and material was a major focus of this project, and these themes are found throughout the examples offered below. Before turning to the temporal, material, and spatial aspects related to a cultural identity, analyses and results in
this project regarding facets of other types of identity, including gender, age, status, occupation, and supernaturalism, are presented.

8.2 SOCIAL AND SUPERNATURAL IDENTITIES

The concept of cultural identity interacts with other facets of identity, such as gender, age, occupation, and status. Lynn Meskell has demonstrated that the cultural identity of New Kingdom Egyptians cannot be completely separated from the other strands that are interwoven to form complex social identities (Meskell 1999). A range of genders and ages were observable in both the residential and mortuary contexts at Beth-Shean and Deir el-Balah, which were both literally represented by the sexed and aged human remains in the cemetery at the latter site, as well as associated with the presence of gendered spaces in the houses and Egyptian gendered objects, such as cowrie-beads, Bes amulets, stelae, quernstones, and spindle whorls, discovered in the mortuary and residential contexts at both sites. The gendered spaces of the houses will be mentioned below in relation to the spatiality and materiality of structural divisions. The gender and age data from the cemetery at Deir el-Balah not only illustrate the visibility of these aspects of social identity in this project, but also show how gender and age interact with socio-economic status in mortuary contexts (Figures 3.3-3.7).

For example, the distributional pattern of female and child burials in the necropolis at Deir el-Balah parallel those in New Kingdom Egypt at Deir el-Medina, with females generally buried jointly with adult males and high-value objects, while children were more commonly interred alone with either only a few low-status objects or a complete absence of objects. Ramesside Egyptian patterns regarding socio-economic status were also observable in the cemeteries at Beth-Shean and Deir el-Balah, where at the latter site, graves illustrating different
levels of wealth expenditure were found mixed together, some of which were situated in cluster patterns that might be status-orientated, and the overwhelming majority of the higher status tombs at the former cemetery contained a large amount of communal burials (Figures 3.1-3.7). The six structures examined in the residential portion of the study also reflect an almost complete array of socio-economic statuses as known from Egypt, ranging from the smallest tripartite house (Building 1131) at Deir el-Balah to the largest four-sided villa (Building 1500) at Beth-Shean (Figures 5.1-5.13).

A wide variety of occupational identities were also revealed in this study, even of those with little or no archaeological signature. For example, the presence of religious personnel can not only be inferred from the discovery of items associated with these professions, but also from the presence of temples at the settlement of Beth-Shean, where Egyptian stelae were positioned on behalf of the deceased in order to receive a reversion of offerings through the daily rituals performed by priests and other religious staff for deities in the temple. Some items analyzed in this project even demonstrate a chain of occupations linked to a single object type. For example, Egyptian-style simple bowls, which were examined in detail in the previous chapter, were most likely manufactured by Egyptian potters, painted with hieratic texts by scribes, possibly employed as measuring devices by officials, bakers, and brewers, and perhaps played a role in the rationing of soldiers and other Egyptian governmental employees (Figure 7.3:1-3). These simple bowls were also employed in kitchen and dining settings in the residential contexts, and appeared as part of the tomb markers and presentation of offerings in the mortuary contexts.

The three case studies illustrate that comprehensive research into cultural identity must take into consideration that horizontal identities based on gender and age divisions are enmeshed in the creation of cultural identity, which also interacts with vertical divisions of identity like
status, dominance, and social hierarchy (Jones 1997). The Egyptian concept of identity included another essential “supernatural” aspect, which was a symbolic construction linked to ideological perceptions and intimately connected with conceptions of the afterlife (Wendrich 2010: 201). The various aspects that constituted an individual in Egypt, namely the life force (kA), manifestation (bA), heart (ib), name (rn), shadow (Swt), and body (XAt), were especially important post-mortem, transferable from life to death, and without certain arrangements and provisions for the tomb, funeral processions, and the later mortuary cult, these aspects of Egyptian identity would cease to exist.

Both of the mortuary contexts examined in this study illustrate than an individual buried in the cemeteries at Beth-Shean and Deir el-Balah would have received a proper New Kingdom Egyptian burial, with all six aspects of identity carefully protected, prepared, and provisioned. For example, the bA, or “manifestation,” of the deceased was required to return to the tomb each night to reunite with the body as a physical anchor, without which it would perish (Allen 2001: 161-62) (Figures 3.1-3.7). The shaft and pit tombs in the Levantine mortuary contexts of this study reflect the typical types of New Kingdom Egypt, and would have adequately functioned as an official dwelling place for all six aspects of an Egyptian individual, both offering protection from the outside world and allowing the bA a place to return each night.

The physical body (XAt) was essential for the deceased’s continued existence, and accordingly, the corpse required several forms of preservation, one of which was to be properly sheltered inside of a subterranean burial chamber in a tomb (Kanawati 2001: 20-21; Olson 2001: 214). The body (XAt) would have also been protected in the pit and shaft tombs of Beth-Shean and Deir el-Balah, as in Egypt, in a deep underground burial chamber of a shaft tomb at the former site or the recesses of a subterranean pit burial at the latter. Even further protection and
preservation of the bodily aspect of Egyptian identity arrives from the discovery of over 100 anthropoid sarcophagi at the two sites, as well as the presence of linen inside a coffin at Deir el-Balah, which might be evidence of the wrapping or simple embalming that was common in the early New Kingdom in Egypt.

The *kA*, or life-force, was the most important non-physical aspect of an Egyptian, but lacked a concrete form and needed to reside in a body kept in a tomb, which was commonly called “the house of the *kA*” (Taylor 2001: 18-20). The deceased were also nourished through the continual sustenance offered to the *kA*, which would leave the body in the burial chamber and travel to the offering place above or near the tomb, where provisions were deposited. The subterranean burial compartments of the graves at Beth-Shean and Deir el-Balah were perfect representations of the house of the *kA*, which would have not only been provisioned through the numerous items discovered inside of the tombs, but also through the proposed supraterranean offering places located above the burials.

At Beth-Shean, these offering places might be represented by the rock ledges fronting the shafts of these burials, as well as through the stelae, which functioned as cult targets, placed in the temples of the settlement, where family members of the deceased would also leave provisions and invoke the reversion of offerings from the temple (Figure 3.1). At Deir el-Balah, these offering places might be represented by the funerary stelae believed to have been from the cemetery, as well as the ceramic tomb markers that were partially subterranean and partially supraterranean, providing a literal physical conduit for the *kA* to travel from the body in the burial chamber to the offering place above the tomb (Figures 3.3 and 3.7). The name (*rn*) of an Egyptian also needed to survive into the afterlife, and so would be inscribed on objects deposited in the tomb and pronounced at the chapel during offering rituals, which is paralleled by inscribed...
items, such as scarabs and stelae, in the burials and offering places at Beth-Shean and Deir el-Balah (Vittmann 2013: 6).

8.3 TEMPORALITY

History, or the recorded interpretation of the past, is fundamental to the temporal realm in the creation and maintenance of cultural feelings and identities. Research into historical accounts chronicling interactions between various cultural groups can illustrate the pre-existing differences that are keenly drawn upon in the creation of cultural identities, since it is only through interactions with different cultural traditions that individuals are forced to perceive observed differences in a conscious way (Eriksen 1993: 34; Jenkins 1997: 76-77; Jones 1997: 95). Past historical events and constantly reiterated ideologies about foreigners must have influenced the Egyptians living in Canaan during the New Kingdom, when the pejorative “vile Asiatic” (aAm-Xsy) abounded and the Hyksos’ devastation and oppression of Egypt was still being referenced during the reign of Merenptah, almost 400 years after their expulsion (Redford 1997: 17-18).

For example, in the Egyptian “Tale of Sinuhe,” the pharaoh urges the protagonist to return to Egypt before his death, explaining that if the Amu (“Asiatics”) inter him, Sinuhe might receive a ram’s skin for a coffin and not receive a proper burial and funerary process (Simpson 2003: 62; Taylor 2001: 40). As demonstrated above, any individual buried in the shaft tombs at Beth-Shean or the pit graves at Deir el-Balah would have had a suitable Egyptian burial, with a proper subterranean burial chamber, supraterranean offering place, treatment and protection of the body (XAt), provisioning of the kA and bA, perpetuation of the name (rn), and even an anthropoid coffin as opposed to a ram’s skin (Figures 3.1-3.7). While an apposite Egyptian
burial might have been possible at Beth-Shean and Deir el-Balah, there was still an issue with the reuse of the Early Bronze Age IV tombs at the former site; for example, the ethnocentrism of the Egyptians, along with the required continual subjugation of the enemies of Egypt in order to sustain mAat, would most likely have made it difficult for the Egyptians to be buried in the same tomb as a “vile Asiatic.”

However, since the cemetery appears to have fallen out of use after its initial construction in the Early Bronze Age IV, the vast amount of lapsed time (at least 550 years) since the cemetery was last in use might have lessened the negative foreign aspects of the Northern Cemetery (Figure 3.1). On the other hand, the Egyptians believed that a burial in an ancient necropolis would provide prestige and relevant benefits through mere association, and the ability to reuse ancient building materials also added an intrinsic numinous quality to an individual’s tomb (Goedicke 1971: 1-7; Helck 1962; Kampp-Seyfried 2003: 2). The deliberate choice to reuse and modify the ancient tombs of Beth-Shean for new burials in the Late Bronze Age might have been related to the ancient nature of the cemetery and the positive connotations associated with an ancient burial ground, which may have even been viewed as sacred space.

Because cultural identity is flexible and dynamic, temporal changes in the political, economic, and social histories of Egypt and Canaan will most likely also mirror or parallel temporal changes in the cultural identity of Egyptians residing in the Levant. Even though this study examined contexts of a relatively short time-span in regards to the houses at both sites and the cemetery at Deir el-Balah, issues related to temporal change were still revealed in several cases. One of the best examples of temporal change occurred in Building NB at Beth-Shean, which underwent structural and other modifications across an ephemeral time span of the Iron Age IA (about 60 years) (Figures 5.8-5.10). The earlier version of the structure in Stratum N-3b
was small (8.5 x 12.5 m) and had a simple layout with one large rectangular-shaped chamber in the southern area of the structure and two small rooms to the north, which follows the design of a typical New Kingdom three-room house in Egypt (**Figure 5.9**). This residence type belonged to the lowest levels of the socio-economic strata in New Kingdom Egypt (Koltsida 2007: 3-4; Ricke 1932: 13-17; Tietze 1985: 48-84).

Sometime during the 60 year period of the Iron Age IA, Building NB was redesigned and renovated, which included extending the northern and southern ends of the structure and constructing three new internal walls, which modified the layout to a large rectangular-shaped room in the northern part of the structure with a small adjacent chamber, two chambers to the north, followed by a further two rooms in the northernmost area of the edifice (**Figures 5.8 and 5.10**). Regarding New Kingdom Egyptian parallels, the new blueprint altered the edifice from a small three-room house to a larger tripartite house, which was the most common form of domicile in Egypt, and comprised “the standard residence of a New Kingdom low class state employee” (Koltsida 2007: 4), as well as the quarters and barracks for military personnel stationed in Nubia (Badawy 1966: 28-29, 207-218, 222-227; Dunham 1967: 141-167; Dunham and Janssen 1960: 113-128, 226-227; Emery and Kirwan 1935; Emery, Smith, and Millard 1979; Kemp 2006: 231-241).

Other alterations made to Building NB at Beth-Shean also signal a temporal shift in social identity, such as the addition of an exterior niche near the main entrance to the building, which is similar to those discovered outside tripartite houses in Egypt containing a high-value item that signified the position of the owner (Bruyère 1939: 252-253, 291) (**Figures 5.8 and 5.10**). As the area of the front room in the earlier structure would have been unroofed, the addition of post holes to support a roof over the newly built living space would have also marked
a rise in socio-economic status for the house and its residents, and if these post holes were instead utilized for a permanent loom, this addition would have had a similar effect.

Furthermore, the presence of high-value items and spaces, like a carnelian lotus amulet and an Egyptian-style bed-area or platform, in the later version of the house also parallel the shift in the social identity of the occupants. Perhaps the original owner of Building NB in Stratum N-3b received a promotion, changed occupations, or was affected by some other event that caused an elevation in socio-economic status and/or the accolade of a higher salary, allowing the individual to renovate their home into a more high-value and high-status residence. A change in ownership could also be suggested as a cause of the modifications.

Other modifications in the layout of the buildings in the residential contexts of this study mark a shift in cultural and/or social identity. For example, the large central chambers of Buildings 1500 and 1700 at Beth-Shean were both divided down the middle by the addition of partition walls in the Iron Age IB, after the Egyptians were believed to have left the site (Figures 5.3-5.7). From an Egyptian perspective, these large chambers were extremely significant to the residents of these structures, as this space was where the owner of the residence would conduct business and entertain guests and the household would sit, relax, and dine (Koltsida 2007: 58, 86, 88). The division of these central rooms into two or more smaller chambers marks a shift in the function of the space, which probably also reflects a shift in the social or cultural identity of the occupants.

Other temporal changes that paralleled those of New Kingdom Egypt were revealed in the ceramic assemblages at the Northern Cemetery of Beth-Shean. The two earliest (Late Bronze Age I-IIA) graves (27 and 29) in the necropolis contained the widest variety of pottery, as well as the third and fourth highest amounts of ceramics in the necropolis (Figure 3.1). This
includes several forms, such as chalices, cooking pots, and kraters, that were completely absent in the later burials (and at Deir el-Balah), as well as the largest amount and variety of foreign vessels, including 83% of the Cypriot ceramics of the entire cemetery. Since these two tombs date to the period contemporary with the Egyptian 18th Dynasty, these characteristics parallel the high amounts and varieties of pottery for that period in Egypt, as opposed to the later New Kingdom. Similarities with the Egyptian Ramesside Period also occurred in contemporaneous graves at Deir el-Balah and Beth-Shean, where only one imported vessel was discovered in the Iron Age I tombs, and the diversity of forms dropped considerably, for example, 88% of the pottery in Tomb 66 of the Iron IA belonged to only two types.

8.4 SPATIALITY

Cultural identity is not only articulated through temporality, but also through the employment of spatiality, where discursive practices and representations can become objectified symbols of culture (Preucel and Meskell 2004: 219). Placemaking plays a central role in the processes of identity formation and the construction of social orders. People create a sense of self and belonging through the creation of place, which is connected with the way they conform to and confront the outside world (Allison 1999: 1). Landscape has recently reemerged as a compelling framework in the analysis of spatiality in human geography and archaeology. Landscapes are not separated from human experience or seen as purely visual; instead they are part of a world of movement, relationships, memories, and histories. The social landscape consists of both context and content, and can be defined as an ideological concept that represents how specific classes of people have signified themselves and their world through their imagined relationships with nature (Cosgrove 1984: 13; Tilley 1994: 23). Issues regarding the complex
relationships between surrounding landscapes and cultural identity were examined in several parts of this project, especially those landscapes related to the four cardinal directions, which were an essential aspect of Egyptian life in the New Kingdom, where the path of the sun and the Nile dictated the position of the world of the living in contrast to the realm of the deceased.

The orientation of the body in Egyptian burial customs was based on a firm belief in the need to conform to the four directions of the sky during rites of passage, such as birth, mummification, and burial (Raven 2005: 37). The human body was a true model of the universe, or microcosmos, and must therefore be oriented according to the laws and routes of nature and the gods (Altenmüller 1977: 624-627; Beinlich 1984). The same types of symbolic landscapes were also present in the cemeteries at Beth-Shean and Deir el-Balah, where the overwhelming majority of the graves (88%, n=15 for the latter site and 98%, n=43 for the former) are oriented east-west with the heading point west, according to practices followed in Egyptian burial customs of the New Kingdom (Figures 3.1-3.7). It is significant that the majority of burials at both Beth-Shean and Deir el-Balah were aligned on a similar axis, especially considering the great distance between the two locations, as well as the marked differences in tomb type, with those at Deir el-Balah being newly constructed shallow pit graves with an open view to the sun as a compass, while those at Beth-Shean were reused rock-cut shaft burials lacking any viewpoint of the sky.

Landscapes are also important in processes of identity formation, because “people create their sense of identity through engaging and re-engaging, appropriating and contesting the sedimented pasts that make up the landscape “ (Preucel and Meskell 2004: 219). The meanings and symbolism of landscapes play a notable role in identity for members of diaspora, migration, displacement, or relocation. Although such generalizations usually assume that movement
creates a dis-location between people and landscape, the sense of landscape actually extends out from the present locale and is contingent upon a larger temporal and spatial field of relationships (Sontag 1983: 385). This larger temporal and spatial field appears to have extended from Egypt and into the Levant, as the relationship between topography and tomb construction was paralleled in both areas.

For example, the two main factors relegating the choice or assignment of a pit burial, as opposed to shaft tomb, in New Kingdom Egypt are socio-economic status and topography, and this also appears to have also been the case at Beth-Shean and Deir el-Balah. The most popular type of elite and sub-elite grave throughout the New Kingdom in Egypt was a shaft tomb with a rock-hewn superstructure located in prominent burial grounds, such as the faces of cliffs or the upper portions of hills. All 13 of the Late Bronze Age and Iron Age tombs in the Northern Cemetery at Beth-Shean are shaft tombs cut into rocky cliffs, and the majority (77%, n=10) of the tombs contained objects that indicated an Egyptian middle or upper middle socio-economic status (Figure 3.1).

On the other hand, the quantity and quality of the items deposited in the pit tombs at Deir el-Balah show that the overwhelming majority (92%, n=34) of the occupants of these graves were part of the low socio-economic strata, with the remainder belonging to the middle class, including three tombs of the second highest level (high-middle) (Figures 3.3-3.6). In Egypt, these sub-elites are typically only buried in pit tombs in locations where constructing a shaft tomb was impossible or impractical, especially in the flat trough of the Nile Valley or on the geziras of the Delta. Deir el-Balah shares several characteristics with both of these locations, as the necropolis is located within the low area of a longitudinal trough, is about 1.6 km from the coast, has a high water-table, and contains a layer of sandy topsoil (hamra) and bedrock (kurkar).
Research regarding the importance of landscape in pharaonic Egypt has identified critical components, such as earth and stone constructions mimicking the ambient world, as well as both natural and built landscapes, concluding that landscape marking and movements demonstrate a sanctification of royal authority (Richards 1999). These issues of power and control through the management of landscape also extended to the areas controlled by Egypt, for example, the strategic control of Deir el-Balah because of its key location on the coast and the “Ways of Horus,” and Beth-Shean because of its crucial position near the crossing of the Jordan River and links with the east.

The proximity of Beth-Shean to the Jordan and Harod Rivers might have also played a more symbolic role in the relationship between landscape and identity to Egyptians in the area (Figure 3.2). Egypt was essentially a riverine culture, centered around the Nile River and the annual inundation, phenomena that infiltrated all aspects of Egyptian life, including irrigation, food production, surplus, famine, chronometry, transportation, control, religion, and the economy. The Egyptians might have equated these Levantine rivers with the Nile, and especially the god Hapy, who represented both the inundation of the river and the Nile itself. Although cult centers dedicated to Hapy were located in southern Egypt near the cataracts of the Nile, the deity is described in the “Hymn to Hapy” as spatially limitless, dwelling in the netherworld or an unknown location, having no shrines, and as dew descending from the sky, demonstrating that the Egyptians might have equated Hapy with all fresh waters, whether in Egypt or abroad. The mention of Hapy in a hieroglyphic inscription on a doorjamb discovered near a temple in Beth-Shean shows that the deity retained a presence at the site, which was located an immense distance from the Nile River and Egypt.
One of the most important aspects of landscape to the New Kingdom Egyptians was the position of the Nile River in relation to the necropolei, with the ideal location for a tomb on the western bank of the river, so that the ceremonial riverine transport, considered by some to be the most important part of the funeral procession, could properly occur from the east bank to the west bank and the realm of the deceased and the deities (Dodson 2010: 804; Jones 1995: 29). A burial in the Levant would mean that the tomb was eternally east of the Nile, a location not unheard of in Egypt, but certainly not desired (Dodson 2010: 804; Seidlmayer 2001: 507). On the other hand, the most important aspect of the Egyptian funeral procession, the ceremonial transport of the deceased from east to west across the river, could have been accomplished at Beth-Shean in a substitutive fashion. The Harod River separated the settlement from the cemetery, which necessitated crossing the river from the southeast to the northwest in order to reach the tombs (Figure 3.2). Although the direction of the crossing was not precisely from east to west, the river might still have played a role in the riverine transport aspect of the Egyptian funerary process.

An extremely important aspect of the spatiality of cultural identity is related to the location of a site, for example, Egyptians living along the cosmopolitan coastal plain or the international Via Maris in the Levant might assert or display a dissimilar cultural identity from those residing further inland. Some of the differences between the material culture from Beth-Shean and Deir el-Balah revealed in this study might be indicative of the varying positions of these sites. For example, the percentage of foreign vessels in the necropolis at Deir el-Balah was over twice as high (16%) as at Beth-Shean (7%), which might be due to the fact that the former site was situated on the coast and trade goods were therefore more accessible. Similar results
came from the quantity of imported Egyptian ceramics in the residential contexts of both sites in this study, which were almost identical to the numbers from the cemeteries.

On the other hand, when the percentages of Egyptian and Egyptianized pottery from both necropolei are compared, they are almost identical, with 23% of the tombs in the Northern Cemetery containing Egyptian and Egyptianized ceramics, and 24% at Deir el-Balah. These results appear to demonstrate that while obtaining Egyptian and other foreign imports might have been more difficult for the residents of Beth-Shean, locally-produced Egyptian-style vessels were readily accessible to both sites, which might also reflect an equal significance of this corpus and its function for the individuals residing, working, and being buried at Beth-Shean and Deir el-Balah. Other issues revealed in this study regarding importation, local production, and the relationship to site location involved Egyptian items of personal adornment, which were highly portable and tradable objects that could consequently travel great distances in order to arrive at sites like Beth-Shean or Deir el-Balah, however, it is also possible that some of these items could have been manufactured in the Levant.

Even if some jewelry was locally-produced, certain materials that are not native to the Levant must have been imported from Egypt, and the distribution of materials for items of personal adornment at Beth-Shean and Deir el-Balah show related patterns. In New Kingdom Egypt, the three most common materials for jewelry were carnelian, gold, and faience, which is paralleled at Deir el-Balah in the same order, with 151 items of personal adornment of carnelian, 92 of gold, and at least 51 of Egyptian faience. At Beth-Shean, these materials were less numerous but in the same order as well, with 103 items of carnelian, 26 of gold, and 18 of Egyptian faience. Since all three of these materials must have been imported to the Levant, the proximity of these two sites to Egypt appears to have played a role, like the aforementioned
foreign ceramic imports, with Deir el-Balah located on the coast, near a major trade route, and closer to Egypt, while Beth-Shean was positioned both further north and east away from Egypt.

Related patterns may arrive from the quantity of amethyst, onyx, bronze, and silver jewelry in the tombs at both cemeteries. Amethyst was also native to Egypt and not to the Levant, and so its presence at Deir el-Balah and absence at Beth-Shean is noteworthy. On the other hand, onyx was not native to either land, and is believed to have been imported from further east in southern Asia. No items of onyx were discovered at Deir el-Balah, but two were found in a tomb at Beth-Shean, demonstrating the site’s location on a trade route with the east and the associated close ties. As for bronze, it was the second most numerous material for ornamental items at Beth-Shean, totaling 43 objects, while at Deir el-Balah only three items were made of bronze. Similar ratios are found for jewelry of silver at the two cemeteries, although these were discovered in much smaller quantities at both sites.

In Egypt, bronze was seldom used for jewelry, and silver and onyx were rare in general, mostly due to the fact that all of these materials had to be imported. Since silver occurs naturally and bronze was heavily produced in the Levant, it might have been equally accessible to individuals at both Beth-Shean and Deir el-Balah. If Egyptians were buried in the cemeteries at Beth-Shean and Deir el-Balah, it appears that their first choice for materials matched those of the homeland (carnelian, gold, and faience) and it is possible that these items of jewelry were most likely also manufactured in the homeland. However, if they were not able to acquire these materials or goods from Egypt, they substituted them for more readily available local or locally-produced items of local materials (bronze, silver, onyx, etc.).

Similar conclusions might be reached regarding the presence of Egyptian/ized bronze vessels, which were found in similar numbers in the cemeteries of both Beth-Shean and Deir el-
Balah, including almost identical examples at each site. While these vessels might have been imported, demonstrating that they were equally accessible and significant to those living nearer to Egypt on the coast as those living further away and inland, it might be more likely that they were locally-produced, especially those at Beth-Shean. If they were indeed imported, the raw bronze material would have been exported from the Levant to Egypt, where it was manufactured into a vessel, and then imported back to the Levant for consumption. On the other hand, if these vessels were locally-produced, and since almost identical versions of these vessels were discovered at both sites, there might have been multiple Egyptian (or Egyptian-trained) craftsmen throughout the Levant, or there was a central manufacturer and the bronzes traveled far distances.

A research avenue related to cultural identity theory in spatiality is the landscape of migration, diaspora, colonization, exile, return, and relocation. A polythetic set of critical attributes of these themes include, but are not limited to, dispersal, myth and memories of a homeland, alienation or distinction within a host society, a desire for an eventual return to the homeland, ongoing support and commitment for the homeland, and a collective identity importantly defined by this relationship (Clifford 1994: 305; Safran 1991: 83). I examined these attributes in light of Egyptian expatriate life and death abroad in Canaan. For example, a study of the reasons why an Egyptian might or might not desire a burial in Canaan in light of spatiality includes the potential prodigious distance from family members, who would have been tasked with completing an unfinished tomb, conducting the funeral, and administering the mortuary cult, which might have resulted in a foreign-style improper burial (Baines and Lacovara 2002: 11).
Furthermore, a burial in the Levant would mean the tomb might not be in close proximity to an Egyptian king’s grave, royal residence, mortuary temple, festival route, divine temple, or ancient cemetery, which would provide prestige and relevant benefits through mere association (Helck 1962; Kampp-Seyfried 2003: 2). The position of the grave in relation to the Nile River was also a concern. While the majority of Egyptians, who had the choice and wealth to do so, would most likely have preferred to construct a tomb in Egypt, many of these complaints would have or could have been mediated and rationalized in order to attain an appropriate burial abroad in Nubia or the Levant.

The conciliation of an improper burial, family members, proximity to an ancient cemetery, and relation to a river has already been discussed, and while Egyptian royal graves and mortuary temples have yet to be documented in the Levant, the remains of several phases of an Egyptian-style divine temple have been uncovered in the settlement on the mound of Beth-Shean (James 1966; James and McGovern 1993; Rowe 1940). Expatriate Egyptians residing or working in the Levant may have chosen a burial in the Northern Cemetery of Beth-Shean due to the close proximity of a large temple dedicated to syncretized Egyptian and Canaanite deities. These individuals would have also benefited from Egyptian priests performing the Daily Offering Ritual for the gods in the temple at Beth-Shean, as deceased Egyptians received a reversion of these offerings in the hereafter as part of their own perpetual mortuary cult (Lapp 1986).

The creation and maintenance of cultural identity among communities dispersed amongst other peoples is a key component to diaspora theory, which examines issues of both regional and local identities, because “the larger political and social terrain of diaspora involves intimate and personal engagement, just as the intimate and personal engagements with place and well-worn
territory opens towards larger political and social landscapes” (Bender 2001: 77). Even if the Egyptians residing and working in the Levant might have been able to rationalize a burial abroad due to the proximity of family members, a temple, or a river, the idea of a collective cultural identity might have been a far more powerful factor in choosing or regulating a cemetery abroad. In social terms, this means that individuals of varying socio-economic levels, genders, and ages were all interred in the same cemetery based on a common Egyptian cultural identity, which tied them all together in the necropolis, which was truly “a community in death” (Baines and Lacovara 2002: 9).

A similar situation can be recognized in Egyptian-style cemeteries abroad in Nubia, where “the emphasis on Egyptian ethnicity through a strict adherence to burial practice promoted in-group solidarity in the face of a perceived or real Kerman threat” (Smith 2003: 196). Egyptians who died in the Levant might have specifically been brought to Deir el-Balah in order to receive a burial “in traditional Egyptian fashion and in the company of other Egyptians” (Morris 2005: 523-524), which might be related to the local production of Egyptianized funerary items at the site, as well as the accessibility to imported Egyptian objects, and so the same theory might also apply to the Northern Cemetery at Beth-Shean. Evidence for proximity-burials, whether based on professional, loyal, familial, or cultural associations, is manifest in the cemeteries at Beth-Shean and Deir el-Balah. For example, all 13 of the cavernous rock-cut tombs in the Northern Cemetery of Beth-Shean contained multiple internments, which is demonstrated by an assortment of human remains and the presence of at least 56 anthropoid coffins spread throughout 11 of the tombs (Figure 3.1). The idea of an Egyptian state-sponsored burials or communal tombs must also be taken into consideration of Egyptians residing or working abroad.
8.5 MATERIALITY

While material culture may articulate cultural identity, there is not always a direct link between specific artifacts and ethnic identity (Hodder 1982: 24). However, some features of material culture can undeniably be directly linked to cultural identity, with most aspects intersecting and combining in numerous distinctive constructions (Hodder 1982: 75-86). Material culture is the medium through which many social relationships and interactions are negotiated (Díaz-Andreu and Lucy 2005: 9). Because cultural identity is an aspect of contextually-based social relationships, aspects of material culture in this project did not just focus on the objects themselves, but also examined issues of action, interaction, and practice, which mutually serve as a locus for emphasizing cultural or communal distinctions (Eriksen 1993: 139). Instead of viewing style (the form and decorative aspects of material culture), as a static and passive aspect of artifacts, I paid attention to the active role of individuals and the processes of procurement (e.g., of raw materials), manufacture, and use of material culture (Sackett 1977, 1990). The context-specific knowledge drawn upon to create and manipulate artifacts is constituted in specific social and historical worlds, which also influence the construction and maintenance of cultural identity.

For example, Pierre Lemonnier has asserted that the study of the pronounced relationship between pottery and cultural identity must especially examine “not only decorative patterns or secondary aspects of shape as definitions of one’s status or ethnic identity, but also the use of given artifacts or entire processes of production” (Lemonnier 1993: 20). In the third case study of this project, the Egyptian and Egyptianized ceramic assemblage from Jaffa was examined through a comprehensive analysis of the entire production process, including form, fabric,
temper, firing procedure, surface treatment, decorative elements, as well as manufacturing
techniques, like wheel-coiling or throwing, secondary trimming, string-cutting, two-step
formation, perforating, rope-drying, and mass production (Figures 7.3-7.4).

Similar modes of production were also examined for other types of objects, for example,
the evidence of a common set of manufacturing procedures, from the clay sources to the rope-
drying technique, across the clay anthropoid sarcophagi and the Egyptian and Egyptianized
ceramic corpus at Beth-Shean and Deir el-Balah. Like pottery, I also analyzed other items in
light of a local or foreign place of origin, for example, the accessibility of raw materials, like the
aforementioned stone and metal materials used to produce items of personal adornment, as well
as stone vessels of gypsum or calcite.

Beginning in the Middle Bronze Age or Late Bronze Age, workshops in the Levant
began manufacturing Egyptian-style vessels out of gypsum, a naturally-occurring stone in the
region (Ben-Dor 1945: 111; Lilyquist 1996). Because the two stones have a similar appearance,
it can be difficult to distinguish between calcite and gypsum based on the appearance alone,
however, they can be differentiated otherwise through the shape, decoration, and manufacturing
technology (Sparks 2003: 40). The vase, bowl, and tazza are all common Egyptian forms, and
the latter are especially recognizable as Egyptian if they are constructed out of two or more parts,
while the gypsum imitations were most commonly of one solid piece (Ben-Dor 1945: 105). On
the other hand, the ovoid jar with two loop handles is not a typical Egyptian form, and the
manner in which the interior of the vessel was hollowed out, without following the outline of the
jar, demonstrates that it was a local imitation produced out of gypsum (Ben-Dor 1945: 111).

Although this study focused on viewing the material strictly from an Egyptian
perspective, the analysis of processes of procurement and manufacture also incorporated
discussions concerning the dual cultural osmosis that occurs during interactions between two
technologies of ceramics, but also other objects, as well as architectural features, which might be linked to the concept of a “Thirdspace,” and the new form of consciousness and hybridity associated with the phenomenon (Anzaldúa 1987; Soja 1996). These “intersitial zones” shape the identity of subjects living and working within, which, as contact sectors and arenas of encounter and collision, replace the linearity of the border with the image of a “liminal mosaic” (Gupta and Ferguson 1992: 19; Pratt 1992: x). Cultural osmosis in a thirdspace is also related to the concept of “cultural brokers,” who were the individuals mediating between the Egyptian royal administration and the local Canaanite population, and who “stand guard over the crucial junctures of synapses of relationships which connect the local system to the larger whole” (Wolf 1956: 1075).

Since purpose and significance are major foci of this study, these details of the pottery corpus demonstrate a link between certain forms and the production of beer and the administering of rations. Almost all of the ceramic types proposed to have been utilized in the production, storage, serving, and imbibing of Egyptian beer were of specific shapes that were not found in the Canaanite ceramic repertoire (Figures 7.3-7.4). For the Egyptians to consume this important component of their daily nutrition, they would have needed to either import or produce Egyptian beer, and importing such a staple item would be improbable, since emmer wheat and barley beers spoil within a week of decantation.

Therefore, the Egyptians would have needed to brew their own beer, and this necessitated either importing or producing the forms of pottery needed in its production. Since most of these vessels are utilitarian rough wares, which were not usually exported from Egypt, the remaining
choice was to locally-produce the ceramics needed for production, and also import carinated jars filled with Egyptian fruit and honey to give the beer an authentic Egyptian flavor. Based on ration accounts, caloric intake, and volumetric analysis, it can also be demonstrated that some of the Egyptianized simple and large bowls at Jaffa might have been specifically manufactured to measure out emmer wheat and barley rations from the Egyptian royal granaries to the soldiers and other personnel working in the city (Figure 7.3:1-6).

These analyses and conclusions are closely related to the materiality of the daily preparation and consumption of food and food products, both within and outside the household, which are actively used as a social marker in cultural identity and group affiliation, prompting the associated use of stereotypes by others (Hastorf 1998: 779-780; Hamilakis 1999). For example, in later Greek literature, the ancient Egyptian culture was commonly linked with the consumption of beer, as opposed to other ancient cultures, where wine was more copious (Nelson 2005: 40-41). The study of cultural identity, foodways, and stereotypes illustrates that certain groups, such as the Egyptians, might have even focused on facilitating stereotypes in order to establish a separate cultural identity from other cultural groups. This might indicate a deliberate choice of the Egyptians to produce Egyptian-style bread and beer, which are the most imperative foodstuffs throughout pharaonic history, as well as being connected to the religious, economic, and administrative systems of the country, and therefore also an essential part of Egyptian cultural identity.

The employment of food in the construction and maintenance of cultural identity has been established in research involving social and cultural taboos, codified norms, religious classifications, abstinence, dietetic value, haute cuisine, famine, caloric intake, and social distinction (Scholliers 2001: 3-8). Food remains so central to an individual sense of identity, that
it has been proven that transplanted cultural groups frequently retain food habits when language and other cultural expressions tend to be altered, assimilated, or removed (Fischler 1988: 275). In the residential context portion of this study, I showed how the location of the kitchen, food preparation, and dining areas in Egyptian houses were imperative aspects of identity, reflecting gender, age, status, and especially cultural identity.

The food preparation areas in small Egyptian houses, including the three-sided, tripartite, and three-room varieties, were primarily used for grinding and were therefore most frequently located in the front section of the house, which was unroofed, and had direct access to the living room, where the majority of dining occurred (Borchardt and Ricke 1980: 152, 182, 196; Bruyère 1939: 73; Kemp 1986: 7; Peet and Woolley 1923: 22, 64-65; Verhoenen 1984). The food preparation areas in the smaller buildings examined in this project were also located in the fore-part of the structure, with Building 1131 at Deir el-Balah, which has a similar layout to an Egyptian tripartite house, containing a grindstone in the front room, and with Building NB (Stratum N-3b) at Beth-Shean, which has a similar layout to an Egyptian three-room house, featuring an Egyptian-style quern emplacement in the front room (Figures 5.9 and 5.13). Other finds in these spaces, such as specific ceramic types, were also connected to the preparation of food.

The position of the food preparation areas in the fore-part of small Egyptian houses is in sharp contrast to the kitchen spaces in the large villas, which were almost always located outside of the house in the courtyard of the largest anteroom type, and in the middle or rear section of the houses of the four-sided variety (Borchardt and Ricke 1980: 18, 47, 166-167, 178, 200, 321, 325; Frankfort and Pendlebury 1933: 17, 26; Peet and Woolley 1923: 21-22). Similar positions were also observed in the two large structures at Beth-Shean, where in Building 1700, which has a
similar layout to an Egyptian anteroom villa, over 30 vessels were discovered in the courtyard outside of the structure, including cooking pots and parts of braziers (Figures 5.5 and 5.7). The kitchen of Building 1500, which has a similar layout to an Egyptian four-sided villa, was located next to the living room in the northern area of the house, where an Egyptian-style box hearth full of ashes was located (Figure 5.4). Because material culture is actively involved in social practice and the manner in which individuals define cultural boundaries, it should be most observable in domestic and quotidian contexts, like the kitchen areas of houses (Lucy 2005: 106).

On the other hand, aspects of personal appearance, particularly the combination of textiles and artifacts in dress and bodily adornment, can notably be related to the public and pervasive assertion of cultural identity, whether in domestic, ritual, or mortuary contexts. Although it must be realized that the Egyptian notion of cultural identity was probably significantly different from the concept we know today, the Egyptians were keen to set themselves apart from other groups in the Mediterranean and Africa through material culture, art, and texts, and this persistent distinction is a salient feature of cultural identity (Eriksen 1993: 12). For example, the Egyptians frequently depicted their own monochrome white linen clothing in stark contrast to the multicolored and vivid patterned clothing of the Canaanites (Brovarski et al. 1982: 180; Negbi 1976: Fig. 103; Newby 1980: 38).

Although textiles are not always as well preserved in the temperate Levant as in arid Egypt, the discovery of pieces of a linen fabric of tabby weave of simple form, with single wefts over single warps, made from S-twisted threads of 26-28 per centimeter and the flax ultimate fiber showing distinct cross-markings and nodes, was discovered in a tomb at Deir el-Balah (Figure 3.3). The cloth was an undecorated monochrome flax-based linen, which is the
prevalent fabric type for textiles in Egypt, while those in the Levant were typically made of dyed animal wool, partially substantiating the iconography of clothing shown in Egyptian art (Cochavi-Rainey 1999: 181-183; Lilyquist 1998: 215; Vogelsang-Eastwood 2000: 286-290). The actual manufacturing process of the cloth also conforms to Egyptian practices, with S-spun threads in a simple weave, while those in the Levant are typically Z-spun in a compound weave (Hall 1986: 45-46; Kemp and Vogelsang-Eastwood 2001: 59, 436; Sheffer and Tidhar 1988: 230; Vogelsang-Eastwood 2000: 275).

Textiles are not the only salient aspect in the creation, maintenance, and assertion of cultural identity through personal appearance. The application of cosmetics as part of the daily toilette was also an important facet of Egyptian life in the New Kingdom, and several items, like kohl sticks and small stone cosmetic vases, were found in the mortuary and residential contexts at both Beth-Shean and Deir el-Balah. One of the object groups that were the most strongly tied to personal appearance were items of adornment, such as jewelry, that were worn by Egyptians both in life and in death. These objects were not only tied to a cultural identity, but also other social identities, like gender, age, socio-economic status, and occupation. One of the most cohesive examples from this study illustrating the ties between personal appearance, adornment, cultural identity, and social identity arrives from Tomb 118 at Deir el-Balah (Figure 3.3).

In Tomb 118, two carnelian Bes amulets and one carnelian Bastet amulet were discovered near the right wrist of a female aged 25-30 years old, and probably comprised a bracelet for the woman. Two signet rings, one engraved with a figure of Bes, and the other with a crossed-line star pattern, were discovered *in situ* on the fingers of the same woman. Bastet amulets were worn solely by women in Egypt, where theomorphic talismans of the goddesses represented fecundity and reproduction (Andrews 1990: 12, 19-21, 32-33). Bes was another
deity tied to women, but was also commonly worn by children, since the god specifically warded off danger during gestation, parturition, and nonage (Andrews 1990: 39-40). Bastet and Bes amulets and rings were not restricted to funerary contexts, and would have been worn during life and in death, demonstrating that both women and children required the same protection in both spheres. The fact that a female wears these deities in the tomb demonstrates that it was known what was engraved on the rings and the amulets, as well as their association solely with women in Egypt. The fact that the rings were still in situ on the left hand, where they are typically located on individuals in graves of the New Kingdom, also demonstrates a knowledge of Egyptian practices of bodily ornamentation (Smith 1992: 204).

8.6 SPATIALITY AND MATERIALITY

Several of the examples provided above for spatiality and materiality actually belong to both categories, and at the most basic, a thorough assessment must consider both space and the material associated with that space, or in reverse, material and the space associated with that material. An archaeology of architecture, which falls under both spatiality and materiality, reveals information about kinship terminologies, social structural arrangements, production techniques, domestic symbols, and marriage practices (Blanton 1994: 3). The forms and patterns of buildings are part of the nonverbal communication of a society. Amos Rapoport has sorted these forms of architectural communication into two categories: indexical and canonical (1982: 179-183).

The indexical form of architectural communication exists outside the physical structure and includes public spaces, facades, and exterior features (Blanton 1994: 11). These places and characteristics transmit messages from the occupants to others outside the house, and can reveal
and display social conformity, which relates to the formulation and enactment of patterns of human interrelationships. The indexical communication of Egyptian houses reflected the wealth and occupation of the owner and the occupants. For example, since the exterior doorway of a domestic structure was the outside representation of the entire house and its occupants, the threshold, lintels and doorjambs of the large villas were commonly manufactured out of limestone, and many were engraved and painted with artistic motifs and the name and titles of the house owner (Borchardt and Ricke 1980: 341, 345-346; Peet and Woolley 1923: 4-5, 9, Pl. VII).

This same type of indexical communication was present at Egyptian-style anteroom villa Building 1700, and probably also the four-sided villa Building 1500, at Beth-Shean where at least eleven fragments of inscribed and painted architectural stone elements were found in the courtyard, consisting of two pieces of molding, two parts of a cornice, three sections of a lintel, and four fragments of doorjambs (Figures 5.5 and 5.7). Even the façade of smaller Egyptian houses would have exhibited markers of identity and socio-economic status, for example, several examples of Egyptian tripartite houses contained a recess located in the exterior wall of the house near the main entrance (Bruyère 1939: 252). These niches would have contained or displayed a high-value item, such as an amphora, signifying the upper status of the owner, as well as the building itself (Bruyère 1939: 252-253, 291). Building NB in Stratum N-3a at Beth-Shean, which has a similar layout to an Egyptian tripartite house, might have also displayed one of these high-status niches near the main entrance (Figure 5.10).

Although studies on the indexical and canonical forms of architecture are traditionally applied to domestic structures and other constructed buildings, these concepts are also applicable to Egyptian mortuary contexts. For example, the indexical communication of the burials at Beth-
Shean and Deir el-Balah would have been represented by the supraterranean offering places position above the tombs, which were discussed earlier (Figures 3.1-3.7). These public offering places represent a good example of how spatiality and materiality must be studied in tandem, as many of these spaces were not marked by built superstructures, but rather only by the material, such as ceramics or stelae, that functioned as cult targets and/or to provision the deceased. While canonical and indexical forms of communication are conceptual distinct, they are not always distinguishable, as they both contain intertwined information concerning social status, social boundaries, rank, power, symbolic meaning, and cultural identity (Blanton 1994: 10-11, 13; Rapoport 1982: 43-48, 116).

Canonical communication in architecture occurs inside the structure, and includes semi-public and private spaces that are more hidden and confidential than those of indexical architecture. These spaces provided a direct link between ideas and events, and these links can serve as the vehicles through which social structures and cultural categories achieve sensory existence, which is associated with the concept of habitus “through the intermediary of the divisions and hierarchies it sets up… which inculcates and reinforces the taxonomic principles underlying all the arbitrary provisions of a culture” (Bourdieu 1977: 89). The size and interior architectural layout of Egyptian buildings in the New Kingdom reflect social and other cultural divisions. The elites and sub-elites of Egypt not only had houses with larger dimensions, but the interior semi-public and private spaces of the residence were more protected than those of the individuals in the lower socio-economic strata.

For example, the bedroom, which was considered the most private and restrictive space in an Egyptian abode and was isolated and separated from the main entrance of the anteroom and four-sided villas by an average of six rooms, while those of the lower social strata, such as three-
room houses, were only separated by one room (Crocker 1992: 18, 21). In this study, the layouts of the Egyptian-style four-sided villa Building 1500 and three-room house Building NB (Stratum N-3b) at Beth-Shean were shown to reflect those of their Egyptian counterparts, with the bedrooms, which were identified according to the features and objects discovered inside the chambers, being reached through a series of seven rooms for the former structure and only one for the latter (**Figures 5.3-5.4 and 5.9**). The private and isolated aspects of an Egyptian bedroom were not only due to the space’s role in sleeping, erotic activities, healing, and ritualistic purposes, but also for the storage of precious objects (Borchardt and Ricke 1980: 87; Janssen 1975: 135; Manniche 1997: 110-111, Figs. 9, 53; Meskell 1998: 236; Sethe 1924: 34).

The investigation of the division of structural remains leads to an understanding of the cultural patterning of space, which is closely tied to the cultural patterning of identity. Practice- and agency-oriented research of the household and domestic space of the house can shed light on how gender, age, class, and other factors intersect to shape cultural identity (Hendon 2004: 278). Household divisional layouts showcase differences that are formed cross-culturally, frequently due to gender and generationally-based variances (Blanton 1994: 8). The visibility of gender and the division of labor among architectural structures and layouts are a vital part of cultural context and the household decision-making process in New Kingdom Egypt (Wilk 1991: 6). For example, the position and function of the focal chamber of large and small houses was closely tied to the utilizers and activities that took place in the space.

For the larger types of Egyptian houses, the living room was consistently located in the center of the building and surrounded by rooms on all four sides, which not only protected those within from exterior weather conditions, but also represented a cool and clean “haven of peace” away from the heat, dust, and turmoil of the outside village (Crocker 1992: 14; Endruweit 1989: 72).
This chamber was a semi-public space, where the owner of the house would entertain guests while seated on a dais directly across from the main entrance to the room, which was typically located in the center of the wall and contained a high-status stone lintel and doorjambs engraved with decorative motifs and inscribed with the name and titles of the house owner (Koltsida 2007: 87, 92; Peet and Woolley 1923: 6). Other high-status stone features in these rooms include stone columns and lustration slabs (Koltsida 2007: 59-60). Similar chambers were examined in the large Egyptian-style Buildings 1500 and 1700 at Beth-Shean in this study, and these rooms were not only centralized, but the focal chamber of the former structure also had a centered entrance with engraved stone elements, stone column bases, and a lustration slab, while that of the latter structure may have contained a dais against the back wall of the room (Figures 5.3-5.7).

In smaller Egyptian houses, the focal room was not surrounded and protected on all four sides, but was typically connected to almost every other room in the structure, as the chamber was the focus of all domestic activities and the “heart” of the abode (Koltsida 2007: 58, 86). Another difference arrives from the location of the main entrance to the room, which was most commonly positioned closer to a corner rather than the midpoint of the wall (Peet and Woolley 1923: 58, 75). This position is in stark contrast to the central main doorways of the living rooms in the large villas, and is usually attributed to the idea that men of a lower socio-economic status spent most of the day at a worksite outside of the residence, leaving the domicile to the female members of the household, who spent most of their time in the living room performing domestic activities, necessitating a more private entryway to the chamber (Koltsida 2007: 87). On the other hand, this sense of privacy might have not been gender-based, and if work was occurring in
the front room of the small houses, then the occupants might have actually been seeking social interaction (W. Wendrich 2013, pers. comm., 25 May).

Many of the features and objects in the focal rooms of the smaller houses show that many female gendered-activities took place in these chambers, for example, grinding, animal husbandry, and spinning. Grindstones, quern emplacements, spinning bowls, spindle whorls, and needles were discovered in several of the small Egyptian-style houses in this project, including both strata of Building NB at Beth Shean and Building 1131 at Deir el-Balah (Figures 5.8-5.10 and 5.13). The off-center position of the entrance to the focal rooms of these structures also paralleled those in Egypt. Since dwellings are generally the principal location for the daily consumption of material culture, the entire artifact assemblage from a building was combined with its architectural features to gain a holistic viewpoint. The functionality of space is extremely important, and artifactual remains of activities can be a far better indicator of room function than general architectural features, for architecture could reflect more the majority outside world, while material culture could reflect the minority inside world (Ciolek-Torello 1984: 134).

8.7 AVENUES FOR FURTHER RESEARCH

This study employs a new methodological approach in examining Egyptian and Egyptianized material in the Levant, which entails a thorough analysis of a range of broad and narrow Late Bronze Age and early Iron Age mortuary and residential contexts, entirely from an Egyptian perspective and based on the cultural norms and praxis of New Kingdom Egypt. The analysis of these contexts at Beth-Shean, Deir el-Balah, and Jaffa is accomplished through a theoretical framework of cultural identity, which examines the materiality, spatiality, and
temporality of how cultural identity is generated, maintained, and exhibited, both in the homeland of Egypt, and abroad in Canaan.

The three case studies focus on funerary and residential contexts and ceramic assemblages, cover an array of facets related to cultural identity, beginning with the expansive analysis of every burial in the two cemeteries at Beth-Shean and Deir el-Balah, subsequently shifting to the slightly more confined analysis of specific buildings at those two sites, and then narrowing down even further to focus on one aspect of material culture, ceramic vessels at Jaffa. The purpose of these broad and narrow case studies is not to substantiate the presence-or-absence of Egyptians at Beth-Shean, Deir el-Balah, and Jaffa, or the exclusive Egyptian use of the mortuary, residential, and ceramic material at these sites, but rather to investigate how an Egyptian would have interacted with the architecture, objects, and features of life and death in Canaan, based on the cultural norms and praxis of the Egyptian homeland, and how these interactions might reveal information about an Egyptian cultural identity abroad.

This project stands on the shoulders of the previous research on Egyptian and Egyptianized material in the Levant that was discussed in chapter one, but does not come remotely near to providing the final conclusions on this material and its contexts. The results of this research only applicable to an Egyptian perspective of the two cemeteries, five houses, and one ceramic corpus that were analyzed in the three case studies, and so the opportunity arises to perform similar research on other mortuary and residential contexts in the Levant, especially those at sites not included here, as well as an opportunity to incorporate contexts outside of the mortuary or domestic realms, such as those related to locations of cult or ritual.

While this project is focused on three sites with a large corpus of Egyptian and Egyptian-style material culture, a fruitful extension to this type of study would also include sites and
contexts in the Levant that have traditionally not been identified as having a strong Egyptian cultural affinity. These sites and contexts could also be examined from an Egyptian perspective and through a theoretical framework of cultural identity. On the other hand, a similar type of project could, and I would even suggest *should*, also be performed from the perspective of other groups, especially that of the Canaanite culture. Since previous scholarship has tended to define this culture in a default sense, i.e., anything in Canaan that is not “foreign,” a similar study might tease out the more detailed aspects of what is actually Canaanite, especially since it has been shown that this group was not monolithic and was actually comprised of several multi-cultural entities (Killebrew 2005: 93-148).

Since this study focused on a single Egyptian cultural perspective, issues concerning the hybridization and amalgamation of multiple cultural groups and identities could not be scrupulously analyzed. Research from the perspective of several different cultural groups would not only illustrate the differences and boundaries between these groups, but also most likely demonstrate the similarities and syncretism between the different cultures of the Late Bronze Age and early Iron Age in Canaan, and perhaps even the Mediterranean. Examining the same contexts that were investigated in this study from other cultural perspectives, and then comparing the findings to the results of the research from an Egyptian perspective, would allow for innovative cross-cultural analyses that would take into account the complex and multifaceted relationships, interactions, and identities that were created, maintained, and exhibited among the indigenous and expatriate groups of individuals who were living and dying together in Late Bronze Age and early Iron Age Canaan.

Although this new methodological approach was applied to a set of limited mortuary, residential, and material contexts and periods in the Levant, the analyses of material from one
particular cultural perspective in order to assess how individuals with that cultural background would have experienced and interacted with the material, and how this would have essentially shaped the circumstances concerning life and death abroad, is also applicable to a wide variety of geographical areas and temporal periods, with a relevance to a world-wide understanding of the multifaceted nature of cultural identity.
WORKS CITED

Agorsah, E.K.

Ahituv, S.

Albenda, P.

Albright, W.F.

Aldred, C.

Allen, J.P.
2000 Middle Egyptian: An Introduction to the Language and Culture of Hieroglyphs. Cambridge.

Allison, P.M.

Altenmüller, H.

Andrews, C.

Anzaldúa, G.
1987 Borderlands/La Frontera: The New Mestiza. San Francisco.

Ardener, S.
Arensburg, B. and Smith, P.
1979 “The Human Remains.” In T. Dothan, Excavations at the Cemetery of Deir el-
2010 “Human Remains from the Cemetery.” In T. Dothan and B. Brandl (eds.), Deir
el-Balah: Excavations in 1977-1982 in the Cemetery and Settlement I:

Arnold, D.

Arnold, D.
1977 “Gefäße.” In W. Helck and E. Otto (eds.), Lexikon der Ägyptologie II.
Wiesbaden. 484-486.
1993 “Techniques and Traditions of Manufacture in the Pottery of Ancient Egypt.” In
D. Arnold and J.D. Bourriau (eds.), An Introduction to Ancient Egyptian Pottery.
Mainz and Rhein.

Arnold, F.
1996 “Settlement Remains at Lisht-North.” In M. Bietak (ed.), Haus und Palast im
Vienna. 13-21.

Arubas, B.
2006 “Excursus: The Impact of Town Planning at Scythopolis on the Topography of
Tel Beth-Shean: A New Understanding of Its Fortifications and Status.” In A.
Mazar, Excavations at Tel Beth-Shean, 1989-1996. Volume I: From the Late
Bronze Age IIIB to the Medieval Period. Jerusalem. 48-58.

Ashmore, W.
2004 “Social Archaeologies of Landscape.” In L. Meskell and R.W. Preucel (eds.), A

Assmann, J.
1976 “Das Bild des Vaters im Alten Ägypten.” In H. Tellenbach (ed.), Das Vaterbild
in Mythos und Geschichte: Ägypten, Griechenland, Altes Testament, Neues
2000 Der Tod als Thema der Kulturtheorie: Todesbilder und Totenriten im alten
Ägypten. Frankfurt.

Aston, B.G.

Aston, D.A.

1996 Egyptian Pottery of the Late New Kingdom and Third Intermediate Period. Heidelberg.

1999 Pottery from the Late New Kingdom to the Early Ptolemaic Period. Elephantine XIX. Archäologische Veröffentlichungen 95. Mainz am Rhein.

Aston, D.A., Aston, B.G. and Brock, E.

Aston, D.A. Aston, B.G., and Ryan, R.

2000 “Pottery from the Valley of the Kings (Tombs KV 21, 27, 28, 44, 45 and 60).” Cahiers de la Céramique Égyptienne 6: 11–38.

Aston, D.A. and Pusch, E.

Ayrton, J., Currelly, C.T., and Weigall, E.A.P.

Bács, T.A.

Badawy, A.

1968 A History of Egyptian Architecture III: The Empire (the New Kingdom), From the Eighteenth Dynasty to the End of the Twentieth Dynasty, 1580-1085 B.C. Berkeley.
Bader, B.

Baines, J.

Baines, J. and Lacovara, P.

Baines, J. and Málek, J.

Balensi, J.

Bard, K.A.

Barns, J.

Beck, P. and Kochavi, M.
1985 “A Dated Assemblage of the Late 13th Century B.C.E. from the Egyptian Residency at Aphek.” *Tel Aviv* 12: 29-42.

Beinlich, H.
Bell, M.R. 1987 “Regional Variation in Polychrome Pottery of the 19th Dynasty.” Cahiers de la cérámique égyptienne 1: 49-76.

Blackman, A.M.

Blackman, A.M. and APTED, M.R.

Blanton, R.E.

Boaretto, E.

Bonmann, A.H.

Borchardt, L.

Borchardt, L. and Ricke, H.

Bordes, F.

Borghouts, J.F.

Bourdieu, P.
Bourriau, J.D.
1981a *Umm el-Ga’ab: Pottery from the Nile Valley before the Arab Conquest.* Cambridge.

2001 “Change of Body Position in Egyptian Burials from the Mid XIIth Dynasty until the Early XVIIIth Dynasty.” In H. Willems (ed.), *Social Aspects of Funerary Culture in the Egyptian Old and Middle Kingdoms.* Leuven. 1-20.

Bourriau, J.D. and Aston, D.A.

Brandl, B.

Brovarski, E.J.
2001 The Senedjemib Complex I: The Mastabas of Senedjemib Inti (G 2370), Khnumenti (G 2374), and Senedjemib Mehi (G 2378). Boston.

Brovarski, E., Doll, S.K., Freed, R.E.

Brunner-Traut, E.

Brunton, G.
1930 Qau and Badari III. London.

Brunton, G. and Engelbach, R.E.
1927 Gurob. London.

Bruyère, B.

Burke, A.A.

Burke, A.A. and Lords, K.V.

Burke, A.A., Peilstöcker, M. and Pierce, G.A.

Campagno, M.

Canter, D.

Černý, J.

Černý, J. and Gardiner, A.

Charbit Nataf, K.
2011 “An Egyptian Mortuary Cult in Late Bronze II Canaan.” *Tel Aviv* 38: 52-66.

Charvát, P.

Childe, V.G.

Christophe, L.A.

Ciolek-Torello, R.

Clamer, C.

Clifford, J.

Cochavi-Rainey, Z.

Cohen-Weinberger, A.

Cooney, K.M.

Cosgrove, D.

Crocker, P.T.

Currelly, C.T.

Cutler, H.C., and Cardenas, M.

Darby, W.J., Ghalioungui, P., and Grivetti, L.

David, R.

Davies, B.G.

Davies, N. de G.

Davies, W.V.

DeCorse, C.R.

Demarée, R.J.

Desroches-Noblecourt, C

1977 *Tutankhamen*. Boston.

Dever, W.G.

Díaz-Andreu, M. and Lucy, S.

Dodson, A.

Dodson, A. and Ikram, S.

Dorner, J. and Aston, D.

Dothan, M. and Porath, Y.
1993 *Ashdod IV: Excavation of Area M, the Fortifications of the Lower City*. Jerusalem.

Dothan, T.

Dothan, T. and Beit-Arieh, I.

Dothan, T. and Brandl, B.

Dothan, T. and Dothan, M.

Dothan, T. and Nahmias-Lotan, T.

Douglas, M. and Isherwood, B.

Dreyer, G., Hartung, U., Hikade, T., Köhler, E.C., Müller, V., Pumpenmeier, F.

Dubisch, J.

Duncan, J.

1930 *Corpus of Dated Palestinian Pottery*. British School of Archaeology in Egypt 49. London.

Dunham, D.

Dunham, D. and Janssen, J.

Dunham, D. and Simpson, W.K.

Dziobek, E.

Elwert, G.

Emery, W.B. and Kirwan, L.P.

1935 *The Excavations and Survey between Wadi el-Sebua and Adindan 1929-1931*. Cairo.

Emery, W.B., Smith, H.S., and Millard, A.

Endruweit, A.

Engelbach, R.E.

Epigraphic Survey

Épron, L., Daumas, F., Goyon, G., and Montet, P.
1939 *Le Tombeau de Ti.* Cairo.

Epstein, A.L.

Eriksen, T.H.

Eyre, C.J.

Ezzamel, M.

Fakhry, A.

Finkelstein, I.

Finkelstein, I. and Zimhoni, O.

Fischer, P.M.

Fischer, P.M. and Sadeq, M.

Fischler, C.
Fisher, C.S.

FitzGerald, G.M.

Frandsen, P.J.

Frankfort, H. and Pendlebury, J.D.S.
1933 The City of Akhenaten II. London.

Fried, M.H.

Friedman, F.D.

Fuscaldo, P.

Gabaccia, D.
1998 We are What We Eat: Ethnic Food and the Making of Americans. Cambridge.

Gadot, Y.

Gadot, Y., Yasur-Landau, A., and Ilan, D.

Gardiner, A.H.

Gardiner, A.H. and Sethe, K.
1928 *Egyptian Letters to the Dead, Mainly from the Old and Middle Kingdoms.* London.

Garfinkel, Y.

Geller, J.R.

Giddens, A.
1979 *Central Problems in Social Theory.* London.

Gilula, M.

Goedicke, H.

Goldberg, P., Gould, B., Killebrew, A., and Yellin, J.
1986 “Provenience of Late Bronze Age Ceramics from Deir el-Balah: Comparison of the Results of Neutron Activation Analysis and Thin-Section Analysis.” In M. J. Blackman and J. S. Olin (eds.), *Proceedings of the 24th International Archaeometry Symposium.* Washington. 341-51

Goldwasser, O.
1984 “Hieratic Inscriptions from Tel Sera‘ in Southern Canaan.” *Tel Aviv* 11: 77-93.
1991 “A Fragment of a Hieratic Ostraca from Tel Haror.” *Qadmoniyot* 24: 19.

Goldwasser, O. and Wimmer, S.

Gonen, R.
Gould, B.

Gould, B., Dothan, T., and Adler, A.

Grajetzki, W.

Graves-Brown, C.

Griffith, F.L.

Groll, S.
1973 “A Note on the Hieratic Texts from Tel Sera’.” *Qadmoniyot* 6: 56-57.

Gupta, A. and Ferguson, J.

Guy, P.L.O.

Guy, P.L.O. and Engberg, R.M.

Habachi, L.

Håland, R.

Hall, M.

Helck, W.
1984 Die Lehre des Djedefhor und Die Lehre eines Vaters an seinen Sohn. Wiesbaden.

Hendon, J.A.

Herzog, Z.

Hestrin, R.

Higginbotham, C.R.

Hill, J.D.

Hobson, C.

Hodder, I.
Hodjache, S.I.

Hölscher, U.

Holthoer, R.

Holthoer, R., Säve-Söderbergh, T., and Troy, L.

Homan, M.

Hope, C.A.

Hornsey, I.S.

Hornung, E.
1990 *The Valley of the Kings: Horizon of Eternity.* New York.

Hornung, E. and Staehelin, E.
1976 *Skarabäen und andere Siegelamulette aus Basler Sammlungen. Ägyptische Denkmäler in der Schweiz 1.* Mainz.

Horowitz, W. and Oshima, T.
2006 *Cuneiform in Canaan: Cuneiform Sources from the Land of Israel in Ancient Times.* Jerusalem.

Houlihan, P.F.

Ikram, S. and Dodson, A.
Ilan, D., Hallote, R.S., and Cline, E.H.

Issar, A.S.

Jaeger, B.

James, F.W.

James, F.W. and McGovern, P.E.
1993 The Late Bronze Egyptian Garrison at Beth Shan: A Study of Levels VII and VIII. Philadelphia.

James, T.G.H.

Jánosi, P.

Janssen, J.J.
1975a Commodity Prices from the Ramesside Period. Leiden.
1980 “Absence from Work by the Necropolis Workmen of Thebes.” Studien zur Altägyptischen Kultur 8: 127-150.

Janssen, J.J. and Janssen, R.
1990 Growing up in Ancient Egypt. London.

Janssen, J.J. and Pestman, P.W.
1968 “Burial and Inheritance in the Community of the Necropolis Workmen at Thebes.” *Journal of the Economic and Social History of the Orient* 11.

Jones, D. 1995 *Boats.* Austin.

Jørgensen, M. 1998 *Catalogue Egypt II (1550-1080).* Copenhagen.

Kaplan, J. 1959 *The Archaeology and History of Tel Aviv-Jaffa.* Tel Aviv.

Kelley, A.L.

Kemp, B.J.
1984 Amarna Reports I. London.
1986 Amarna Reports III. London.
1987 Amarna Reports IV. London.
1995 Amarna Reports VI. London.

Kemp, B.J. and Vogelsang-Eastwood, G.

Kempinski, A.

Kenyon, K.M.

Kessler, D.

Killebrew, A. E.
2004 “New Kingdom Egyptian-Style and Egyptian Pottery in Canaan: Implications for Egyptian Rule in Canaan during the 19th and Early 20th Dynasties.” In G.N.

Killebrew, A.E., Goldberg, P., Rosen, A.M.

Killebrew, A.E. and Mazar, A.

Kitchen, K.A.

Klein, A.

Knapp, A.B.

Koenigsberger, O.

1936 *Die Konstruktion der ägyptischen Tür*. Glückstadt.

Koltsida, A.

Kossinna, G.

Lacovara, P.

Lapp, G.

Lawrence, S.

Leahy, A.

Lehner, M.

Lemonnier, P.

Leospo, E.

Lesko, B.S.

Lhote, A.

Lichtheim, M.
Liebowitz, H.
1972 “The Impact of the Art of Egypt on the Art of Syria and Palestine.” In D. Schmandt-Besserat (ed.), *Immortal Egypt: Invited Lectures on the Middle East at the University of Texas at Austin*. Malibu. 27-36.

Lilley, I.

Lilyquist, C.

Lipton, G.

Lloyd, A.B.

Lloyd, S.

Loat, W.L.S.

Loud, G.
Lucy, S.

Lugo, A.

Lüscher, B.

Lutz, H.F.
1922 *Viticulture and Brewing in the Ancient Orient*. New York.

Maeir, A.M.

2010 “In the Midst of the Jordan”: The Jordan Valley During the Middle Bronze Age (Ca. 2000–1500 BCE) – Archaeological and Historical Correlates. Contributions to the Chronology of the Eastern Mediterranean XXVI. Vienna.

Manniche, L.

Markowitz, Y.J.

Markowitz, Y.J. and Lacovara, P.

Mariette, A.

Martin, G.T.

Martin, M.A.S.

2011 Egyptian-Type Pottery in the Late Bronze Age Southern Levant. Wien.

Martin, M.A.S. and Agmon, Y.
2011 “Excursus: Capacities of Egyptian Closed Types.” In M.A.S. Martin, Egyptian-Type Pottery in the Late Bronze Age Southern Levant. Wien. 254-258.

Martin, M.A.S. and Barako, T.J.

Martin, M.A.S. and Ben-Dov, R.
2007 “Egyptian and Egyptian-style Pottery at Tel Dan.” Ägypten und Levante 17. 191-203.

Martin, M.A.S., Gadot, Y. and Goren, Y.
2009 Imported Egyptian and Local Egyptian-Style Pottery from Late Bronze and Iron Age Strata.” In Y. Gadot and E. Yadin (eds.), Aphek-Antipatris II: The Remains on the Acropolis. The Moshe Kochavi and Pirhiya Beck Excavations, Monograph Series of the Institute of Archaeology of Tel Aviv University 27. Tel Aviv. 362–386

Maxwell-Hyslop, R.

Mazar, A.

Mazar, A. and Mullins, R.A.

Mazar, A. and Panitz-Cohen, N.

McDowell, A.G.

McGovern, P.E.

1985 Late Bronze Palestinian Pendants: Innovation in a Cosmopolitan Age. Sheffield.

Meskell, L.

Metcalf, P. and Huntington, R.

Metzger, M.

Milde, H.

Miller, D.

Miller, R.L.

Minault, A. and Thill, F.

Mond, R. and Myers, O.H.

Montet, P.

Moran, W.L.
Morris, E.F.

Morris, I.

Moussa, A.M.

Müller, D.

Mullins, R.A.

Mullins, R.A. and Mazar, A.

Mumford, G.
1998 “International Relations between Egypt, Sinai, and Syria-Palestine during the Late Bronze Age to early Persian Period (Dynasties 18-26: ca.1550-525 B.C.).” Ph.D. Dissertation. University of Toronto.

Na’aman, N.

Nagel, G.
1938 *La Céramique du Nouvel Empire à Deir el Médineh*. Documents de fouilles publiés par les membres de l’institut français d’archéologie orientale du Caire X. Cairo.

Negbi, O.

1989 “Bronze Age Pottery (Strata XVII–XV).” In Z. Herzog, G. Rapp and O. Negbi (eds.), *Excavations at Tel Michal, Israel*. Monograph Series of the Institute of Archaeology of Tel Aviv University 8. Tel Aviv. 43-63.
Nelson, M.

Netting, R.M., Wilk, R.R., and Arnould, E.J.

Newberry, P.E.

Newby, P.H.

Nordström, H.

Nordström, H. and Bourriaud, J. D.

O’Connor, D.

Olson, S.

Oren, E.D.

Oren, E.D. and Shershevsky, J.

Orlove, B.S. and Rutz, H.J.

Ovenden, G.J.H

Pader, E.J.

Paice, P.

Panitz-Cohen, N.

Panitz-Cohen, N. and Mazar, A.

Parkin, D.

Parkinson, R.B.
1997 The Tale of Sinuhe and Other Ancient Egyptian Poems 1940-1640 BC. Oxford.

Peet, T.E.

Peet, T.E. and Woolley, C.L.

Peilstöcker, M.

Peilstöcker, M. and Burke, A.A.

Pendlebury, J.D.S.

Perlman, I., Asaro, F., and Dothan, T.

Pestman, P.W.

Petrie, W.M.F.

1890 *Kahun, Gurob and Hawara*. London.
1897 *Six Temples at Thebes*. London.
1905 *Ehnasya*. London.
1907 *Gizeh and Rifeh*. London.
1930 *Beth-Pelet I (Tell Fara)*. Publications of the Egyptian Research Account and British School of Archaeology in Egypt 48. London.
Petrie, W.M.F. and Brunton, G.
1924 Sedment II. London.

Petrie, W.M.F., Mackay, E., and Wainwright, G.A.
1912 The Labyrinth, Gerzeh and Mazghuneh. London.

Pierce, K.V.L.

Pilgrim, C. von

Pinch, G.

Posener, G.

Pratt, M.L.

Preucel, R.W. and Meskell, L.

Pritchard, J.B.

Quirke, S.
2004 Titles and Bureaux of Egypt 1850-1700 BC. London.

Radwan, A.

Ranke, H.
Rapoport, A.

Raven, M.J.

Redford, D.B.

Reisner, G.A.

Reisner, G.A., Dunham, D., Janssen, J.M.

Renfrew, C. and Shennan, S.

Rhind, A.H.

Rice, C.

Richards, J.E.
2005 Society and Death in Ancient Egypt: Mortuary Landscapes of the Middle Kingdom. Cambridge.

Ricke, H.

Robichon, C. and Varille, A.
1940 *Description Sommaire du Temple Primitif de Medamoud.* Cairo.

Robins, F.W.

Robins, G.

Roehrig, C.H.

Romano, J.F.

Rose, P.J.

Rosen, S.A. and Goring-Morris, A.N.

Roth, A.M.

Rowe, A.
<table>
<thead>
<tr>
<th>Year</th>
<th>Title</th>
<th>Author</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>1930</td>
<td>Beth-Shan I, The Topography and History of Beth-shan.</td>
<td>Philadelphia</td>
<td></td>
</tr>
<tr>
<td>1936</td>
<td>A Catalogue of Egyptian Scarabs, Scaraboids, Seals and Amulets in the Palestine Archaeological Museum.</td>
<td>Cairo: IFAO</td>
<td></td>
</tr>
<tr>
<td>1940</td>
<td>The Four Canaanite Temples of Beth Shan, Part I: The Temples and Cult Objects.</td>
<td>Philadelphia</td>
<td></td>
</tr>
</tbody>
</table>

Sackett, J.R.

Safran, W.

Sagriillo, T.L.

Saleh, M.

- 1977 *Three Old Kingdom Tombs at Thebes.* Mainz am Rhein.

Samuel, D.

Säve-Söderbergh, T.

Säve-Söderbergh, T. and Troy, L.

Saxe, A.

Schiffer, M.

Schiff-Giorgini, M.

Schloen, J.D.

Scholliers, P.

Schulman, A.R.

Seidlmayer, S.J.
1990 *Gräberfelder aus dem Übergang vom Alten zum Mittleren Reich*. Heidelberg.

Seiler, A.

Sendison, A.T.

Serpico, M. and White, R.

Service, E.R.

Sethe, K.

Seyfried, K.
1990 *Das Grab des Amonmose (TT 373)*. Mainz.

Shaw, I.M.E.

Sheffer, A. and Tidhar, A.

Shennan, S.

Simpson, W.K.

Singer, I.

1983 “Takahlinu and Haya: Two Governors in the Ugarit Letter from Tel Aphek.” *Tel Aviv* 10: 3-25.

Smith, H.S. and Jefferys, D.G.

Smith, L.M.V., Bourriau, J.D., Goren, Y., Hughes, M.J., and Serpico, M.

Smith, S.T.

Soja, E. W.

Sontag, S.
1983 *A Susan Sontag Reader.* Harmondsworth.

Spalinger, A.J.

Sparks, R.T.

Spence, K.

Spencer, A.J.
1979 *Brick Architecture in Ancient Egypt.* Warminster.

Stadelmann, R.

Stager, L.E.

Starkey, J. and Harding, L.
1932 “Beth-Pelet Cemetery.” In E. Macdonald, J. Starkey and L. Harding, *Beth-Pelet II. Prehistoric Fara (MacDonald) and Beth-Pelet Cemetery (Starkey, Harding).* Publications of the Egyptian Research Account 52. London. 22-32.

Steindorff, G.
1913 *Das Grab des Ti.* Leipzig.

1937 *Aniba II.* Glückstadt.
Stevens, A.

Stidsing, R. and Salmon, Y.
2011 “The Northern Coastal Plain: Tel Dor (Phases 12 and 11 in Area G).” In M.A.S. Martin, Egyptian-Type Pottery in the Late Bronze Age Southern Levant. Wien. 174-179.

Sweeney, D.
2003 A Lion-Hunt Scarab and Other Egyptian Objects from the Late Bronze Fortress at Jaffa. Tel Aviv 30 (1): 54-65.

Tainter, J.A.

Tait, G.A.D.

Tallet, P.

Taylor, J.H.

Teeter, E.

Théodoridès, A.

Therkorn, L.

Thompson, D.J.
1988 Memphis under the Ptolemies. Princeton.

Tietze, C.

Tilley, C.

Toivari, J.K.

Tooley, A.M.J.

Török, L.

Trigger, B.G., Kemp, B.J., O’Connor, D., and Lloyd, A.B.

Tubb, J.N.

Tufnell, O.

Tufnell, O., Inge, C.H., and Harding, L.
1940 Lachish II (Tell el-Duweir): The Fosse Temple. London.

Tzori, N.

Valbelle, D.

Vandier d’Abbadie, J.

Veldmeijer, A.

Ventura, R.

Verhoenen, U.

Vincent, L.H.

Vittmann, G.

Vogel, C.

Vogelsang-Eastwood, G.

Wada, K.

Ward, W.A.

Weber, M.
Weinstein, J.M.

Wendrich, W.

Wente, E.F.

Westman, B.

Wilfong, T.

Wilk, R.R.

Wilk, R.R., and Rathje, W.L.

Wilkinson, R.H.

Williams, B.B.

Wimmer, S.

Winlock, H.E.
1932 *The Tomb of Queen Meryet-Amun at Thebes.* New York.

Wodzińska, A.

Woldering, I.
1958 *Ausgewählte Werke der Aegyptischen Sammlung Aegyptische Kunst.* Hannover.

Wolf, E.R.
1982 *Europe and the People Without History.* Berkeley.

Wolf, W.

Wood, B.G.

Wreschner, E.

Wreszinsky, W.

Yadin, Y., Aharoni, Y., Amiran, R., Dothan, T., Dothan, M., Dunayevsky, I., and Perrot, J.

Yadin, Y. and Geva, S.

Yahalom-Mack, N. and Mazar, A.

Yannai, E.

Yellin, J., Dothan, T., and Gould, B.

Yellin, J. and Killebrew, A.E.

Ziffer, I.
1990 *At That Time the Canaanites Were in the Land: Daily Life in Canaan in the Middle Bronze Age 2, 2000-1550 B.C.E*. Tel Aviv.

Zukerman, A.

Zvelebil, M.