Title
Single-Site Osmium Catalysts on MgO: Reactivity and Catalysis of CO Oxidation

Permalink
https://escholarship.org/uc/item/89h708nr

Journal
Chemistry - A European Journal, 23(11)

ISSN
0947-6539

Authors
Yang, D
Zhang, S
Xu, P
et al.

Publication Date
2017

DOI
10.1002/chem.201605131

Peer reviewed
Single-site osmium catalysts on MgO: reactivity and catalysis of CO oxidation

Communications

Abstract: MgO-supported osmium dioxo species described as Os(=O)₂⁻[O_ads]₂⁻ (the braces denote O atoms of the MgO surface) formed from Os₅(CO)₁₀ via supported Os(CO)₅, and characterized by spectroscopy, microscopy, and theory react with ethylene at 298 K to form osmium glycol species or with CO to give osmium mono- and di-carbonyls. Os(=O)₂⁻[O_ads]₂⁻ is the precursor of a CO oxidation catalyst characterized by a turnover frequency of 4.0 × 10⁻⁵ (molecules of CO)/(Os atom × s) at 473 K; the active species are inferred to be osmium monocarbonyls. The structures and frequencies calculated at the level of density functional theory with the B3LYP functional bolster the experimental results and facilitate structural assignments. The lowest-energy structures have various osmium oxidation and spin states. The results demonstrate not only new chemistry of the supported single-site catalysts but also their complexity and the value of complementary techniques used in concert to unravel the chemistry.

Metals dispersed atomically on supports are drawing wide attention because they offer new catalytic properties and the benefit of maximum accessibility of the metal.[1] Examples include oxide-supported noble metals Au,[2] Pt,[3] and Ir.[4] Questions about these catalysts include those focused on the metal oxidation state, ligands (including the support), and resistance to metal aggregation. Demonstrations of site isolation require imaging of the metal atoms (e.g., by scanning transmission electron microscopy (STEM) of heavy metal atoms on supports comprising light atoms for good contrast).

Because mononuclear osmium complexes in solution have a rich chemistry (e.g., asymmetric catalytic oxidation of olefins[5]), involving Os in a wide range of oxidation states, we anticipated a new chemistry of site-isolated Os atoms. We chose MgO as a support because it is excellent for imaging of heavy metal atoms on it[6] and has been shown to be a platform for site-isolated osmium complexes.[6c] In this work, we report spectra, images, and theoretical electronic structure results characterizing stable new site-isolated complexes of osmium in various oxidation states and evidence of new reactivities and catalytic properties. CO and ethylene are ligands that are also intermediates in catalytic reactions that can be readily characterized by IR spectroscopy and DFT calculations. They were therefore used to probe supported osmium species various conditions of treatment and catalysis. We synthesized Os(CO)₅ on MgO powder, as before, characterizing the intermediate species spectroscopically and confirming earlier results; details are given in the Supporting Information (SI). IR spectra including pairs of ν(CO) bands at 1981 and 1894 cm⁻¹ and at 2012 and 1935 cm⁻¹, respectively (Figure S1 in SI) and extended X-ray absorption fine structure (EXAFS) spectra demonstrate the structure,[6c] and STEM images demonstrate the site isolation of the Os atoms on various MgO faces.[6c–e]

Table 1. EXAFS data at the Os L₃ edge characterizing samples prepared by reaction of Os(CO)₅ with MgO after various treatments.¹

<table>
<thead>
<tr>
<th>Treatment conditions</th>
<th>Shell</th>
<th>N</th>
<th>EXAFS results²</th>
<th>DFT results¹</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>R (Å)</td>
<td>ΔR (Å)</td>
</tr>
<tr>
<td>He, 548 K, Os-Os</td>
<td>Os-Os</td>
<td>3</td>
<td>1.9 1.89 6.7 7.8 1.85</td>
<td></td>
</tr>
<tr>
<td>K, 2 h</td>
<td>Os-C₂O</td>
<td>3</td>
<td>3.5 2.06 7.6 3.7 2.19</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Os-O</td>
<td>3</td>
<td>4.4 3.05 4.6 3.5 3.03</td>
<td></td>
</tr>
<tr>
<td>He, 548 K, Os-Os</td>
<td>Os-Os</td>
<td>3</td>
<td>1.6 1.78 12.2 4.4 1.72</td>
<td></td>
</tr>
<tr>
<td>K, 2 h</td>
<td>Os=O</td>
<td>3</td>
<td>1.7 1.94 5.4 8.0 1.98</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Os-O</td>
<td>3</td>
<td>3.9 3.02 10.3 -1.8</td>
<td></td>
</tr>
<tr>
<td>He, 548 K, Os-Os</td>
<td>Os-Os</td>
<td>3</td>
<td>4.4 4.06 6.7 -</td>
<td></td>
</tr>
<tr>
<td>K, 2 h</td>
<td>Os-O</td>
<td>3</td>
<td>3.0 2.05 4.6 -</td>
<td></td>
</tr>
<tr>
<td>He, 548 K, Os-Os</td>
<td>Os-Os</td>
<td>3</td>
<td>0.39</td>
<td></td>
</tr>
</tbody>
</table>

¹ Contribution: N, coordination number; R, distance between absorber and backscatterer atoms; ΔR, variance in the absorber–backscatterer distance (Debye-Waller factor); ΔE, inner potential correction. Error bonds (accuracies) characterizing the structural parameters estimated to be N ±20%, R ±0.02 Å; ΔR ±20%; ΔE ±20%. ² EXAFS data for the sample treated at 548 K in He before the [6c] results for sample further treated at 623 K for 2 h, this work, with the EXAFS data of 6.4. ³ Contribution not detectable. Details of EXAFS data fitting presented in SI.

Electronic structure calculations at the density functional theory level (DFT/B3LYP) were done to model the osmium dicarbonyls as a singlet cluster, (MgO)₅Os(CO)₂+, with Os located at a Mg vacancy[6c–e] and bonded to 4 O atoms (Figure 1, Model a). The structure agrees well with the EXAFS data (Table 1), and the calculated v(CO) frequencies, 1917 and 2012 cm⁻¹, are in good agreement with the experimental results when Os is bonded to 4 O atoms (2012 and 1917 cm⁻¹). To determine the identity of the other Os(CO)₅ species with the v(CO) bands at 1917 and 1894 cm⁻¹ (Figure S1, SI), we calculated another cluster, (MgO)₅Os(O) (CO)₂+, with the Os atom bridging two lattice O atoms (Figure 1, Model b). This model is characterized by a pair of CO bands, at 1981 and 1910 cm⁻¹, consistent with experiment. Thus, two types of bonding sites are inferred for the Os(CO)₅ species, corresponding to Models a and b.
Os–Os contributions that would indicate osmium clusters (Table 1) on average, to 1 or 2 O atoms of the MgO, with no evidence of EXAFS spectra (Table 1) demonstrate that all the CO ligands ramped from 298 to 623 K and held for 2 h. IR (Figure S1, SI). but we discovered how to remove these ligands without osmium complexes have been stymied by the challenge of replacing the atoms could lie in different planes and be farther apart than the distance hence dimers; the value of 10% is an upper limit because the neighbouring Os adsorption of Os\(^{2+}\) (the Os is in the lattice) (Figure 2).

Figure 1. DFT models characterizing MgO-supported osmium species

Model a, \((\text{MgO})_2\text{Os(O)}\)\(^{2+}\) (the Os is in the lattice)

Model b. \([(\text{MgO})_2\text{Os(O)}]^{2+}\), \([(\text{MgO})_2\text{Os(CO)}]^{2+}\), \([(\text{MgO})_2\text{Os(CO)}]^{2+}\) (m = 0 or 2)

Model c. \((\text{MgO})_2\text{Os(IV)(O)}\), \((\text{MgO})_2\text{Os(IV)(CO)}\), and \((\text{MgO})_2\text{Os(IV)(CO)}\)

Model d. \([(\text{MgO})_2\text{Os[O]}(\text{CO})]\), \([(\text{MgO})_2\text{Os[O]}(\text{CO})]\) (the Os atom is in the lattice and the O atom underneath it is missing)

Figure 2. STEM image of site-isolated Os atoms on MgO. For the adsorption of OsCO\(_2\) on MgO after treatment described in text, the analysis shows that >90% of the Os atoms are clearly site-isolated, with few Os close enough together (within 2.9 Å) to suggest possible Os-Os bonding and hence dimers; the value of 10% is an upper limit because the neighboring Os atoms could lie in different planes and be farther apart than the distance measured in the 2-dimensional image.

Herefore, investigations of the chemistry of supported osmium complexes have been stymied by the challenge of replacing the tightly bonded CO ligands without aggregation of the osmium,\(^{[19]}\) but we discovered how to remove these ligands without osmium aggregation, by treatment in flowing \(\text{N}_{2}\) at the temperature ramped from 298 to 623 K and held for 2 h. (see Figure S1, SI). EXAFS spectra (Table 1) demonstrate that all the CO ligands were removed and that each isolated Os atom became bonded, on average, to 1 or 2 O atoms of MgO, with no evidence of Os–Os contributions that would indicate osmium clusters (Table 1). STEM images (Figures 2 and S2, SI) demonstrate that the Os atoms were site isolated before and after decarbonylation and also (Figure S3, SI) that the Os atoms on the MgO(110) face were located directly on top of Mg atomic columns after decarbonylation as well as before. The X-ray absorption data characterizing the decarbonylated sample indicate oxidation of the osmium during decarbonylation. An Os–O contribution with a coordination number (CN) of 1.6 ± 0.3 at an average distance of 1.78 ± 0.02 Å (m = 0) less than the Os–O\(^{2+}\) bonding distance of about 1.94 Å indicates mononuclear osmium oxide species on the support. Comparison of the shorter Os–O distance with the Os–O bonding distance of Os\(_2\) (1.72 Å\(^{[15]}\)) points to osmium oxo species. The EXAFS data further indicate Os–support contributions in the fit. Furthermore, Os and Os–Mg shells, the former with a CN of 1.7 ± 0.3 at an average distance of 1.94 Å for the Os–Os bond (which in data determine with less confidence) with a CN of 1.2 ± 0.8 at an average distance of 3.02 Å. Because these results demonstrate bonding of the osmium oxo complexes to the support through one or two Os–O\(^{2+}\) bonds, we present the surface species as Os\(^{2+}\)(–O)\(_2\)\([–O\(_{\text{support}}\)](m\text{=1 or 2})\). Mass spectra of the effluent formed during decarbonylation of the supported osmium carbonyl in a flow system indicate \(\text{H}_2\) (m/z = 2) and \(\text{CH}_4\) (m/z = 15) as major products (Figure S4, SI), whereas no CO (m/z = 28) was observed. We did not observe any m/z = 2 or m/z = 15 signals for bare MgO (that had been soaked in pentane for 1 day; pentane was thereafter removed by exposure to high vacuum for 1 day).

Thus, we infer that the chemistry of CO removal involves the breaking of MgO–O\(^{2+}\) bonds, the formation of Os=O bonds, and reduction of support OH groups to give \(\text{H}_2\) which reacted with CO to form \(\text{CO}\) possibly catalyzed by the osmium centers. XANES (Figure S5, SI) show that the Os L\(_2\)\(_3\) white line intensities decreased during the decarbonylation, confirming oxidation of the osmium. Because the Os–O\(^{2+}\) coordination number of 1.7 (an average over the whole sample) is too low for a structure in which an Os atom is bonded at an Mg vacancy on MgO,\(^{[16]}\) we infer that the Os atoms moved from vacancy sites on the MgO surface during the oxidative treatment. DFT calculations were done to elucidate the details of the chemistry of the various surface species, as characterized in the SI. The Os–O\(^{2+}\) coordination number of 1.7 is consistent with the inference that structures similar to Models b and c (Figure 1) coexist in the sample, which we represent as a mixture, Os\(^{2+}\)(–O)\(_2\)\([–O\(_{\text{support}}\)](m\text{=1 or 2})\). Because the bonding distances of Os–O\(^{2+}\) and Os–O in Model c, (MgO\(_2\))\(_6\)Os(IV)(O)(CO)\(_2\)\(_2\) (1.98, 1.78 Å), and Model b, [(MgO\(_2\))\(_6\)Os(IV)(O)(CO)\(_2\)]\(^{2+}\) (1.96, 1.69 Å) are closer to the EXAFS results (1.94, 1.78 Å) than the others (Model b with charge 0 or 1+), we suggest that these two are the majority species. We emphasize that Model c is consistent with the images showing Os atoms on top of Mg columns on the MgO(110) face. DFT calculations also show that the two models are both energetically favored and indicate the oxidation was formally of Os(0) (Model b with charge 0) and Os(II) (Model a) dicarbonyl complexes to Os(IV) (Model c) and Os(VI) (Model b with charge 2+) dioxygen species.

Atomic populations were determined using NBO\(^{[21]}\) for the natural bond orbital (NBO)\(^{[22]}\) population analysis at the DFT level. For the Mg\(_2\)O\(_2\)Os model a where Os has replaced an Mg in the lattice, the loss of CO leads to a more positive Os atom in the +II oxidation state, whereas the removal of CO followed by oxidation with O\(_2\) leads to a significantly more positive Os atom by 0.64 eV for the formal +IV oxidation state. Removal of CO from the Os(IV) atom also leads to a significant change in the Os
charge for the bare Os atom or for the addition of O₂ to the Os atom. In Model c, the Os atom is on top of an O atom in the cluster. Loss of CO from the Os(0) leads to an increase in charge on the Os atom and an even greater increase in charge by 1.38 eV on the Os atom when it is further oxidized by O₂. For model b, the Os atom bridges two O atoms in the cluster. Loss of CO from the Os(0) atom leads to an increase in charge on the Os and an even greater increase in charge by 1.36 eV on the Os atom when it is further oxidized by O₂. The results are completely consistent with the XANES result which show that the Os becomes more positive as a result of removal of the CO ligand.

The reactivity of the site-isolated osmium oxo complexes was probed with ¹³C₂H₄ pulsed into a helium stream (80 ¹³C₂H₄ molecules/Os atom) flowing steadily into an IR cell with the sample at 1 bar and 298 K. Bands appeared at 2924 and 2850 cm⁻¹ in the C–H stretching region and at 1047 cm⁻¹ in the C–O region (Figure S6, SI). When ¹³C₂H₄ was replaced with ¹²C₂H₄, these bands were red-shifted to 2916, 1026 cm⁻¹, respectively, demonstrating the formation of what we infer to be an osmium glycol species formulated as Os(OCH₂CH₂O). The inference is based on the spectrum of the Os(VI) diester OsO₂(OCH₂CH₂O)₂ formed by the reaction of Os₄ with ethylene, which has a C–O bond at 1016 cm⁻¹ and C–H bonds between 2850 and 2900 cm⁻¹ (the frequency of the C–O bond is strongly influenced by the ligands on the osmium, i.e., that representing OsO₂(C₂H₄)₂(OCH₂CH₂O) is located at 1041 cm⁻¹). Thus, the reactivity of supported Os(=O)₄ is inferred to be analogous to that of OsO₂ in forming the oxoosmium(VI) ester—a key insight in Sharpless’ asymmetric dehydroxylation chemistry, whereby this compound reacts further to generate diol products with the involvement of water and an oxidant.

We calculated the energetics of the reaction of C₂H₄ with the Os(IV) (Model c) and Os(VI) (Model b) with charge +2 to generate Os(II) and Os(VI) sites with glyoxalate, finding the reactions to be exothermic by -27 and -14 kcal/mol, respectively. Thus, we infer that the species that reacts with ethylene is Model b (Os(VI)), which readily forms Os(OCH₂CH₂O). The calculated frequencies for glyoxal from Model b Os(VI) match experiment. An essential point is that there is not a single model of the surface species that agrees well with experiment—rather, the results point to a mixture of surface species.

To provide more information about the surface Os(=O)₄ species, we allowed CO to flow over the sample in an IR cell at 1 bar and temperatures lower than 473 K. These temperatures were chosen to avoid the formation of clusters of osmium atoms; we emphasize that the temperatures were much lower than the temperatures applied to generate osmium oxo complexes. At temperatures less than 393 K, essentially no change in the ν_CO region of the spectrum ensued, but at 473 K, reaction of Os(=O)₄ evidenced by CO₂ found by mass spectrometry in the effluent stream. Simultaneously, six new bands observed in the ν_CO region of the spectrum, centered at 1914, 1938, 1960, 1961, and 1981 cm⁻¹ (Figure S7, SI). All of these bands were observed as they grew. When the treatment was ¹³C₂O, the bands appeared at 1894, 1926, 1935, 1948, and 1958 cm⁻¹ (Figure S8, SI), and the frequencies and shifts of these bands, consistent with the harmonic approximation, show that they represent Os(=O)₄ species with 1 or 2 CO bonds (Figure S1, SI). We infer that no osmium clusters formed during the CO treatment or the later CO/O₂ treatment, as we observed no bridging carbonyl bands in the IR spectra (which would have been expected for osmium clusters at approximately 1800 cm⁻¹) and because the literature demonstrates that under conditions similar to ours, CO is a reactant that oxidatively fragments noble metal clusters on oxide supports.

When, after the carbonylation, the temperature was decreased to 298 K and the gas stream switched to ¹²C₂H₄, no IR bands characteristic of esters were detected, implying the complete removal of the Os(=O)₄ species. Thus, we infer that the MgO-supported complex Os(=O)₄[−O−O₄] was reduced to CO at 473 K.

Table 2. Assignments of the carbonyl bands observed in this study.

<table>
<thead>
<tr>
<th>Species</th>
<th>Number of support oxygen atoms bonded to Os</th>
<th>ν_CO (cm⁻¹)</th>
<th>ν_C=O (cm⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Os(=O)₄</td>
<td>2</td>
<td>1914, 1917</td>
<td>1910, 1900</td>
</tr>
<tr>
<td>Os(=O)₃</td>
<td>4</td>
<td>1914, 1917</td>
<td>1907, 1905</td>
</tr>
<tr>
<td>Os(=O)₂</td>
<td>4 or 2</td>
<td>1912</td>
<td>1907, 1905</td>
</tr>
<tr>
<td>Os(=O)₁</td>
<td>4 or 2</td>
<td>1912</td>
<td>1907, 1905</td>
</tr>
</tbody>
</table>

The bands at 1914, 1938, and 1960 cm⁻¹ are all lower in frequency than the symmetric bands characterizing Os(II) dicarbonyl (2012 cm⁻¹), implying that they do not represent a pure osmium dicarbonyl, and consequently we suggest that they represent osmium monocarbonyls. To clarify the chemistry, DFT calculations were done for several supported osmium monocarbonyls with various modes of bonding to support; calculated scaled v_CO values characterizing (MgO)_nOs(=O)₄[−O−O₄] (Model d), [Mg₂O₆Os(II)(CO)]⁺ (Model d), [Mg₂O₆Os(II)(CO)]⁺ (Model d), [Mg₂O₆Os(II)(CO)]⁺ (Model d), and [Mg₂O₆OsO]⁺ (Model d). Os(0)(CO) (Model c) are 1907 (1361 km/mol), 1922 (871 km/mol), 1932 (980 km/mol), and 1966 (1512 km/mol) cm⁻¹, respectively, matching the experimental observations within ±8 cm⁻¹. Thus, we assign the bands observed at 1914, 1938, and 1960 cm⁻¹ to CO ligands of monocarbonyls of isolated Os atoms with different charges in different sites. A summary of the assignments of all the observed bands is presented in Table 2.

The frequencies of these supported osmium monocarbonyls with O₂ were investigated with a flow reactor at 473 K. When O₂ flowed steadily through the IR cell containing the sample, CO₂ was detected in the effluent by mass spectrometry (Figure S9, SI). Figures 3 and S10 (SI) show that the osmium monocarbonyl bands at 1914, 1938, and 1960 cm⁻¹ decreased rapidly in intensity and in proportion to each other, indicating that the species they represent react with O₂. At the conclusion of a 22-min reaction period, these three osmium monocarbonyl bands had shifted to 1917, 1942, and 1966 cm⁻¹, respectively, as a result of the reaction with O₂. In contrast, the bands representing the osmium dicarbonyl species at 1894, 1901, and 1981 cm⁻¹ did not change, indicating the lack of reactivity of this species with O₂. Because the band at 1914 cm⁻¹ decreased substantially in intensity under these treatment conditions (remaining in the narrow range of 1914-1917 cm⁻¹), we infer that it represents a species (Os(=O)₃[−O−O₄]) different from that represented by the band observed at 2012 cm⁻¹ (Os(=O)₄[−O−O₄]). We infer that the catalytic CO oxidation reaction requires the bonding of both CO and oxygen to single Os centers. The bonding of CO to osmium species is evidenced by the carbonyl...
bands in the IR spectra, and the bonding of oxygen by the shift of the carbonyl bands to higher frequencies after contact of the sample with O₂. The data show that only those species with ν_{CO} bands that shift to higher frequencies in O₂ (osmium monocarbonyls) react with O₂. The Os(II) dicarbonyl species were unreactive, presumably because the adsorption of O₂ was blocked by the CO ligands.

We tested the supported sample initially in the form of Os(CO)₅ on MgO after contact with flowing O₂ for 23 min at 473 K. The initially prepared sample was treated in flowing helium at 548 K for 2 h and at 623 K for 2 h, followed by CO adsorption at 473 K for 20 min, then helium flow for 30 min. Data are shown for the following bands (cm⁻¹): a. 1894; b. 1831; c. 1969; d. 1914; e. 1938; and f. 2012.

Figure 3. Integrated area changes of IR bands in C–O stretching region characterizing the sample made from Os(CO)₅ on MgO after contact with flowing O₂ at 473 K for 23 min at 473 K. The initially prepared sample was treated in flowing helium at 548 K for 2 h and at 623 K for 2 h, followed by CO adsorption at 473 K for 20 min, then helium flow for 30 min. Data are shown for the following bands (cm⁻¹): a. 1894; b. 1831; c. 1969; d. 1914; e. 1938; and f. 2012.

The spectra and images show that site isolation was maintained when the single-site supported Os(CO)₅ was activated to give Os=O. We emphasize that the removal of the CO bands in this decarbonylation was not a simple ligand dissociation event, but a coordinatively unsaturated Os centers on the MgO support generally do not expect to easily form coordinately unsaturated site-isolated metal complexes on hydroxylated oxides, and there is a lack of evidence for such species.

In summary, our results demonstrate the presence of osmium in various oxidation states in complexes of various structures and new surface chemistry related to Sharpless asymmetric dehydroxylation chemistry. The various single-site osmium species were used as CO oxidation catalysts, and the results show that only osmium monocarbonyl species were active for this reaction. The results, determined with multiple complementary techniques, emphasize the complexity of the chemistry of metal complexes on metal oxide surfaces, and we posit that this could be a more general characteristic of oxide-supported single-site supported catalysts than has been recognized.

Acknowledgments

This work was supported by the U.S. Department of Energy (DOE), Office of Science, Basic Energy Sciences, Grant DE-SC-0010515.1 and by the catalyst center program led by PNNL. A portion of this work was done as part of the Chemical Catalysis Initiative at Pacific Northwest National Laboratory (PNNL) (under Contract DE-AC05-76RL01830), supported by DOE, Battelle. It was conducted under the Laboratory Directed Research and Development Program at PNNL. A portion of the research was performed at EMSL, a national user facility sponsored by the DOE’s Office of Biological and Environmental Research and located at PNNL. We acknowledge beam time at beamline 4-1 at the Stanford Synchrotron Radiation Lightsource supported by the DOE Division of Materials Sciences. We thank the beamline staff for valuable support.

Keywords: supported single-site catalyst • osmium • osmium oxo • carbonyl ligands • CO oxidation catalysis

Chemistry of MgO-supported single-site osmium complexes and catalysis of CO oxidation

Dong Yang, Shengjie Zhang, Pinghong Xu, Nigel D. Browning, David A. Dixon,* Bruce C. Gates*

Page No.1 – Page No.6

Single-site osmium catalysts on MgO: reactivity, and catalysis of CO oxidation