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Abstract

One of the most important concerns for managing public health is the prevention of infectious
diseases. Although vaccines provide the most effective means for preventing infectious diseases,
there are two main reasons why it is often difficult to reach a socially optimal level of vaccine
coverage: (i) the emergence of operational issues (such as yield uncertainty) on the supply
side, and (ii) the existence of negative network effects on the consumption side. In particular,
uncertainties about production yield and vaccine imperfections often make manufacturing some
vaccines a risky process and may lead the manufacturer to produce below the socially optimal
level. At the same time, negative network effects provide incentives to potential consumers to
free ride off the immunity of the vaccinated population. In this research, we consider how a
central policy-maker can induce a socially optimal vaccine coverage through the use of incentives
to both consumers and the vaccine manufacturer. We consider a monopoly market for an
imperfect vaccine; we show that a fixed two-part subsidy is unable to coordinate the market,
but derive a two-part menu of subsidies that leads to a socially efficient level of coverage.

Keywords: Vaccine coverage, negative network effect, random yield, vaccine pricing, vaccine
subsidy.

1 Introduction

Prevention, cure, and control of infectious diseases are important concerns for modern health care

systems. The World Health Organization (1999) reports that infectious diseases are the world’s

biggest killer of young adults and children, and describes them as a “crisis of global proportions...

threatening hard-won gains in health and life expectancy.” Every one in two deaths in developing

countries is caused by an infectious disease; globally, infectious diseases account for over 13 million

deaths every year. In 2000, HIV/AIDS, TB, and malaria, together, killed 5.7 million people and

caused debilitating illnesses in millions more (World Health Organization, 2002). Influenza and

pneumonia claim about 250,000 to 500,000 lives every year globally, and about 36,000 deaths in

the US alone (World Health Organization, 2005). In addition to the emergence of new infectious

diseases, such as Severe Acute Respiratory Syndrome or SARS (World Health Organization, 2003),

some of the diseases that were once eliminated resurface in populations earlier considered free of

the disease. Old infections, such as tuberculosis and diphtheria, have occurred in large epidemics
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in Europe and other industrialized countries. The 1996 outbreak of polio in Albania, Greece, and

the then Federal Republic of Yugoslavia indicates that an infectious disease can easily resurface, if

immunization coverage is allowed to drop (World Health Organization, 1999).

Facing these grim realities, variety of epidemic control models have been proposed and used in

practice including vaccination programs, prevention programs (such as changing risky behavior),

and treatment programs (such as quarantine and use of antivirals); see (Brandeau et al. 2004) for

more details. Among a variety of intervention strategies, we focus on vaccination programs in this

research, as they are well-known for both their efficiency and cost-effectiveness. In fact, the World

Health Organization (2000) considers vaccination to be the “ultimate weapon against infection

and drug resistance.” For influenza (or flu, more commonly), Germann et al. (2006) argue that

vaccination, among other control programs such as social distancing, school closure, and use of

antivirals, remains the most effective tool to eliminate the epidemic. They show that even if a flu

vaccine is poorly matched to the circulating strains, it can still drastically slow down the spread of

the disease.

The global vaccination market is a large one, with annual sales of US$21.7 and US$25.3 billion in

2009 and 2010, respectively, and is projected to grow at a compound annual rate of 9.3%, reaching

an extraordinary figure of US$39.5 billion in 2015 (Carlson 2011, 2012). Despite this seemingly

large size of the global market and the clear benefits of vaccination programs, vaccine uptakes in

populations have typically been low (Blue 2008). Such undesirably low vaccine coverage can be

attributed to two main factors:

Supply-Side Issues: Operational issues on the supply side, such as yield uncertainty, often lead

profit-maximizing manufacturers to under-produce, resulting in supply shortages, shortage of

influenza vaccines being a prime example. In fact, several papers in the operations manage-

ment literature argue that the operational risk borne by a manufacturer is one of the main

reasons for the shortage of influenza vaccine in the market (Chick et al. 2008, Deo and Corbett

2009).

Negative Network Effect: A relatively low vaccine coverage can also arise from the negative

network effect faced by consumers. As the fraction of vaccinated individuals grows, the

chance of contacting an infection diminishes. Therefore, the willingness to pay for the vaccine

reduces, an effect contrary to the positive network effect, in which the willingness to pay for

a product increases with the size of the network (Katz and Shapiro 1985).

In the end, a traditional free market for vaccines may not be socially efficient. On one hand, left to

its profit-maximizing ways, a supplier may under-produce, resulting in shortages. On the other, an

individual may choose to free ride off the herd immunity, and, consequently, voluntary vaccination

may not reach a socially optimal level in the population. We are, therefore, interested in studying

the following research questions that arise in this context:

• In the face of yield uncertainty and network effects, what is the socially optimal level of

vaccine coverage?
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• Is it possible, from a contract theory perspective, to induce the manufacturer and the con-

sumers to achieve that level?

• How does the effectiveness of a vaccine influence the above decisions?

• What roles can governments or global non-profit organizations play here in coordinating the

market?

Each of the above issues has been examined in an isolated manner in prior research. Some

research in the operations management area has been devoted to the role of supply uncertainty

and its effect on the supply chain outcome. For example, Chick et al. (2008) argue that the

production risk due to unknown vaccine yields, which is assumed by vaccine manufacturers, is the

primary reason for an insufficient supply of influenza vaccine in the market. They design a variant

of a cost sharing contract which provides incentives to manufacturers, as well as to governments

that purchase vaccines, so that a supply chain achieves an optimal balance between for-profit

manufacturer incentives and public health incentives. Deo and Corbett (2009) examine the role

of production yield in explaining the limited number of players in the influenza vaccine market.

However, these works do not consider the negative network effect and the consumers’ willingness to

pay for the vaccine. On the other hand, the demand-side issue has started receiving some attention

in more recent literature in operations management. For example, Cho (2010) studies consumers’

willingness to pay, and Arifoglu et al. (2012) address network externality effects in a similar context.

However, the objective of these articles are quite different from the current one, as we are concerned

with designing contracts to coordinate the vaccine market.

Epidemic modeling and health economics literature has primarily focused on the negative net-

work externality facing the consumers as a key driver for vaccination levels that are lower than what

is socially desirable. For example, Bauch and Earn (2004) provide a game-theoretic analysis of vac-

cine coverage that considers the negative network effect as well as the necessary epidemiological

details. They show that a voluntary vaccination program without any government intervention fails

to achieve the vaccination level necessary to eliminate the epidemic. Brito et al. (1991) provide

a more comprehensive model in their economic analysis of the situation, but lack the necessary

epidemiological details. Geoffard and Philipson (1997) also consider vaccine subsidies with the

goal of complete eradication of the disease, but do not consider the cost of production and do not

discuss an efficient coordination of the vaccine market. They find that a subsidy program would

not be effective at achieving eradication because of network externalities. In a more recent article,

Althouse et al. (2010) study how public subsidies can help bring the vaccine uptake to a more

efficient level in the case of a disease that is subject to network externalities,1 but they consider

only the consumers—their subsidy is designed to maximize the aggregate consumer utility. Cook

et al. (2009) analyze epidemiological and economic field data from two sites in Kolkata, India,

1The role of subsidies in market coordination has also been studied in other contexts that exhibit network effects.
For example, within the context of security, Zhuang (2010) and Zhuang et al. (2007) show that providing fully
subsidized security to targeted agents (with heterogeneous time preferences) can reduce the total social cost of
security and improve the performance of the system.
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to estimate the socially optimal subsidy for a cholera vaccine (disease subject to similar network

externalities as influenza).

In most of the prior work, however, vaccine production is either neglected (e.g., Bauch and Earn

2004, Bauch et al. 2003, Geoffard and Philipson 1997) or considered as deterministic and exogenous

(e.g., Brito et al. 1991). Recently, Mamani et al. (2012) consider the role of governments in market

coordination through subsidies in the presence of multiple vaccine manufacturers, but they do not

take into account the yield uncertainty inherent in the production process, which, as shown here,

has major implications in the subsidy program. In particular, they find that a constant one-part

subsidy coordinates the market in a deterministic setting. In extending their results, one would

naturally expect that a constant two-part subsidy should align the incentives of different parties

under the presence of production uncertainty. Our results, however, indicate that, when the yield

is stochastic, a constant two-part subsidy is just not sufficient to align both consumer demand and

production quantity with the first-best outcome; rather, a menu of subsidies is necessary. The

purpose of this research is to bridge this conspicuous gap in the literature by considering yield

uncertainty and network externalities together in order to develop a more comprehensive analysis

and to provide a more practical coordination scheme.

The remainder of the paper is organized as follows. We discuss related prior work in Section 2.

Section 3 develops the modeling framework and examines the market equilibrium. In Section 4, we

employ a total social welfare function to identify the socially optimal outcome. Then, in Section 5,

we derive a two-part subsidy scheme that induces this outcome. Section 6 concludes the paper and

offers directions for future research.

2 Literature Review

The topic of network externalities and consumers’ willingness to pay in the context of public goods

in general, and vaccines in particular, is gaining traction in the operations management community.

Cho (2010) considers the issue of consumers’ willingness to pay and price elasticity to determine

the socially optimal policy for selecting strains that are to be included in an influenza vaccine. This

threshold policy is obtained based on a trade-off: On one hand, retaining the current composition

of influenza strains could lead to an ineffective vaccine if new strains were to emerge. On the other,

including new strains in the vaccine composition could increase the production yield uncertainty.

Arifoglu et al. (2012) combine consumption-side externalities with the supply uncertainty, and

show that the limited availability of vaccines lead to an inflated demand. They quantify the level

of ineffectiveness of the decentralized model with partially centralized scenarios. In this paper, we,

too, combine negative network effects with yield uncertainty to identify the level of inefficiency in a

market-based system. However, unlike Arifoglu et al. (2012), we investigate this inefficiency with

the lens of contract theory to design incentive mechanisms that can induce consumers and suppliers

to make decisions that are aligned with the social optimum.

Our work is closely related to the recent work by Mamani et al. (2012); similar to theirs,

our model also includes consumers’ free-riding behavior, the production cost borne by the vaccine
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manufacturer, and a central planner’s desire to achieve the social optimum using subsidy. In

addition, however, we also consider the production yield uncertainty faced by the manufacturer.

In our model, the yield is stochastic, and hence the vaccine coverage is uncertain. Consequently,

the quantity decision is made by the manufacturer under yield uncertainty, whereas the demand

decisions are made by consumers facing both the supply uncertainty and the negative network

effect. These two decisions are not necessarily aligned with the social objective, and a central

planner has a role in aligning them towards the social optimum. This modeling difference has

critical consequences on the equilibrium solution, social optimum, and coordination mechanisms.

In particular, in (Mamani et al. 2012), where the yield is deterministic, a one-part subsidy is shown

to be sufficient in coordinating the market. In our paper, unsurprisingly, the stochastic yield makes

a one-part subsidy ineffectual for market coordination. Perhaps more unexpectedly, even a two-part

fixed subsidy scheme cannot coordinate the market. The coordinating subsidy is a two-part menu

of subsidies that depends on the coverage. This fundamental difference in the equilibrium outcome

is essentially a result of the significant differences in the modeling contexts, requiring different

analyses.

Recent literature studies contract design issues when considering customers’ willingness to pay

for public interest goods. For example, Taylor and Yadav (2011) investigate two forms of contracts

for public products (e.g., essential medicines): a purchase subsidy (to the retailers) and a sales

subsidy (to the consumers). They show that when consumers are homogeneous in their valuation

of the product, the subsidy provider (donor) would prefer a purchase subsidy, whereas a sales

subsidy is more preferable for heterogeneous consumers. A key assumption in (Taylor and Yadav

2011) is that the retailer has freedom to set prices after market uncertainties are resolved and

the product is acquired. This is a valid assumption for their model as they consider populations

in developing countries where the retailer can change prices based on market conditions. In our

model, however, the uncertainty exists with respect to the yield (not the demand), and pricing

and production decisions are made prior to the realization of the yield. The manufacturer, once

committed to a fixed price, cannot change it easily. Ovchinnikov and Raz (2012) study a number

of mechanisms to coordinate price and quantity decisions in a market for public goods where these

decisions are made simultaneously. They show the effectiveness of subsidies compared to rebates

in coordinating either price or quantity decisions. They also show that a joint rebate-subsidy

mechanism can coordinate both decisions. However, both the aforementioned papers assume a

deterministic supply but a random demand. We, on the other hand, consider a scenario where

supply is uncertain and demand is deterministic (e.g., the case of pre-orders for influenza vaccine).

Finally, we focus on a specific class of products—vaccines—rather than a generic product. This

allows us to derive a demand function that is based not only on economic parameters such as the

vaccine price, but also on other epidemiological factors such as the population’s perception of the

vaccine effectiveness and the dynamics of the infection.

In summary, the major contributions of our paper are two fold: First, we build on a stream

of work that combines concepts from three distinct bodies of literature—operations management,

economics, and epidemiology—to generate insights about public policy issues related to vaccine
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pricing, coverage, and subsidies in the context of potentially imperfect vaccines. Second, our model

contributes to the operations management literature by considering contracting issues within a

production process with random supply and price-dependent demand. While others have examined

single-period models with random and price-dependent demand (Petruzzi and Dada 1999), as well

as supply contracts in that setting (Cachon 2003), we show that effects of random supply are

different than those of random demand when considering price-sensitive consumers, and thus the

resulting coordinating mechanism must differ accordingly. More specifically, we show that a menu

of two-level incentive mechanism is needed to coordinate the market, and a simple two-part fixed

subsidy is not sufficient to align both the quantity and pricing decisions simultaneously. Our results

have important implications in terms of the role of governments and global health organizations

in managing vaccine programs and provide directions for appropriate incentive schemes that can

work towards a greater good.

3 The Model

In this section, we develop a model of the vaccine market with a single manufacturer supplying

a specific vaccine for a fixed population. We consider the following sequence of events in this

sequential game. At the beginning of the production season, the manufacturer decides the vaccine

price and the production volume, and incurs the corresponding production cost. Next, consumers

follow with their choice of whether (or not) to get immunized, which determines the demand for

the vaccine. This decision is based on the consumers’ expected utility that takes into account their

probability of infection, disutility from the infection, and the price they pay for the vaccine. Finally,

the total vaccine coverage is determined based on the realized production yield and the demand.

Any leftover vaccine is discarded and any unmet demand is lost.

We note that Arifoglu et al. (2012) consider a different model of consumer behavior in which

individuals make the decision to search for vaccines based not only on the vaccine price but also the

availability of vaccines. There, the demand for vaccines is determined based on the vaccine price

and the realized production yield in order to incorporate the “availability effect” in their model.

In this paper, we assume that vaccine production quantity or yield does not significantly affect the

demand for vaccines. This assumption is justified in the following contexts:

• There are situations where the realized (or targeted) production quantity is not public infor-

mation, or simply when its effect on consumer behavior is not as significant as the vaccine

price.

• In some cases, a significant portion of the demand for vaccines is based on pre-orders received

from healthcare providers that are placed well in advance of the production yield realization;

for example, see (Fine 2004, CDC 2011a) for the case of influenza vaccines.2 In this case while

consumers do not directly purchase the vaccine from the manufacturer, the total demand from

2In case of influenza vaccines, such pre-orders happen between January and March (CDC 2011a). While flu
vaccines can be purchased at a later time closer to the flu season, Fine (2004) reports that suppliers’ emphasis and
preference is on pre-booking.
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a healthcare provider for a certain vaccine price should effectively mirror the actual demand

from consumers based on demand and price elasticity information from prior periods.

3.1 Characterization of Consumer Behavior

We now provide a description of the consumer model, also borrowed from (Mamani et al. 2012).

We consider consumers to be heterogeneous, in the sense that direct and indirect costs of infection

varies from one person to another. This is captured by indexing consumers by a parameter u that

is assumed to be uniformly distributed over the interval (0, 1); u can be viewed as the relative

loss suffered by an individual from an infection. This assumption allows us to model individuals

who perceive the vaccine as dangerous and are thus more willing to risk infection rather than be

vaccinated (low value of u), as well as individuals like children and the elderly who, for example, are

more prone to complications when contracting influenza and would thus experience more disutility

from an infection (high value of u). The absolute cost to consumer u from an infection can then

be expressed as Lu, where L is a constant.

Because of different infection dynamics for the vaccinated and unvaccinated fractions of a popu-

lation, the infection probabilities are also different for each group. Following Mamani et al. (2012),

by p(f) and P (f), we denote the infection probabilities for the vaccinated and unvaccinated frac-

tions, respectively, for an overall vaccine coverage of f ; P (f) must be strictly greater than p(f) for

the vaccine to have any value. The infection probability for the entire population, r(f), can also

be viewed as the overall fraction of infected individuals in the population:

r(f) = fp(f) + (1− f)P (f).

Let the price of the vaccine be W . Since vaccines are not fully effective, an immunized person

incurs a vaccine cost of W and may still get infected. Therefore, W + Lup(f) represents the total

expected cost of getting vaccinated. On the other hand, a consumer who has not been immunized

does not incur the cost of W but has a higher chance, P (f), of becoming infected. The expected

cost incurred by a unimmunized individual is thus LuP (f). Therefore, for the indifferent consumer,

the average cost of getting vaccinated and the cost of an infection are the same. Let ū denote such a

marginal consumer, then we have: LūP (f) = W +Lūp(f), or W = Lū(P (f)−p(f)). Any consumer

with u ≥ ū gets immunized, whereas anyone with u < ū does not. Therefore, ū = 1 − f , as u is

uniformly distributed over (0, 1). Substituting this and using the fact that P (f)−p(f) = r(f)−p(f)
1−f

,

we get:

w =
W

L
= r(f) − p(f) ≡ T (f). (1)

Equation (1) tells us that consumers make their vaccination decisions in such a manner that the

normalized price, w, of a vaccine represents the marginal reduction it induces in the probability of

infection.

As discussed earlier, we do not consider the effect of production uncertainty and possible pro-

duction shortage on consumers’ demand decision. Of course, this modeling framework can be easily

adapted to the case where an aggregated pre-order is placed by healthcare providers prior to the
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production season, when there is simply no information about the vaccine yield or production

shortage. This is because, as illustrated in the next section, the consumer choice model in (1) is

equivalent to the one where the total orders placed by consumers (or healthcare provider) follows

a piece-wise linear form, which is a standard assumption in many price-demand models.

3.2 Infection Probability

In order to complete the characterization of consumer behavior, we need to find the functional

forms of r(f), p(f), and T (f). In a large part of the literature on vaccine programs, it is assumed

that an individual receiving a vaccine becomes completely immune from the underlying infection,

that is, the vaccine has been assumed to be perfect. This assumption, however, may not be valid

for a number of infectious diseases of interest, such as seasonal influenza and HIV.3 In this regard,

we follow Mamani et al. (2012) and assume that vaccines may indeed be imperfect—a vaccinated

consumer, albeit less likely, can still get and transmit the infection. There are two ways in which

an imperfect vaccine affects the transmission of the disease: First, imperfect vaccines can reduce

the probability of becoming infected if exposed to an infectious contact, which is known as the

vaccine effect on susceptibility. Second, imperfect vaccines can also affect the probability of disease

transmission when a vaccinated individual gets infected; this is known as the vaccine effect on

infectiousness (Datta et al. 1998, Hill and Longini 2003). To combine these two effects, we take an

approach that is similar to the one adopted by Longini et al. (1978). Let 0 < φ ≤ 1 be the vaccine

efficacy parameter that reflects the combined effect of vaccine on transmission, which includes both

susceptibility and infectiousness effects. Note that φ = 1 corresponds to the perfect vaccine case.

Following Mamani et al. (2012), we express r(f) as (see Appendix A in the Electronic Com-

panion to this paper for more details):

r(f) =

{

0, if f > F = R0−1
φR0

1 − φf − 1
R0

, otherwise,

where R0, the basic reproduction number, is defined as the total number of secondary infections

caused by an infectious individual in an otherwise susceptible population. Therefore, R0 is a

measure that indicates whether the introduction of a single initial case of infection into a susceptible

population will result in a nontrivial outbreak. It must be noted that, if R0 ≤ 1, the infection

probability is zero, and the disease transmission dies out. Hence, for the remainder of the paper,

we only consider the interesting case of R0 > 1.

We note that F = R0−1
φR0

is the minimum vaccination fraction that drops the overall infection

probability, r(f), to zero. In epidemiology, this threshold is called the critical vaccination fraction;

it represents the minimum level of vaccine coverage necessary for providing the so-called herd

immunity effect—a situation that arises when immunization level in the population is sufficiently

3Seasonal influenza strains constantly mutate over time making a vaccine an imperfect match to the circulating
strains in a community (Gross et al. 1995, Hill and Longini 2003, Sullivan 1996). Within the context of potential HIV
vaccines, many experts believe that, even if a vaccine were to become available in the future, it would likely provide
only a partial protection from the disease (Datta et al. 1998, Hillier et al. 2005, Longini et al. 1996).
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high so that the disease is eliminated entirely from the population. It should be noted that F could

be greater than one, in which case the disease cannot be completely eradicated by a vaccination

program alone. Therefore, we introduce F̄ ≡ min {F, 1}.

Before we discuss the functional form of p(f), and hence that of T (f), it is necessary to see how

the negative network effect manifests itself in this context. The willingness to pay for consumer u is

given by WTPu = Lu(P (f)−p(f)). The fact that WTPu depends on f , the market coverage, is an

evidence of the presence of a network effect. Now, note that, when φ = 1, p(f) becomes zero as the

vaccine is perfect; if, in addition R0 → ∞, then r(f) → (1−f) and P (f) → 1; this is because, when

the reproduction number becomes large, an unvaccinated individual is almost certain to contract

the infection. In this case, P (f)−p(f) = 1, and WTPu becomes independent of the coverage level.

Therefore, in this limiting case, the actions of other individuals become irrelevant. As a result, the

externality effect completely disappears—the only way to enjoy the benefits of the vaccine is to

acquire it. In contrast, if R0 < ∞ or φ < 1, the term P (f) − p(f) is lower than 1 and is no longer

independent of f . This implies that, for the same consumer, WTPu is lower than in the limiting

case considered above, and its specific value depends on the overall coverage level. Therefore, the

desire to purchase depends not only on a consumer’s own preference, but also on decisions made by

other consumers. This happens because an unvaccinated individual could benefit from the (partial)

immunity of the vaccinated population. Put differently, unlike typical products or services, in the

vaccine market, a consumer does gain some utility from the vaccine, without having to actually

purchase it. Hence, the coverage level has an impact on the purchase decision of an individual.

Finally, in order to find an expression for p(f), we note that it must abide by two properties.

First, the probability of infection for vaccinated individuals must be less than that for the general

population, i.e., p(f) < r(f), for all f . Second, when the vaccine is fully effective, a vaccinated

individual will not contract the disease, implying p(f) = 0 if φ = 1. The following functional form

abides by these two conditions and provides a good approximation of the exact infection probability

function (see Appendix B in the Electronic Companion to this paper for details):

p(f) = η(1− φ)r(f),

where 0 ≤ η ≤ 1
1−φ

is a constant; in this paper, we use this functional form for p(f). Using this

approximation, we find that WTPu =
Luθr(f)

1−f , where θ = 1 − η(1− φ). Therefore, the externality

effect, which can be viewed as the strength of the dependence of WTPu on f , can be written as:

EFu =

∣

∣

∣

∣

∂WTPu

∂f

∣

∣

∣

∣

=







0, if f > F = R0−1
φR0

,

Luθ
(1−f)2

∣

∣

∣1 − φ − 1
R0

∣

∣

∣ , otherwise.

It is now easy to see that, when f < F , EFu depends on both R0 and φ; it approaches zero when

R0 → ∞ and φ → 1, but is non zero otherwise. Finally, T (f) can be written as:

T (f) = θr(f) = (1 − η(1− φ)) r(f). (2)
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3.3 Production Decision

As mentioned earlier, we consider a production process with uncertain yield. This is particularly

relevant in the context of influenza vaccines, where uncertainties in the manufacturing process have

been shown to play a key role in decisions across the entire vaccine supply chain (Chick et al. 2008);

our model reduces nicely for vaccines with deterministic yield (Mamani et al. 2012).

We consider a stochastically proportional yield for the final production output (e.g., Yano and

Lee 1995). Specifically, let q be the target production level normalized with respect to the size

of the population; then, we assume that the final production output is Uq where 0 < U < Ū

is a random variable with an average E[U ] = µ, a probability distribution function J(·), and a

probability density function j(·), where j(x) is positive only if x ∈ (0, Ū) and zero otherwise; the

possibility that U > 1 is not excluded in our model and represents a situation in which the yield is

higher than the targeted production quantity.

We analyze a market where the vaccine price is determined before the production campaign

and the realization of the random yield, such as the influenza vaccine market; CDC (2011b), for

example, lists vaccine prices as early as January. An underlying assumption of our model is that,

once committed to a price, the manufacturer cannot simply change it based on the production

yield or other market conditions. This is a plausible scenario for markets such as the US (CDC

2011b). Taylor and Yadav (2011) study an alternative model where prices are set after the market

conditions are realized. This is the case when the supplier has the authority to change prices based

on the realized demand and available quantity and is perhaps a better representation of situations

in developing countries.

In a market where pricing decisions are made prior to random yield realization, the vaccine

price does not necessarily clear the market and the manufacturer can have vaccine shortage or

excess. We assume that the manufacturer is subject to a constant (normalized with respect to L)

marginal production cost of c per unit. For a production yield U , a normalized vaccine price w,

and a production quantity q, the manufacturer’s profit is:

Π(q, w, U) = w min{Uq, f} − cq.

3.4 Market Equilibrium

In a monopoly market, the manufacturer chooses his vaccine price and production quantity in

order to maximize his expected profit, anticipating the effect of his decision on the final production

output and consumers’ reaction:

π(q, w) = EU [Π(q, w, U)] = EU [w min{Uq, f} − cq] = w

f
q
∫

0

xqdJ(x) + w

Ū
∫

f
q

fdJ(x) − cq,
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where f is given by Equation (1) and can be substituted to rewrite the manufacturer’s expected

profit, π(q, w), as a function of q and f :

π(q, f) = T (f)

f

q
∫

0

xqdJ(x) + T (f)

Ū
∫

f
q

fdJ(x)− cq. (3)

To solve the manufacturer’s problem, we first find the optimal production quantity for a fixed

demand f , denoted by qm(f), and then we solve for the equilibrium demand, fm. Let f be fixed

such that f < F̄ . Taking the derivative with respect to q, using Leibnitz’s rule, and rearranging

terms, we get the following result.

Lemma 1 Let q̃ be the unique solution of:

f
q
∫

0

xdJ(x)−
c

T (f)
= 0.

Then, qm(f) is given by:

qm(f) =

{

q̃, if T (f) ≥ c
µ
,

0, otherwise.
(4)

Note that when the production cost exceeds the expected revenue from the vaccine (µT (f) < c),

the manufacturer would simply set qm(f) = 0.

Example 1 If U follows a uniform distribution on [a, 2µ − a], then J(x) = min
{

1, x
2(µ−a)

}

. In

that case:

qm(f) =







√

f2T (f)
a2T (f)+4c(µ−a)

, if T (f) ≥ c
µ
,

0, otherwise.

Figure 1 illustrates the behavior of qm(f) for two different values of φ, when U follows a uniform

distribution on [0,2] and R0 = 2, c = 0.1, and η = 3.3. This figure shows that qm(f) equals zero

when T (f) > c
µ
. This implies that, given a φ, there exists a threshold for f—a point of discontinuity

always below the critical vaccination fraction, F—beyond which the production quantity is zero.

Indeed, beyond this point, the vaccine price becomes so low that production costs outweigh expected

revenues and the manufacturer chooses not to enter the market. This threshold occurs at a lower

value of f when the vaccine is less perfect because the equilibrium price of a vaccine with a lower

φ is also lower. We also notice that for a fixed coverage level f , the lower the value of φ, the lower

is the quantity produced by the manufacturer, since the vaccine price decreases as φ decreases.

Finally, we note that qm(f) is not necessarily monotonic in f , even to the left of the threshold; this

can be clearly seen in the plot corresponding to φ = 1. There, the quantity first increases in f as

a larger demand provides incentives to supply higher quantities. However, beyond a certain value,

the price of the vaccine, w = T (f), becomes too low and the supplier, in turn, chooses to reduce the
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Figure 1: Optimal Monopoly Production Quantity with U ∼ Uniform[0, 2]

quantity produced. This observation is consistent with observations in traditional markets where

a monopolist is known to under-produce.

Using Lemma 1, we can reduce the objective function to a function of a single variable, f , by

substituting for qm(f) from Equation (4) into Equation (3). For the Newsvendor problem with

price-dependent and random demand, this method was introduced by Whitin (1955). We follow a

similar process when the supply is random. It turns out that the profit function π(qm(f), f) is not

concave; however, as indicated by the next theorem, we can still prove the existence and uniqueness

of an optimal solution for a large class of random variables, including the increasing failure rate

(IFR) distributions for supply uncertainty:

Theorem 1 Suppose, for all z, the distribution function J(z) satisfies the following condition:

2ρ(z)(1− J(z)) +







z
∫

0

xdJ(x) + z

Ū
∫

z

dJ(x)







dρ(z)

dz
≥ 0,

where ρ(z) =
j(z)

1−J(z) is the hazard rate. Then, the equilibrium monopoly price is wm = θr(fm), and

the monopoly production quantity is qm(fm) units, where qm(f) is obtained from Equation (4), and

fm is the unique f in the region
(

0, F̄ − c
µφθ

)

that satisfies
dπ(qm(f),f)

df
= 0 if F̄ − c

µφθ
≥ 0, and

fm = 0 otherwise.

It is interesting to observe that, despite the similarities between our model and the Newsvendor

model with price-dependent demand, the condition of the hazard rate function in Theorem 1 is

different than the similar condition for the latter model (e.g., Petruzzi and Dada 1999). In classical

Newsvendor models, the price-dependent demand is either (linear) additive or (exponential) mul-

tiplicative. In our model, however, the supply uncertainty is multiplicative in nature, and, at the

same time, the demand function is nonlinear. Thus, the objective function in our model is affected

by the supply uncertainty in a different manner than in those models where demand is uncertain.
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Example 2 Once again, let us assume that U is uniformly distributed over [a, 2µ−a], i.e., J(x) =

min
{

1, x
2(µ−a)

}

. Then, from Equation (3) and Example 1, we get:

π(f) =
f
(

(2µ − a)T (f)−
√

(a2T (f) + 4c(µ− a))T (f)
)

2(µ − a)
,

which can be maximized using Theorem 1 to obtain fm.

Figure 2 represents the equilibrium in the case of a perfect vaccine (φ = 1) for a range of values of

c when U follows a uniform distribution on [0,2] and η = 3.3. In order to see the impact of yield

uncertainty, we also plot the value of fm for the case of deterministic yield (i.e., U = 1).
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(b) R0 = 4

φ = 1.0; η = 3.3.

Figure 2: Equilibrium Production and Coverage for a Perfect Vaccine (U ∼ Uniform[0, 2])

Comparing the two cases in the figure, it is clear that the presence of yield uncertainty im-

plies a lower vaccine coverage at equilibrium. This finding is in conformity with the results from

previous studies (on operational risks born by influenza vaccine suppliers), which conclude that

manufacturing uncertainties help explain low vaccine supplies and sometimes even shortages (Fine

2004). Moreover, high externality effects (low R0) lead to lower coverage as a single vaccination

helps protect more individuals against the disease. We also observe that when the per unit cost is

low, the manufacturer has an incentive to produce high quantities of the vaccine (compared to the

equilibrium coverage); as the cost increases, however, the yield uncertainty makes it too risky to

produce extra vaccines, and the quantity drops below the equilibrium demand.

In order to see the impacts of vaccine effectiveness φ and the distribution of U , we also plot the

equilibrium outcome for φ = 0.8 in Figure 3, for two values of R0 and two different distributions

of U . The comparison of Figure 3 with Figure 2 makes the role of vaccine effectiveness clear.

First, for low values of the production cost, the vaccine coverage at equilibrium decreases with

vaccine effectiveness, but this trend reverses for high production cost. This illustrates that a more
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ineffective vaccine requires more coverage in the population to achieve the same level of protection,

which is possible only when the vaccine is cheap enough to produce. When it is more expensive, a

lack of effectiveness makes the vaccine less worthwhile to purchase, and coverage drops. Moreover,

the equilibrium quantity is lower than when the vaccine is perfect. The impact of R0 in Figure 3

is similar to the one see in Figure 2.
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Figure 3: Equilibrium Production and Coverage for an Imperfect Vaccine (U ∼ Uniform[0, 2])

4 First Best Solution

In order to get a more complete picture of whether or not the existence of negative network effects

and yield uncertainties in the production process leads to market inefficiencies, we need to solve

the first best problem, whereby the social planner maximizes the total social welfare, which is the

sum of all the surpluses for the manufacturer and the consumers (vaccinated and unvaccinated).

In addition, we also account for the societal surplus that may accrue from a lower infection rate.

Manufacturer surplus: The manufacturer surplus is the net profit earned by the manufacturer

when the target production quantity is q, and a fraction g = min{Uq, f} of the population is

vaccinated.

Manufacturer surplus = σM = wg − cq.

Vaccinated consumers’ surplus: When individuals are vaccinated, their probability of infection

reduces and the expected cost from infection is lower. The aggregate normalized cost for

purchasing the vaccine is wg. If these individuals were not vaccinated, the total vaccinated

fraction would be zero and their probability of getting infected would be r(0); if they do

get infected, they incur a normalized infection cost u ∈ [1 − g, 1). The surplus gained from
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vaccination for this fraction of the population is then the difference between the costs with

and without vaccination.

Vaccinated surplus = σV =

1
∫

1−g

x(r(0)− p(g))dx− wg =

[

1

2
−

(1− g)2

2

]

(r(0)− p(g))− wg.

Unvaccinated consumers’ surplus: One of the key differences between vaccines and most other

products is that an individual can enjoy some surplus even if (s)he does not purchase or

acquire the product, because of the immunity generated by other vaccinated individuals that

leads to the negative network externality effect. The unvaccinated consumers’ surplus is

determined as the difference in utility between when the remaining consumers get vaccinated

and when they do not. Each individual in the unvaccinated fraction, with a normalized

infection cost u ∈ (0, 1 − g), has a probability P (g) of becoming infected when the other

fraction is vaccinated, and a probability r(0) of becoming infected when the other fraction is

not vaccinated. Calculating the difference in total cost between these two situations yields

the total surplus gained for this fraction of the population from the presence of the vaccine.

Therefore, the unvaccinated fraction (1 − g) gets a surplus of:

Unvaccinated surplus = σN =

1−g
∫

0

x (r(0)− P (g))dx = (r(0)− P (g))
(1 − g)2

2
.

Societal surplus: To obtain the total social welfare, we also consider the indirect cost to the

society—we assume that every individual who gets infected poses a normalized loss of λ

on the society; this cost could include a societal loss of work time and healthcare costs.

Ovchinnikov and Raz (2012) consider a similar term in their social welfare function called

the “externality effect” that represents the public interest component of the product. Since,

a fraction r(g) is likely to get infected in an expected sense, we write the societal surplus as:

Societal surplus = σS = −λr(g).

Combining all these together, we get the normalized total social welfare:

Total Social Welfare = σM + σV + σN + σS =
r(0)

2
−

(1 − g)r(g) + gp(g)

2
− λr(g)− cq,

where, as before, g = min{Uq, f} is the actual fraction of the population that get vaccinated.

Maximizing this total social welfare then is equivalent to minimizing the following social cost:

SC(q, f, U) =
(2λ + 1)r(g)− gT (g)

2
+ cq

=
(2λ + 1)r(min{Uq, f})− min{Uq, f}T (min{Uq, f})

2
+ cq.
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Thus, the central planner’s objective would be to minimize this expected social cost function:

Γ(q, f) = EU [SC(q, f, U)] = EU

[

1

2
((2λ + 1)r(min{Uq, f})− min{Uq, f}T (min{Uq, f})) + cq

]

=

f

q
∫

0

1

2
((2λ + 1)r(xq)− xqT (xq))dJ(x) +

Ū
∫

f

q

1

2
((2λ + 1)r(f)− fT (f)) dJ(x) + cq.

Taking the partial derivative of Γ with respect to f and q leads to:

∂Γ

∂q
= −

f

q
∫

0

1

2

(

φ(2λ + 1) + T (xq) + xqT ′(xq)
)

xdJ(x) + c, (5)

∂Γ

∂f
= −

1

2

(

φ(2λ + 1) + T (f) + fT ′(f)
)

Ū
∫

f
q

dJ(x). (6)

The next result characterizes the first best solution:

Theorem 2 Let f∗ and q∗ be the socially optimal vaccine coverage and production quantity. Fur-

thermore, let q̃∗ be the solution of:

F̄
q
∫

0

1

2

(

φ(2λ + 1) + T (xq) + xqT ′(xq)
)

xdJ(x)− c = 0. (7)

Then,

q∗ =

{

q̃∗, if c ≤ µ
(

φλ + φ+T (0)
2

)

,

0, otherwise,
and f∗ = min{F̄ , Ūq∗}.

Theorem 2 states that, when the production cost (c) is low, or when the infection cost for the

society (λ) is high, it is socially optimal to set the demand at its maximum (the critical vaccination

fraction or the maximum possible production). However, this does not imply that it is socially

optimal to always reach this high vaccine uptake. Having the demand at its maximum ensures

that the demand will not be the bottleneck in determining the coverage. The actual coverage is

the minimum of the demand and the realized production, and will thus be determined by the yield

realization and quantity q∗.

Example 3 Suppose U is uniformly distributed over [a, 2µ − a]. Let q̃∗ be the unique positive

solution of:

φ

4
(1 + 2λ + F̄ θ)

(

(

F̄

q

)2

− a2

)

−
F̄ θφ

3

(

(

F̄

q

)2

− a3 q

F̄

)

= 2c(µ− a).
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Then, from Theorem 2, we get:

q∗ =















q̃∗, if c < φµ
2

(

1 + 2λ − F̄ θ
3

)

− a2F̄ θφ
3(2µ−a) ,

3(φµ(1+2λ+F̄θ)−2c)
2φθ((2µ−a)2+2aµ)

, if φµ
2

(

1 + 2λ − F̄ θ
3

)

− a2F̄ θφ
3(2µ−a) ≤ c ≤ φµ

2

(

1 + 2λ + F̄ θ
)

,

0, otherwise,

and

f∗ = min{F̄ , q∗(2µ − a)}.

Furthermore, if a = 0 and µ = 1, that is, if U follows a uniform distribution on [0,2], then

q̃∗ = F̄
2

√

φ(3+6λ−F̄θ)
6c

. For that case, the first two panels in Figure 4 depicts the socially optimal

vaccine coverage and production quantity for two different values of each φ and R0, when λ = 1

and η = 3.3. Similar to the market equilibrium case, for low values of c, the targeted production
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quantity exceeds the demand so as not to risk inventory shortages. However, as the cost parameter,

c, increases, the targeted production falls below the demand to avoid over-producing expensive

vaccines that are likely to go unsold. The impact of vaccine effectiveness is also clear from Figure 4.

For low values of c, the optimal production and coverage levels both increase as the effectiveness, φ,

decreases. This is to be expected—as the vaccine effectiveness goes down, it becomes necessary to

immunize a larger fraction of the population to obtain the same level of immunity and to produce

more to meet that higher coverage level. However, at high values of c, maintaining a high level of

immunity is no longer desirable. There, the trend reverses. Both optimal production and coverage

level decrease quickly and reduce to zero as the vaccine effectiveness decreases. It is not optimal

to keep producing an ineffective vaccine at a high production cost. It is also clear from these plots

that the socially optimal production and coverage levels increase with R0. This is expected—as R0

increases, the higher level of infectiousness makes it necessary to produce more vaccines in order

to immunize a larger fraction of the population.

In order to verify the robustness of our results with respect to the distribution of U , we have

numerically tested them with other distributions as well. In particular, in the last two panels in

Figure 4, we report the results when U follows a truncated normal distribution on [0, 4]; for the

sake of easy comparison, the mean and the standard deviation of the truncated normal distribution,

in this as well as other illustrative plots in this paper, are kept the same as those for the uniform

distribution used in the first two panels in Figure 4.4 The similarity of the last two panels with

the first two clearly illustrates the robustness of our results with respect to the distributional

assumptions about U .

5 Incentive Mechanism to Coordinate the Market

This section studies the effects of a subsidy program as a coordinating mechanism to align the

incentives of different entities in a vaccine market. We introduce and motivate the subsidy scheme

used to coordinate the market and show that a menu of two-part subsidies can indeed achieve this

goal. We also examine the efficiency of partial subsidy programs, where a one-part mechanism is

implemented by only subsidizing vaccines to the consumers.

5.1 Subsidy scheme

Comparing the results from Sections 3 and 4—or more specifically comparing Figures 2 and 3 with

Figure 4—we can easily see that negative network effect and yield uncertainty can lead to large

market inefficiencies. An important thrust of this paper is to understand whether, and how, a

social planner could intervene in the vaccine market to align the equilibrium outcome with the

social optimum. Of course, as amply demonstrated in Figure 4, achieving the herd immunity may

not always be optimal for the society as a whole (if, for example, the vaccine is very expensive to

4We set the mean and standard deviation of the underlying normal distribution at 0.858205 and 0.689323, respec-
tively; this way the mean and the standard deviation of the truncated distribution matches those of Uniform[0,2],
which are 1 and 1√

3
, respectively.
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produce and an infection causes little harm or disutility to consumers). Government intervention

should thus aim at not necessarily achieving a vaccine coverage equal to the critical vaccination

fraction, but rather to some fraction that optimizes a measure of the societal benefit. In this section,

we propose an incentive mechanism that can eliminate the market inefficiencies and achieve the

social optimum.

As mentioned earlier, we consider a situation where the vaccine prices are set well before the

production yield is realized, sometimes as early as a year before production starts. We focus on

subsidies to simultaneously coordinate price and quantity decisions. Furthermore, since both price

and quantity decisions are made before resolving the yield uncertainty, a simple one-parameter

subsidy is not sufficient to coordinate both decisions at the same time. This is due to the fact that

a subsidy that can provide incentives to the individuals to ensure a sufficiently high level of vaccine

coverage (coordinate price) does not necessarily align the manufacturer’s production decision, under

yield uncertainty, with the central planner’s objective (coordinate quantity). A similar behavior

can be observed in the classical Newsvendor model with price-dependent demand (e.g., Cachon

2003). Therefore, we consider a two-parameter incentive mechanism (s, e), in which a subsidy s

is provided to the consumers (to coordinate the vaccine price or equivalently vaccine coverage,

f), and, under a cost sharing proposal, the central planner agrees to pay e to the manufacturer

for every production unit (to coordinate production quantity, q).5 The cost sharing component

in this contract is analogous to the purchase subsidy, and the subsidy component of our contract

is similar to the sales subsidy in (Taylor and Yadav 2011). One way to implement the contract,

among several other possible alternatives, would be to offer both incentives as a package. The

manufacturer could purchase the raw materials for the production directly from the government at

a per unit cost of c− e. In return, the manufacturer would get a payment of s for each vaccine sold

to the consumers, whereas the customers would only pay w − s to the manufacturer at the time

of purchase. Thus, the effective production cost to the manufacturer would become c − e, and the

demand-price relationship can be written as:

w = s + T (f).

The manufacturer’s profit can be written as follows.

π(q, f) = (T (f) + s)

f

q
∫

0

xqdJ(x) + (T (f) + s)

Ū
∫

f

q

fdJ(x) − (c − e)q.

In what follows, we first obtain the optimal production quantity for a fixed demand f , denoted by

qm(f), and then find the equilibrium demand, fm. Let f be fixed such that f ≤ F̄ . Taking the

derivative with respect to q, we can determine the optimal production quantity qm(f).

5This is in direct contrast with the case where the vaccine price can be set after the production yield is realized. If
that were indeed the case, then one can modify (Taylor and Yadav 2011) using the approach presented in this paper
to account for the production uncertainty and show that this market can be coordinated with just a single-parameter
subsidy.
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Lemma 2 Let q̃ be the unique solution of:

f

q
∫

0

xdJ(x) −
c − e

T (f) + s
= 0.

Then, qm(f) is given by:

qm(f) =

{

q̃, if T (f) ≥ c−e
µ

− s,

0, otherwise.
(8)

Example 4 If U follows a uniform distribution on [a, 2µ− a], then:

qm(f) =







√

f2(T (f)+s)
a2(T (f)+s)+4(c−e)(µ−a)

, if T (f) ≥ c−e
µ

− s,

0, otherwise.

Using the first order optimality conditions, we can find the equilibrium for the decentralized

vaccine market. More specifically, for a pair (s, e), Equation (8) allows us to reduce the objective

to a function of only f by substituting qm(f) into π(q, f). Before we derive the subsidy pair (s, e),

it is important to note that it is not possible to coordinate the market with fixed values of s:

Proposition 1 Let s > 0 be a fixed subsidy provided to each vaccinated consumer and e the unit

production payment provided to the manufacturer. Then, there is no contract with fixed payments

(s, e) that can coordinate the market.

Proposition 1 tells us that the consumer subsidy must be given as a menu of subsidies, that is,

s should be a function of the coverage level f . This is in direct contrast with the results in

(Mamani et al. 2012), where not only is the subsidy one-part because yield is deterministic, but

it is also fixed and does not change with the coverage level. The following result characterizes a

subsidy/cost-sharing scheme (s, e) that can coordinate the vaccine market.

Theorem 3 Let f∗ and q∗ be the socially optimal demand and production quantity. Let e and s(f)

be given by:

e =























c − (T (f∗) + s(f∗))

f∗
q∗
∫

0

xdJ(x), q∗ > 0,

0, q∗ = 0,

and (9)

s(f) =











θf, 0 ≤ f < f∗,

θf∗, f∗ ≤ f < F̄ ,

0, f ≥ F̄ .

(10)

Then, the contract (s(f), e), in which a subsidy of s(f) is provided to each vaccinated consumer

and a unit production payment of e is provided to the manufacturer, coordinates the market.
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Theorem 3 implies that it is indeed possible for a central planner to coordinate the market and

induce it to achieve the social optimum, but not via a fixed two-part subsidy program. We illustrate

this with the following example:

Example 5 If U follows a uniform distribution on [a, 2µ−a], then the optimal contract is (s(f), e),

where s(f) is as shown in Equation (10) and e is given by:

e =



















c − F̄ θ
4(µ−a)

(

(

F̄
q∗

)2
− a2

)

, if c < φµ
2

(

1 + 2λ − F̄ θ
3

)

− a2F̄ θφ
3(2µ−a)

,

c − θµ
(

F̄φ + q∗(2µ − a)(1− φ)
)

, if φµ
2

(

1 + 2λ − F̄ θ
3

)

− a2F̄ θφ
3(2µ−a) ≤ c ≤ φµ

2

(

1 + 2λ + F̄ θ
)

,

0, otherwise,

where q∗ is as given in Example 3.

Figure 5 shows how the optimal subsidy payments change with c, the unit production cost, for

two values of φ and R0 each, and two distributions of U ; in these plots, λ = 1 and η = 3.3.

It is clear from this figure that e, the payment to the manufacturer, first increases with c, as

the social planner tries to compensate the manufacturer for the higher cost of production directly,

but, after c increases beyond a threshold, where it is not socially optimal to produce the vaccine,

this subsidy diminishes in size. As long as f∗ is kept at a constant value, the subsidy s also remains

constant, and s drops to zero when f∗ drops to zero. It is interesting to observe, from Figure 5,

that as R0 increases, i.e., as the negative externality effect lessens, the subsidy to the manufacturer

decreases and that to consumers increases. Indeed, a higher value of R0 implies a higher vaccinated

fraction at the social optimum, hence a higher subsidy to consumers is necessary to induce the

socially optimal coverage. Some of this subsidy to consumers gets transferred to the manufacturers

via a higher demand, and thus the direct subsidy to the manufacturer decreases. Finally, as the

vaccine becomes less effective, that is, as φ becomes smaller, the subsidy to consumers decreases.

Two effects are at play here for the overall impact of vaccine effectiveness on the subsidies. On one

hand, a less effective vaccine requires more individuals to be vaccinated to achieve the same level

of immunity within the population; hence, for low c, f∗ increases as φ decreases (see Figure 4).

On the other, subsidizing a less effective vaccine represents a more wasteful measure to protect the

population as more vaccinated individuals will contract the disease, especially when the vaccine is

costly to produce. As a result, for high values of c, f∗ is zero for a less effective vaccine, but f∗

is positive for a more effective vaccine. The socially optimal subsidy program is a combination of

these two effects. We find that the second effect dominates the first and the subsidy to consumers

is lower for a less effective vaccine. Finally, a quick comparison of the first two panels in Figure 5

with the last two reveals that our results are quite robust to distributional assumptions about U .

In fact, our sensitivity analysis with respect to the distributional parameters of U , such as its

mean and standard deviation, show that, although the results do depend on these parameters,

the optimal subsidy is not very sensitive to small changes in these parameter values. In order to

illustrate this, in Figure 6, we plot e as a function of the standard deviation of U for two different

values of φ. As can be clearly seen from this figure, small inaccuracies in the estimation of the
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Figure 5: Optimal Subsidy Payment

standard deviation of U would not much impact the effectiveness of the proposed subsidy scheme.

We now make two important observations about Theorem 3:

Remark 1. Implementing the subsidy, s(f), based on the vaccine demand, f , may be challenging

in practice. However, since f and w are directly related, w = T (f) + s(f), one can rewrite

the subsidy based on the vaccine price, w, instead. To see this, we substitute the subsidy

from Theorem 3 and solve for f to obtain:

f =
1

1 − φ

(w

θ
− φF

)

.
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Therefore, the subsidy can be implemented based on the vaccine price as follows:

s(w) =











1
1−φ

(w − θφF ) , 0 ≤ w < θ (φF + (1 − φ)f∗)

θf∗, θ (φF + (1 − φ)f∗) ≤ w < θ
(

φF + (1− φ)F̄
)

0, w ≥ θ
(

φF + (1− φ)F̄
)

.

Remark 2. The piecewise linear subsidy scheme described in Theorem 3 is only one of many

mechanisms that can coordinate this market. In general, a subsidy s(f) achieves the first best

solution as long as it is a non-decreasing function of f that satisfies the following properties:

• s′(f) ≥ −T ′(f) for 0 ≤ f < f∗,

• s′(f) ≤ −T ′(f) for f∗ < f < F̄ , and

• s(f) = 0 for f ≥ F̄ .

5.2 Effect of the Subsidy Scheme on the Social Welfare

We plot the total social welfare as a function of c in Figure 7, for two different values of each R0 and

φ with λ = 1, and η = 3.3, when U is uniformly distributed over [0, 2]; the results are very similar

when U follows a truncated normal distribution. In order to see how well the subsidy scheme works,

we also plot the social welfare when no subsidy is provided.

It is clear from this figure that the subsidy scheme provides a significant increase in the total

social welfare. We can also see that the social welfare increases with φ, while it decreases with R0.

This is expected. As φ increases, the vaccine becomes more effective, resulting in better control

of the disease and higher social welfare. On the other hand, as R0 increases, the disease becomes

more contagious and the social welfare diminishes. Finally, as expected, the total social welfare

decreases with c—as the cost of production increases, the optimal production quantity becomes

lower and the resulting social welfare goes down.
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Figure 7: Total Social Welfare With and Without Subsidy (U ∼ Uniform[0, 2])

5.3 Partial subsidy

Much of the prior literature from health economics has studied the role of subsidies to consumers

only to improve vaccine coverage and consumer surplus, while ignoring the manufacturer surplus

and the role of subsidies to the manufacturer, as detailed in Section 2. To further demonstrate the

importance of taking into consideration the manufacturer in a subsidy program, we now investigate

the effect of a subsidy program that is focused on the consumers only, ignoring the manufacturer,

and that only aims at coordinating the consumer demand with that of the first-best solution.

We consider a partial subsidy program, where the manufacturer receives no subsidy, but the

consumer subsidy is s(f), as given in Theorem 3, and the coverage level is determined as an

equilibrium outcome of this modified game. The resulting equilibrium can be easily computed in

a manner similar to Theorem 1, after replacing T (f) with T (f) + s(f). Figure 8 depicts, for U

following a uniform distribution on [0,2], the equilibrium solution and total social welfare for (i)

no subsidy (i.e. the equilibrium solution found in Section 3), (ii) a partial subsidy to consumers

only, and (iii) the full subsidy proposed in Section 5.1; the plots are remarkably similar for other

distributions as well. Unsurprisingly, the partial subsidy offers some benefits in terms of social

welfare compared with no subsidy at all.

However, the gap in social welfare between the partial subsidy and the full subsidy is still quite

large. Evidently, it is critical for a social planner to take into account the manufacturer surplus

when designing a subsidy program. Therefore, the need to subsidize the production of vaccines to

achieve the best coordination results and social welfare benefits cannot be overlooked, as has often

been done in prior literature.
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Figure 8: Production, Coverage, and Social Welfare Under Different Subsidy Programs

6 Conclusions

Infectious diseases remain an important world-wide public health threat. Vaccines are available

for many of these diseases and are generally considered a safe and cost-effective prevention tool.

Government intervention via vaccine subsidy programs is an important weapon against the spread of

infectious diseases. Without this type of programs, spontaneous market behavior leads to a vaccine

coverage that is often too low to achieve herd immunity and is always less than the socially optimal

level of vaccine coverage. There are two reasons for this: On the consumer side, there are negative

network effects of vaccines—as more individuals get vaccinated, the chance of infection, and hence

the willingness to pay for the vaccine, for an unvaccinated individual, decreases. On the supply

side, production uncertainties make it too risky for manufacturers to produce sufficiently large

quantities. Government intervention may improve public health by providing subsidies as incentives
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to reduce these inefficiencies. In this paper, we synthesize concepts from three areas—economics,

operations management, and epidemiology—to analyze the effect of the network externalities and

yield uncertainties on the outcome of the monopoly market as well as the first best solution. We

also derive a coordination scheme via subsidies to align the market outcome with the centralized

solution. We show that a fixed one- or two-parameter subsidy structure cannot provide appropriate

incentive to the consumers and the vaccine manufacturer to guarantee a socially optimal vaccine

coverage that maximizes the total social welfare, but a two-part menu of subsidies can.

We find that our results are quite robust to the distributional assumptions about the production

yield. This is amply illustrated in Figures 4 and 5, where we plot the socially optimal outcomes

and subsidy payments, respectively, for two different distributions of the yield. In the first two

panels in each figure, the yield is uniformly distributed and, in the last two, it follows a truncated

normal distribution (with the same mean and variance as the uniform distribution). It can be

clearly seen that the results do not seem sensitive to the distribution of the production yield; in

fact, two very different types of distributions lead to very similar results for other key metrics

such as equilibrium outcome (Figures 2 and 3) and social welfare (Figures 5 and 7) as well. This

robustness of the equilibrium outcome, first best solution, coordinating subsidy scheme, and social

welfare with respect to the distribution of the yield has important practical implications. Often,

it is quite difficult to accurately estimate the distribution of an uncertain parameter such as the

production yield. It is common to have good estimates for some of its characteristics, such as the

mean and variance, but to expect a full knowledge of the exact distribution is often unrealistic.

Our results indicate that this would not be an issue within our research context, as the findings are

almost unchanged when the distribution is modified while retaining the mean and variance at their

respective values. The material implication is that inaccuracies in estimating the yield distribution

would not have much of an impact in the implementation of our approach.

There are several directions in which our work could be extended. For example, in this paper

we consider a monopoly market with a single manufacturer. It would be interesting to investigate

the impact of competition in this market. We could do this by extending our model to consider two

or more competing firms in the same vaccine market. Although the algebra becomes intractable,

we can obtain numerical results in that case. Second, in this study, we assume a constant unit

cost of production. In reality, there are usually large fixed costs and economies of scale in vaccine

production. Both these factors tend to impact the production decision in exactly the opposite

manner, when compared to the impacts of negative network effect and yield uncertainty—while the

former two favor a higher output, the latter two tend to induce the manufacturer to under-produce.

This trade-off is an interesting topic to explore. While analytical solutions are difficult to obtain,

once again, we can obtain numerical solutions for this trade-off. Furthermore, we do not address

the issue of how to pay for the subsidy. In order to achieve revenue-neutrality, one would need

to develop a combined tax-subsidy scheme where the taxes exactly pay for the subsidies. Finally,

in practice, a big portion of the total demand for influenza vaccine is realized as pre-orders from

healthcare providers, and the manufacturer caters to the current unmet demand only after meeting

the pre-orders received prior to vaccine production. In this paper, we assume that the total demand
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from a healthcare provider for a certain vaccine price effectively mirrors the actual demand from

consumers based on demand and price elasticity information from prior periods; this translates to

merging the actual consumers with healthcare providers as the “consumers” in our model. It may

be interesting to extend the model to distinguish the pre-order and consumer demands. We are

examining all these issues in an ongoing project to develop a more complete picture of the public

policy challenges in this area.
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Appendices

A Estimation of r(f)

The analysis presented in the paper, relies on an underlying epidemic model to obtain the infection probability
r(f). This appendix presents two variants of the textbook SIR epidemic model, one with vital dynamics
and one without. We derive a closed form solution for infection probability of an SIR model with vital
dynamics which gives rise to the formulas used in the paper. Unfortunately, for an SIR model without vital
dynamics, there is no closed-form solution. However, we show that, for diseases of interest and for realistic
values of infection model parameters, the same formula can be used as an effective approximation for the true
probability function. Using the notation in the paper, a vaccine’s effectiveness is denoted by a parameter φ,
where 0 < φ ≤ 1.

A.1 An SIR Model with Vital Dynamics (Endemic Model)

In this model, births and deaths are explicitly taken into account. The birth and death rates are equal so
that the total size of the population would remain constant. Notice that such models can be used for diseases
which can stay in the population for a long time period (e.g., smallpox), but may not be appropriate for
diseases that can invade a population for a relatively short period of time (e.g., influenza).

A standard formulation for the SIR epidemic with vital dynamics (endemic model) uses a three-compartment
model in which individuals are either susceptible to the disease (S), infectious (I), or recovered (R). The frac-
tions of individuals in these three states at time t are represented as S(t), I(t), and R(t), respectively. When
expressed as a set of differential equations, epidemiologists tend to parameterize the endemic model by:

dS

dt
= γ(1 − φf) − βSI − γS,

dI

dt
= βSI −

I

δ
− γI, and

dR

dt
=

I

δ
+ γφf − γR,

where γ is the birth and death rate, β is the mean transmission rate, and δ > 0 is the mean duration of the
infection; clearly, γδ is then the infectious period as a fraction of mean lifetime

Let R0 = βδ
γδ+1 be the basic reproduction number and F = R0−1

φR0
be the critical vaccination fraction.

Let Ŝ and Î be the number of susceptible and infected individuals (vaccinated and unvaccinated) in the
population in the equilibrium. One can show that if f ≥ F , then the system converges to the disease-free
state (Ŝ, Î) = (1 − φf, 0), whereas if f < F , then the system converges to the following stable endemic

state (Ŝ, Î) =
(

1 − φf, φγδ
γδ+1 (F − f)

)

(Bauch and Earn 2004). As a result, the infection probability of a

susceptible individual can be expressed as the proportion of susceptible individuals becoming infected versus
dying in any unit of time. Therefore, the total fraction of infected individuals in the population is:

r(f) = (1 − φf)
R0(γδ + 1)Î

R0(γδ + 1)Î + γδ
= 1 − φf −

1

R0
,

which is the same as the probability function presented in the paper.
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A.2 An SIR Model without Vital Dynamics (Epidemic Model)

This is an epidemic model which does not include newborns or regular deaths in the population due to the
relatively small window of the infection period. This model has been shown to be consistent with history of
many diseases including influenza. As a result, letting γ = 0 in the above-mentioned system of differential
equations leads to:

dS

dt
= −βSI,

dI

dt
= βSI −

I

δ
, and

dR

dt
=

I

δ
.

Timely vaccination followed by the onset of (instantaneous) infections from exogenous sources results in
initial conditions R(0) = fφ, S(0) = (1−fφ)(1−χ), I(0) = (1−fφ)χ, where χ is the initial infected fraction
of the population. As expected, this number is typically very small (0 < χ � 1).

It can be shown that the attack rate in this case does not have an explicit form solution like the previous
section. However, it can be approximated as follows (Chick et al. 2008):

r(f) = (1 − φf)
[

1 − (1 − χ)e−R0r(f)
]

.

Moreover, it can be shown that the critical vaccination fraction for this case is the same as the one for the
endemic model, i.e., F = R0−1

R0φ
, where R0 = βδ is the basic reproduction number. Chick et al. (2008) also

argue that, for a small enough value of χ, the overall infected fraction of the population, r(f), can be well
estimated by a piecewise linear function. Using the first-order Taylor series approximation, we get:

r(f) = max

{

1 −
1

R0
− fφ, 0

}

,

which is identical to the endemic case.

B Estimation of p(f)

In this appendix, we extend the SIR models developed in Appendix A to account for the disease dynamic
within the vaccinated and unvaccinated populations. Such compartmental models are mainly discussed in
the context of HIV and HPV vaccines in the epidemiology literature (Anderson and Hanson 2005, Hughes
et al. 2002, McLean and Blower 1993). In this section, we use a variant of the mentioned models to fit other
diseases of interest such as influenza.

B.1 An SIR model with imperfect vaccines

As before, we consider two variants of the SIR epidemic model, one with vital dynamics and one without.
Unlike for the total fraction of the infected population, we are not able to find a closed-form analytical solution
for the infection probability of vaccinated population. However, we can show that a simple piecewise linear
function can provide a fairly effective approximation for p(f) for both scenarios.

In order to differentiate between the vaccinated and unvaccinated populations we define the following
five states for the individuals at any time t. Let Sn(t) be the fraction of unvaccinated susceptible individuals,
In(t) the fraction of unvaccinated infected individuals, Sv(t) the fraction of vaccinated susceptible individuals,
Iv(t) the fraction of vaccinated infected individuals, and R(t) the fraction of recovered population. With
imperfect vaccination and vital dynamics, assuming that vaccination occurs at birth, the system of differential
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equations characterizing the epidemic model can be written as:

dSn

dt
= (1 − f)γ − γSn − βSnIn − βSnIv,

dSv

dt
= fγ − γSv − β(1 − φ)SvIn − β(1 − φ)SvIv,

dIn

dt
= βSnIn + βSnIv −

In

δ
− γIn ,

dIv

dt
= β(1 − φ)SvIn + β(1 − φ)SvIv −

Iv

δ
− γIv , and

dR

dt
=

In

δ
+

Iv

δ
− γR,

with the initial conditions R(0) = 0, Sv(0) = 0, Sn(0) = 1 − χ, Iv(0) = 0, In(0) = χ, where χ is as defined
earlier.

Setting γ = 0 in the set of differential equations above would lead to the infection dynamics for an
infection without vital dynamics:

dSn

dt
= −βSnIn − βSnIv,

dSv

dt
= −β(1 − φ)SvIn − β(1 − φ)SvIv,

dIn

dt
= βSnIn + βSnIv −

In

δ
,

dIv

dt
= β(1 − φ)SvIn + β(1 − φ)SvIv −

Iv

δ
, and

dR

dt
=

In

δ
+

Iv

δ
.

Timely vaccination followed by the onset of (instantaneous) infections from exogenous sources results in
initial conditions R(0) = 0, Sv(0) = f , Sn(0) = 1−f −χ, Iv(0) = 0, In(0) = χ, where χ is the initial infected
population who initiate the epidemic.

B.2 Further Approximation of p(f)

While we are not able to find a closed-form solution for the infection probability of the vaccinated population,

p(f) =

(
∞∫

0

Iv(t)dt

)

/f , in either one of the epidemic models, we can estimate this function numerically.

Based on the numerical estimates, we find that, for a suitable choice of η, the following is a reasonably close
approximation of p(f), both with and without vital dynamics:

p(f) = η(1 − φ)r(f).

In Figure A1, the actual values of p(f)—obtained from numerical solutions of the ODEs for the case without
vital dynamics with R0 = 2 and φ = 0.9—are plotted as points (represented by ×). The approximation of
p(f) is drawn as a solid line. In this particular case, the best fit is obtained for η = 3.3. This figure clearly
shows that our approximation is quite close to the reality. Similar plots were obtained for other values of R0

and φ, as well as for the case with vital dynamics.

C Proofs

Proof of Theorem 1

First, we assume that the vaccine is perfect. Then φ = 1 and the demand equation becomes w = F̄ − f .
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Figure A1: Actual and Approximated Values of p(f) for R0 = 2 and φ = 0.9

Let t = F̄ − f , and z = f
q
. Then, f = F̄ − t, and q = F̄−t

z
. Thus, we can rewrite the objective as:

π(t, z) =
F̄ − t

z



t

z∫

0

x dJ(x) + tz

Ū∫

z

dJ(x) − c



 .

Taking the first derivatives with respect to z and t, we get:

∂π(t, z)

∂z
= −

F̄ − t

z2



t

z∫

0

x dJ(x) − c



 , and

∂π(t, z)

∂t
=

1

z



(F̄ − 2t)

z∫

0

x dJ(x) + (F̄ − 2t)z

Ū∫

z

dJ(x) + c



 .

Define functions R(z) and S(t) as follows:

R(z) = t

z∫

0

x dJ(x)− c, and (A1)

S(t) = (F̄ − 2t)





z∫

0

x dJ(x) + z

Ū∫

z

dJ(x)



 + c. (A2)

We will shortly prove that R(z) has at most two roots between zero and its upper limit (Ū), when t is chosen

such that S(t) = 0. Note that the roots of R(z) are the roots for
∂π(t,z)

∂z
and vice versa; the same is true for

S(t) and ∂π(t,z)
∂t

. Setting S(t) = 0, and defining

Θ(z) =

z∫

0

x dJ(x) + z

Ū∫

z

dJ(x)

leads to:

t =
1

2

[
c

Θ(z)
+ F̄

]

.
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Now, replace this t into the expression for R(z) in Equation (A1) to obtain:

R(z) =
1

2

[
c

Θ(z)
+ F̄

] z∫

0

x dJ(x) − c.

Taking the derivative of R(z), we get:

dR(z)

dz
=

1

2





(
c

Θ(z)
+ F̄

)

zj(z) −
c(1 − J(z))

Θ2(z)

z∫

0

xdJ(x)





=
j(z)

2





(
c

Θ(z)
+ F̄

)

z −
c

Θ2(z)ρ(z)

z∫

0

xdJ(x)



 ,

where ρ(z) =
j(z)

J̄(z)
is the hazard rate of random variable U with a pdf j(z), a cdf J(z), and a complement

cdf of J̄(z) = 1 − J(z). The second derivative of R(z) where its first derivative is zero can, then, be found:

d2R(z)

dz2

∣
∣
∣
∣

dR(z)
dz

=0

=
1

2







cΘ(z) − czJ̄(z)

Θ2(z)
+ F̄ −

czj(z)

Θ2(z)ρ(z)
+

c[2ρ(z)J̄(z) + Θ(z)ρ′(z)]
z∫

0

xdJ(x)

Θ3(z)ρ2(z)







=
1

2







c
z∫

0

xdJ(x)

Θ2(z)
+ F̄ −

czJ̄(z)

Θ2(z)
︸ ︷︷ ︸

?

+

c[2ρ(z)J̄(z) + Θ(z)ρ′(z)]
z∫

0

xdJ(x)

Θ3(z)ρ2(z)







. (A3)

As a result, if (A3) is positive then we can conclude that R(z) can have at most two roots which is the
desired result. To show this, we first prove that the portion marked as (?) in (A3) is positive:

F̄Θ2(z) − czJ̄(z) = F̄





z∫

0

xdJ(x) + zJ̄(z)





2

− czJ̄(z)

≥ F̄





z∫

0

x dJ(x) + zJ̄(z)



 zJ̄(z) − czJ̄(z)

= zJ̄(z)



F̄





z∫

0

x dJ(x) + zJ̄(z)



 − c



 . (A4)

On the other hand, setting S(t) to zero in (A2), we get:

0 = S(t) = (F̄ − 2t)





z∫

0

xdJ(x) + z

Ū∫

z

dJ(x)



 + c

≥ −F̄





z∫

0

xdJ(x) + z

Ū∫

z

dJ(x)



 + c (setting t = F̄ ).

Thus, (A4) and the portion of (A3) marked as (?) are both non-negative. As a result, (A3) is non-negative
for distributions that satisfy 2ρ(z)J̄ (z)+Θ(z)ρ′(z) ≥ 0. Therefore the derivative of the objective function has
at most two roots with the first one being the local maximum and the second one the local minimum. Next
we show that the minimum is always outside of the feasible range of vaccination fractions, f ∈ (0, F̄ − c

µ
) or



6

equivalently t ∈ ( c
µ
, F̄ ). To see this, we replace t = c

µ
in (A1):

R(z) =
c

µ

z∫

0

x dJ(x)− c ≤ 0.

Now, if the vaccine is imperfect, we have:

T (f) = θr(f) =

{
0, if f > F̄

θ
(

1 − φf − 1
R0

)

, otherwise.

Let t = θ
(

1 − φf − 1
R0

)

, and z = f
q
. Then, f = 1

φ

(

1 − 1
R0

− t
θ

)

, and q = 1
φz

(

1 − 1
R0

− t
θ

)

. Thus, we

can rewrite the objective as:

π(t, z) =
1

φz

(

1 −
1

R0
−

t

θ

)


t

z∫

0

x dJ(x) + tz

Ū∫

z

dJ(x)− c



 .

The rest of the proof proceeds similarly to the perfect case above.

Proof of Theorem 2

Let q be the production quantity. We first prove that the derivative of Γ with respect to f , 0 ≤ f ≤ F̄ , is
always non-positive. Using (??), for all f , 0 ≤ f ≤ F̄ , we have:

∂Γ

∂f
= −

1

2
(φ(2λ + 1) + T (f) + f T ′(f))

Ū∫

f
q

dJ(x) ≤ −
1

2
(φ + T (f) + f T ′(f))

Ū∫

f
q

dJ(x)

≤ −
1

2

(
φ + T (F̄ ) + F̄ T ′(F̄ )

)
Ū∫

f

q

dJ(x) = −
1

2

(
φ + F̄ T ′(F̄ )

)
Ū∫

f

q

dJ(x)

≤ −
1

2

(
φ − θφF̄

)
Ū∫

f
q

dJ(x) ≤ 0.

Now we consider two cases: (1) F̄ ≤ qŪ and (2) F̄ > qŪ . For the first case using the inequality above we find
f∗ = F̄ . Under the second case however, for all qŪ ≤ f ≤ F̄ , the integral and hence the derivative is zero.
Defining the optimal fraction to be the smallest fraction optimizing the objective we get: f∗ = min{F̄ , Ūq}.

Note that even though f∗ = min{F̄ , Ūq}, in order to find the optimal q we can simply replace f by F̄
in the Γ(q, f) expression and achieve the same objective. Thus one can write the objective function as a
function of q, only. Taking the first and second derivatives of the objective with respect to q, leads to:

∂Γ

∂q
= −

F̄
q∫

0

1

2
(φ(2λ + 1) + T (xq) + xqT ′(xq))xdJ(x) + c, and

∂2Γ

∂q2
= −

F̄
q∫

0

(
d

dx
(T (xq) + xqT ′(xq))

)
x

2
dJ(x) +

1

2

(
φ(2λ + 1) + T (F̄ ) + F̄T ′(F̄ )

)
(

F̄ 2

q3

)

j

(
F̄

q

)

.

Note that the term d
dx

(T (xq) + xqT ′(xq)) is non-positive, as the function fT (f) is concave. Furthermore,
φ + T (F̄ ) + F̄T ′(F̄ ) ≥ 0 from above, making the second derivative non-negative. Thus, the first-order
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condition could be used to find the optimal q. If

−µ

(

φλ +
φ + T (0)

2

)

+ c =
∂Γ

∂q

∣
∣
∣
∣
q→0

> 0,

then the objective is increasing over the entire set of feasible production quantities, and hence q∗ = 0.
Otherwise, q∗ can be found by solving the first order condition:

F̄
q∫

0

1

2
(φ(2λ + 1) + T (xq) + xqT ′(xq))xdJ(x) = c,

which completes the proof.

Proof of Proposition 1

Given a fixed contract (s, e), we first take the derivative of the manufacturer’s cost

π(q, f) = (T (f) + s)

f
q∫

0

xqdJ(x) + (T (f) + s)

Ū∫

f

q

fdJ(x) − (c − e)q

with respect to f and q:

∂π(q, f)

∂q
= (T (f) + s)

f
q∫

0

xdJ(x)− (c − e), and

∂π(q, f)

∂f
= T ′(f)q

f

q∫

0

xdJ(x) + T ′(f)

Ū∫

f
q

fdJ(x) + (T (f) + s)

Ū∫

f
q

dJ(x).

To show that the contract is coordinating, we should demonstrate that f = f∗ and q = q∗ satisfy the
optimality conditions. Showing the optimality of q = q∗ for f = f∗ leads to:

∂π(q, f∗)

∂q

∣
∣
∣
∣
q=q∗

= (T (f∗) + s)

f∗

q∗

∫

0

xdJ(x)− (c − e) = 0.

Next, to show that a fixed two-part subsidy cannot coordinate this market we consider two cases: (i) F̄ ≥ Ūq∗,
and (ii) F̄ < Ūq∗.

(i) Suppose that f∗ = Ūq∗ ≤ F̄ . Then taking the left derivative of manufacturer’s profit at f∗ leads to

∂π(q∗, f)

∂f

∣
∣
∣
∣
f=(f∗)−

=







T ′(f)q∗

f

q∗

∫

0

xdJ(x) + T ′(f)

Ū∫

f

q∗

fdJ(x) + (T (f) + s)

Ū∫

f

q∗

dJ(x)







∣
∣
∣
∣
∣
∣
∣
∣
f=(f∗)−

= T ′(Ūq∗)q∗
Ū∫

0

xdJ(x).

Therefore, the left derivative is negative and the optimal value of f under the contract will not be the same
as f∗ = Ūq∗.
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(ii) Suppose that f∗ = F̄ < Ūq∗. Then taking the right derivative of manufacturer’s profit at f∗ leads to

∂π(q∗, f)

∂f

∣
∣
∣
∣
f=(f∗)+

=







T ′(f)q∗

f

q∗

∫

0

xdJ(x) + T ′(f)

Ū∫

f

q∗

fdJ(x) + (T (f) + s)

Ū∫

f

q∗

dJ(x)







∣
∣
∣
∣
∣
∣
∣
∣
f=(f∗)+

= s

Ū∫

f∗

q∗

dJ(x).

Therefore, for any non-zero subsidy to consumers, the right derivative will be positive and the optimal value
of f under the contract will not be the same as f∗ = F̄ .

Proof of Theorem 3

We first take the derivative of

π(q, f) = (T (f) + s(f))

f

q∫

0

xqdJ(x) + (T (f) + s(f))

Ū∫

f
q

fdJ(x) − (c − e)q

with respect to f and q:

∂π(q, f)

∂q
= (T (f) + s(f))

f

q∫

0

xdJ(x) − (c − e), and

∂π(q, f)

∂f
= (T ′(f) + s′(f))q

f
q∫

0

xdJ(x) + (T ′(f) + s′(f))

Ū∫

f

q

fdJ(x) + (T (f) + s(f))

Ū∫

f

q

dJ(x).

We demonstrate that f = f∗ and q = q∗ in (??) satisfy the optimality conditions. Showing the optimality
of q = q∗ for f = f∗ is straightforward as:

∂π(q, f∗)

∂q

∣
∣
∣
∣
q=q∗

= (T (f∗) + s(f∗))

f∗

q∗

∫

0

xdJ(x) − (c − e) = 0

Next, we show that f∗ is the optimal vaccine demand for q = q∗. For this purpose, we show that
∂π(q∗,f)

∂f

∣
∣
∣
f<f∗

> 0 and
∂π(q∗,f)

∂f

∣
∣
∣
f<f∗

≤ 0:

∂π(q∗, f)

∂f

∣
∣
∣
∣
f<f∗

= (T ′(f) + s′(f))q∗

f

q∗

∫

0

xdJ(x) + (T ′(f) + s′(f))

Ū∫

f

q∗

fdJ(x) + (T (f) + s(f))

Ū∫

f

q∗

dJ(x)

= θ(1 − φ)q∗

f

q∗

∫

0

xdJ(x) + θ(1 − φ)

Ū∫

f

q∗

fdJ(x) + (T (f) + s(f))

Ū∫

f

q∗

dJ(x) > 0,
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as s(f) = θf by the definition of subsidy in this region. On the other hand,

∂π(q∗, f)

∂f

∣
∣
∣
∣
f>f∗

=







−θφq∗µ ; if Ūq∗ < F̄

0 ; if Ūq∗ ≥ F̄
≤ 0.

Note that f∗ = F̄ in the case of Ūq∗ ≥ F̄ . Therefore, T (f) = T ′(f) = s(f) = s′(f) = 0 for all f > f∗.
Furthermore, in the case of f∗ = Ūq∗ < F̄ , by the definition of the subsidy we have T ′(f) + s′(f) = T ′(f) =
−θφ for f > f∗. As a result f = f∗ when q = q∗ leading to the desired result.

D Notational Summary

Table D1: Notational Symbols and Their Meanings
Symbol Meaning

c Marginal production cost of a vaccine

e Production subsidy per vaccine

J(·), j(·) Probability distribution and density func-
tions of U

f Vaccine coverage level

F , F̄ Critical vaccination fraction; F̄ = min{F, 1}

g Realized coverage level; g = min{Uq, f}

L Maximum possible cost from an infection to
a consumer with u = 1

p(f), P (f) Infection probability for the vaccinated and
unvaccinated populations

q Normalized target production level

r(f) Infection probability for the entire population

R0 Basic reproduction number

s Subsidy given to each vaccinated consumer

SC Realized total social cost

SW Expected total social welfare

T (f) T (f) = r(f) − p(f)

u Index of consumers’ relative cost from an in-
fection

ū Index of a consumer indifferent between get-
ting or not getting the vaccine

U Fractional yield; 0 < U ≤ Ū , E[U ] = µ

W , w (Normalized) price of a vaccine; w = W
L

Symbol Meaning

Γ Expected total social cost

η A constant; 0 ≤ η ≤ 1
1−φ

θ θ = 1 − η(1 − φ)

λ Normalized loss to the society per infection

µ µ = E[U ]

Π , π Realized and expected profit of the manufac-
turer

ρ(·) Hazard rate; ρ(z) = j(z)
1−J(z)

σM Manufacturer’s expected surplus

σV , σN Expected surplus for the vaccinated and un-
vaccinated consumers

σS Expected societal surplus

φ Effectiveness of a vaccine
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