Title
Brushed soft contact lenses for reducing lid-wiper sliding friction

Permalink
https://escholarship.org/uc/item/8c91t13j

ISBN
9781510818651

Authors
Radke, CJ
Bregante, DT
Pang, V
et al.

Publication Date
2015

Peer reviewed
(415i) Brushed Soft Contact Lenses for Reducing Lid-Wiper Sliding Friction

Conference: AIChE Annual Meeting

Year: 2015

Proceeding: 2015 AIChE Annual Meeting

Group: Materials Engineering and Sciences Division

Session: Nanostructured Polymer Films

Time: Tuesday, November 10, 2015 - 5:30pm-5:45pm

Authors:

Radke, C. J., University of California Berkeley
Bregante, D. T., University of California Berkeley
Pang, V.,
Dursch, T. J. Jr., University of California Berkeley

Brushed Soft Contact Lenses for Reducing Lid-Wiper Sliding Friction

C.J. Radke¹, D.T.
Bregante¹, V.
Pang¹, T. J.
Minimal sliding friction of soft contact lenses (SCLs) is critical to on-eye comfort. In spite of significant attention in recent years, sufficient lens lubricity has not been achieved. We investigate use of strongly-hydrophilic polyelectrolyte brushes to reduce sliding friction of SCL-hydrogel surfaces in the ‘high’ friction boundary lubrication regime that is most likely the origin of wear discomfort. Anionic poly(acrylic acid) (PAA, 435 kDa) strands are physically entrapped in HEMA-based SCLs. Briefly, aqueous-equilibrated SCLs were swollen in isopropanol (IPA), containing dissolved PAA. Subsequently, PAA-containing SCLs were deswollen (i.e., solvent exchanged) in aqueous phosphate-buffed saline (PBS, pH 7.4) to physically entrap the polymer. Successful brush attachment is confirmed by comparing surface forces measured by colloidal-probe atomic force microscopy (AFM) on a SCL hydrogel before and after brush treatment, and by fluorescence confocal laser-scanning microscopy (FCLSM) of fluorescently-labeled polymers. By way of example, Figure 1 displays a typical FCLSM image of an aqueous-equilibrated HEMA-based hydrogel immediately following anionic FITC-labeled PAA brush attachment. Fluorescence-intensity profiles clearly confirm successful polymer entrapment, with no observable FITC-PAA leaching even after 2 wks.

Aqueous sliding friction forces are obtained using both colloidal-probe AFM and the inclined-plane method (IPM). Figure 2 shows typical aqueous sliding friction coefficients, CoFs, for a HEMA-based SCL and a PAA-brushed HEMA-based SCL obtained from both AFM and the IPM. Several features are salient. COF values are reduced significantly for the PAA-brushed HEMA-based SCL compared to the unbrushed SCL. The CoF value for the HEMA-based SCL is 0.06 from both colloidal-probe AFM and the IPM, in good agreement with literature values. For the PAA-brushed HEMA-based SCL, however, the CoF value measured by colloidal-probe AFM is nearly an order of magnitude lower than that obtained from the IPM (i.e., 0.004 compared to 0.02). This finding indicates that the IPM is unsuitable for obtaining low CoF values (i.e., lower than 0.02). Our colloidal-probe AFM measurements reveal that...

Figure 1. A typical fluorescence-confocal-microscopy image of an aqueous-equilibrated HEMA-based hydrogel immediately following anionic FITC-PAA brush entrapment. Scale bars represent 20 μm in the vertical direction.

Figure 2. Aqueous sliding friction coefficients, CoFs, for a HEMA-based SCL and a PAA-brushed HEMA-based SCL obtained from both colloidal-probe AFM and the IPM.