Title
Surface- and bulk-micromachined two-dimensional scanner driven by angular vertical comb actuators

Permalink
https://escholarship.org/uc/item/8cm3q6n1

Journal
Journal of Microelectromechanical Systems, 14(6)

ISSN
1057-7157

Authors
Piyawattanametha, W
Patterson, P R
Hah, D
et al.

Publication Date
2005-12-01

Peer reviewed
Abstract—In this paper, we present the design, fabrication, and measurements of a two-dimensional (2-D) optical scanner with electrostatic angular vertical comb (AVC) actuators. The scanner is realized by combining a foundry-based surface-micromachining process (Multi-User MEMS Processes—MUMPs) with a three-mask deep-reactive ion-etching (DRIE) postfabrication process. The surface-micromachining provides versatile mechanical design and electrical interconnect while the bulk micromachining offers high-aspect ratio structures leading to flat mirrors and high-force, large-displacement actuators. The scanner achieves dc mechanical scanning ranges of $\pm 6.2^\circ$ (at 55 Vdc) and $\pm 1.1^\circ$ (at 50 Vdc) for the inner and outer gimbals, respectively. The resonant frequencies are 315 and 144 Hz for the inner and the outer axes, respectively. The 1-mm-diameter mirror has a radius of curvature of over 50 cm.

Index Terms—Angular vertical comb (AVC) actuators, confocus microscopy, optical coherence tomography (OCT), scanner.

I. INTRODUCTION

ADVANCES in optical microelectromechanical systems (MEMS) technology have made it possible to realize compact, batch-fabricated, and cost-effective optical scanning components. In recent years, electrostatically actuated one-dimensional (1-D) and two-dimensional (2-D) scanners have been widely used in applications such as optical telecommunication subsystems [1]–[4], barcode scanners [5], projection displays [6], and endoscopic microscopy [7]–[10], owing to their low power consumption, low cost, and ease of integration. The general requirements of scanners for these applications are optically flat mirrors (radius of curvature more than 0.5 m), moderate actuation voltage (less than 100 V), and high reliability (more than a billion cycles). Endoscopic microscopy, including optical coherence tomography (OCT) and confocal microscopy, presents a unique challenge for MEMS scanners. Large mirror area and wide scan range are needed to achieve high-resolution imaging, at the same time a small footprint is necessary for the probe to fit in standard endoscope ports [7]–[11]. Three-dimensional endoscopic imaging in OCT imaging applications requires 2-D scanning. This is realizable by either cascaded 1-D scanners or a single 2-D scanner. The latter is preferable because it simplifies the optical system and reduces the overall packaging size [10].

Recently, there has been increasing interest in vertical comb-actuated 2-D scanners [1], [12]–[15]. The vertical comb actuators offer large force and extensive vertical displacement. The pull-in instability found in many electrostatic actuators can also be avoided when they are properly designed [16]. Two-dimensional scanners have been realized on a single device layer of a silicon-on-insulator (SOI) wafer [12], [13], [15]. Other approaches employing two SOI layers have also been reported [1], [14]. Electrical isolation and mechanical coupling among SOI structures are accomplished by using polysilicon-filled trenches [12], or backside islands [13]. Flip-chip bonding technique is employed for electrical interconnect [1]. Some scanners can only operate in resonant mode due to the small difference in comb finger thicknesses [12]. Other scanners operated in dc as well as resonant modes [1], [13]–[15].

Previously, we have reported 1-D scanners with angular combdrive (AVC) actuators fabricated by bulk-micromachining [17] and hybrid surface- and bulk-micromachining processes [18]. Compared with conventional staggered vertical combdrive actuators [1], [13]–[15], the AVC offers inherent self-alignment between the movable and the fixed comb fingers because they are patterned by a single lithography and etching step. Furthermore, larger scan angles can be achieved for the same finger dimensions [16]. To extend the use of AVCs to 2-D scanners, multiple (at least three) electrical interconnect lines need to be routed through the mechanical springs of the gimbal frame to the inner AVCs. This is difficult in single-layer SOIs because all torsion springs are electrically shorted to the mirror.

Here, we report on the realization of 2-D AVC scanners using a hybrid surface-/bulk- micromachining process. The bulk-micromachined SOI structures offers large, flat mirrors and powerful actuators; while the surface-micromachined polysilicon structures provide versatile electrical wiring, hinges, locking mechanism, and compliant torsion springs. Furthermore, it has
been shown that polysilicon torsion springs have a tighter distribution of spring constants than bulk-etch single-crystalline silicon (SCS) torsion springs [19]. The processes described in this paper are different from other hybrid micromanufacturing processes reported recently [20]–[22]. We perform bulk-micromanufacturing directly on the surface-micromachined wafers fabricated by a foundry service (Multi-User MEMS Processes—MUMPs [23]). The preliminary data of our 2-D scanner have been reported in [24]. In this paper, we report on the detailed design, simulation, fabrication, and characterization of the 2-D A VC scanners. The paper is organized as follows: in Sections II and III, we describe the scanner design and the theoretical modeling of the scanner. Section IV describes the fabrication processes. The static and the dynamic performance of the scanner as well as its stability and repeatability are detailed in Section V. Section VI summarizes the paper.

II. SCANNER DESIGN

The schematic of the 2-D A VC scanner is illustrated in Fig. 1. The overall dimension of the device is 2.7 mm × 2.9 mm. A standard MUMP’s die (1 × 1 cm²) accommodates six 2-D A VC scanners. The 2-D A VC scanner is designed to operate in the dc (quasi-static) mode for endoscopic OCT imaging applications. To reduce the operating voltage, we use compliant polysilicon beams for torsion springs. There are eight groups of A VC actuators in the 2-D scanner. Each A VC has 10 tilted and 11 fixed fingers. The SCS mirror is connected to a gimbal frame by a pair of polysilicon torsion springs. The SCS mirror, the gimbal frame, and all the movable combs are electrically grounded to the SCS substrate (V1). The gimbal frame is supported by two pairs of polysilicon beams, providing three independent voltages, V1 to V3, to the gimbal frame and the mirror. V2 and V3 rotate the mirror around the x-axis (mirror-axis) whereas V4 and V5 actuate the mirror around the y-axis (gimbal-axis).

The surface micromachined structures are fabricated using MUMPs. With three polysilicon layers in MUMPs, sophisticated wiring scheme can be easily achieved. All critical mechanical structures are defined in the MUMPs layout, including the comb finger patterns, mirrors, torsion springs, electrical bias lines, and polysilicon latching structures. The mirror and comb fingers are anchored directly to the SCS substrate by removing the silicon nitride layer using ANCHOR1 and P1P2VIA masks in MUMP’s [23]. Fig. 2(a) shows the cross section of an anchored comb finger.

A three-mask bulk-micromanufacturing process is performed at die level on the MUMPs’ chips. Mask 1 defines comb finger areas. Mask 2 and 3 pattern the SCS islands (mirrors, comb fingers) and the isolation trenches. These SCS islands are electrically isolated but mechanically connected by the surfacemicromachined structures from the front side, and can be independently biased through polysilicon lines. Fig. 2(b) shows the cross section after etching. The thicknesses of the mirror and the comb fingers are about 35 µm, controlled by timed etching. The AVCs are assembled using polysilicon spring latches and keyholes [see Fig. 2(c)], similar to those used in surface-micromachined pop-up structures [25].

III. DEVICE DESIGN

The dc scan angle (θ) at a given voltage (V) is calculated by equating the mechanical restoring torque, \(T_r \), and the electrostatic torque, \(T_e \), from the A VC actuators. The design and analysis of the A VC scanner are described in the following.

A. Torsion Spring Design

The torsion spring consists of two polysilicon layers (Poly1 + Poly2) stacked together. It is 3.5 µm thick and 345 µm long. The mechanical restoring torque \(T_r \) of torsion springs can be expressed by [26]

\[
T_r(\theta) = \frac{2\theta}{I_y} KG
\]

where \(G = E/(1+\nu) \) is the shear modulus, \(E(=170 \text{ GPa}) \) is the Young’s modulus, \(\nu(=0.22) \) is the Poisson’s ratio [27], \(I_y \) is the length of the torsion spring, \(\theta \) is the mechanical rotating angle, and \(K \) is the shape factor of the spring that is dependent...
on the geometry and dimensions of the cross section. For rectangular torsion springs, K has the form

$$K = \frac{w_s^3 t_s}{3} \left[1 - \frac{192 w_s}{\pi^5} \frac{t_s}{w_s} \tanh \left(\frac{\pi}{2} \frac{t_s}{w_s} \right) \right], \quad \text{for } w_s < t_s$$

(2)

where w_s (width), t_s (thickness), and L_s (length) are the torsion spring parameters. From (1) and (2), a thin and long beam allows us to achieve a compliant torsion spring.

B. Comb Drive Design

When an electrical bias is applied, an electrostatic torque, T_e, is generated between fixed comb fingers and movable comb fingers. The overlapping area between comb fingers increases with electrical bias while the gap spacing between comb fingers remains unchanged. T_e can be written as

$$T_e(\theta, V) = N_{\text{finger}} V^2 \frac{\partial C_{\text{unit}}(\theta)}{\partial \theta}$$

(3)

where V is the electrical bias voltage between the movable and the fixed combs, C_{unit} is the capacitance per unit length between a movable and a fixed finger, and N_{finger} is the number of movable fingers in each comb.

The C_{unit} is estimated using a 2-D finite element method (using FEMLAB from COMSOL, Inc.), which takes into account the fringe fields (not negligible in AVC actuators) between comb fingers [16]. The resulting C_{unit} as a function of the finger offset is shown in Fig. 3. The inset shows the cross section of the movable (denoted M) and the fixed comb (denoted F) fingers. The C_{unit} calculated using parallel plate actuator model without considering the fringe fields is also plotted in Fig. 3. It has lower capacitance value than that obtained from the numerical model. These numerically calculated C_{unit} are
fitted by a Gaussian function of the form shown in (4) by a least-mean-square-error fit:

$$C_{\text{unif}}(z) = C_1 + C_2 \exp(-C_3 z^2)$$ \hspace{1cm} (4)

where C_1, C_2, and C_3 are the fitting parameters dependent on the geometry of the comb finger. The total capacitance, C_t, can then be estimated analytically by integrating along the comb fingers overlapping area. The detailed calculation process can be found in [16].

As shown in Fig. 4, the movable combs are offset from the axis of rotation defined by the torsion spring. The integration of C_{unif} needs to take into account this offset. Fig. 4(a)–(c) shows the movable comb finger before assembly, after assembly, and with an electrical bias, respectively. Z is the vertical (along z-axis) distance between the movable and the fixed comb, mea-
sured from their bottom edges. It is a function of the rotation angle, \(\theta \), and position, \(x \):

\[
Z(\theta, x) = x \sin(\theta) - \left(L_{\text{co}} - \frac{T_f}{2} \tan(\theta) \right) \sin(\theta) + T_f (1 - \cos(\theta)),
\]

Therefore, \(C_l \) can be calculated by a finite integral as

\[
C_l(\theta) = \int_{L_{f0}}^{L_{f0} + L_{co}} C_{\text{unit}} (Z(\theta, x)) \, dx
\]

where \(L_{f0} \) and \(L_{co} \) are the clearance and offset of the movable comb finger, respectively. We assume cross sectional areas are uniform over the entire rotation angle, and the lateral movement of the comb fingers are neglected.

C. Actuator-Flexure System

At equilibrium, the mechanical restoring torque is balanced by the electrostatic torque

\[
T_e(\theta, V) = T_c(\theta).
\]

Therefore, the dc characteristic (\(\theta \) versus \(V \)) of the scanner can be solved analytically. The calculated dc transfer curves for various torsion springs and comb finger lengths are shown in Fig. 5(a) and (b), respectively. The scanner parameters used in the calculations are listed in Table I.

We employ polysilicon spring latches to precisely define the initial angle of the AVC. Bent polysilicon latches are fabricated using the PdSi/P2 layer in MUMPs. To avoid failure, the maximum stress of the bent beam is kept at 70% to 80% of the failure point (1.21 \(\pm \) 0.8 GPa [23]).

IV. Fabrication Process

The surface-micromachining part of the fabrication process was realized by the MUMP’s process. The bulk-micromachining processes are performed at University of California, Los Angeles (UCLA)’s Nanofabrication Facility. All lithographic steps in post-MUMP’s processes are performed at die level. Multiple (4 to 6) dies are mounted on a handle wafer for dry etching process. The bulk-micromachining process is described in the following: first, the MUMP’s chips (550-\(\mu m \)-thick) thinned down to 300 \(\mu m \) to reduce the backside etching time. This is performed in a Logitech PM5 chemical-mechanical planarization (CMP) System. Three polishing steps are employed to ensure a clean, smooth surface: first 9-\(\mu m \) Al2O3 is used for fast lapping, then 1-\(\mu m \) Al2O3, and finally colloidal silica solution were used to polish and smooth the surface.
The final thickness of the polished MUMP’s chips is 300 \(\mu \text{m} \). The optical micrographs of the polished backsides are shown in Fig. 6. Final root-mean-square (rms) surface roughness of around 35 nm is achieved, which helps prevent micromasking during subsequent backside etching.

The flow of the postfabrication process is shown in Fig. 7. First, the mirror, polysilicon hinges, torsion springs, and latches are protected by a 5-\(\mu \text{m} \)-thick photoresist (PR), SHIPLEY STR-1045, spun at 2250 RPM for 45 seconds, during the front-side etching (Mask 1). The metal patterns in MUMP’s are used as the etching mask to define the comb fingers. The metal patterns help ensure good alignments with the surface-micromachined structures. The comb fingers are timed (first DRIE) etched from the front side in a Unaxis SLR-770 ICP DRIE using the BOSCH process [28]. After the completion of the first DRIE, the PR is stripped in an acetone bath and then oxygen plasma is used to remove the PR remnants in a Matrix 105 Downstream Asher. The same PR is used for the rest of postfabrication process.

Next, a 2-\(\mu \text{m} \)-thick SiO\(_2\) is deposited on the backside at 150°C in a Unaxis 790 plasma-enhanced chemical-vapor deposition (PECVD) system. Then, another PR is spun on the backside and patterned by the backside alignment feature on a Karl Suss MA-6 Aligner (Mask 2) to open the oxide areas underneath the mirror and the comb banks. The accuracy of the backside alignment is critical for the MUMPs chip (single die level lithography), which permits only a single objective lens of the Karl Suss Aligner due to a small die size. Anisotropic dry etching is performed on the backside of the die in an Oxford Plasmalab 80 Plasma Etcher to remove oxide openings until the polished SCS substrate is exposed. The backside of the die is exposed to a buffered oxide etchant (BOE) for 30 s to ensure complete removal of the PECVD oxide.

The PR is stripped off, and a new PR is spun on the backside. Mask 3 defines the SCS islands. A timed etch (second DRIE) is performed to delineate the SCS islands. To obtain a uniform etch, the gaps around the SCS islands are designed to have the same width (30 \(\mu \text{m} \)). The trench depth is around 90 \(\mu \text{m} \) after
the completion of second DRIE. Fig. 8 shows the optical micro-
ograph of the backside after the second DRIE. Then, the PR is
removed from both sides, leaving the backside with previously
patterned oxide. It is used as the hard mask in the final timed
DRIE (third DRIE) step. The selectivity between the PECVD
SiO2 and the SCS is around 100 to 1 in DRIE.

A 1-μm-thick parylene is deposited on the front side in a
Parylene Deposition System 2010 for mechanical support while
the backside is protecting by a dicing blue tape. After the com-
pletion of Parylene deposition, the dicing blue tape is peeled
off. The third DRIE step completely removes the substrate be-
tween the SCS islands (trenches). Due to the etching “lag” in
the DRIE process, the large openings (unmasked SCS islands)
will be etched faster than the small openings (pre-etch trenches
from second DRIE). The etching rates for the unmasked SCS
islands and preetch trenches are 3 μm/min and 2.4 μm/min,
respectively. An etching uniformity of 10% is achieved across
the 1×1–cm2 MUMPs’ chip. The remaining SCS islands are
about 35 μm thick.

Micromasking may be observed when the comb finger
trenches produced by the front-side DRIE are exposed during the
third DRIE. This comes from the residue passivation layer pro-
duced by the BOSCH process [28] during the front side etching.
The micromasking creates silicon bridging sidewalls resulting in
electrical short circuits between the fixed comb banks and the
SCS substrate. To avoid this problem, oxygen plasma is used to
etch away the passivation layers as soon as the front side etching
trenches are exposed. Then, silicon isotropic etching processes,
such as the EtchB step in the BOSCH process or the release step
in the SCREAM process [29] is employed for a short period of
time (1.5–2 min) to remove silicon micromasking.

The etching continues until it stops at the MUMP’s silicon
nitride layer. The exposed silicon nitride is selectively removed
by an anisotropic plasma etcher (Oxford Plasmalab 80 Plasma
Etcher), which stops at the lower phosphosilicate glass (PSG1)
layer in MUMP’s. Then, the scanners are diced into individual
devices by a DISCO dicing machine. The device is released in
49% hydrofluoric (HF) acid for 15 min and dried in a supercrit-
ical dryer. The parylene layer is removed by oxygen plasma in
a Matrix 105 Downstream Asher. All movable comb banks are
manually assembled to a pre-defined angle (10°) and locked in
place by polysilicon latches. The scanning electron micrographs
(SEMs) of the scanner, the close-up view of the AVC and the
movable comb are shown in Fig. 9(a)–(c), respectively.

V. EXPERIMENTAL RESULTS

A. DC Characteristics

The dc characteristics (θ versus V) of the scanner were mea-
sured by a noncontact white light interferometric surface pro-
filer (Wyko RST 500). Fig. 10 shows the measured (dots) and
the calculated (lines) dc transfer curves for both axes. The mea-
sured results agree well with theoretical calculations. The ini-
tial comb angle of the assembled movable comb is designed to
be 10°. The uniformity is measured to be within ±0.7°. The
maximum mechanical scanning ranges are ±6.2° (at 55 Vdc)
and ±4.1° (at 50 Vdc) for the inner and the outer gimbals, re-
spectively. The curvature radius of the 1-mm-diameter mirror is
measured to be over 50 cm without metal coating. Larger radius
of curvature and lower actuation voltage can be achieved by em-
ploying thicker mirror and comb fingers.

B. Dynamic Characteristics

The frequency responses were measured by a Polytech Mi-
croscan Laser Doppler Vibrometer (LDV) using the area-scan
mode with periodically chirped voltage waveforms. The results
are shown in Fig. 11. The resonant frequencies are measured to
be 315 and 144 Hz for the inner and the outer gimbals, re-
spectively, which match very well with the theoretical calculations.

C. Stability and Repeatability

One of the main issues of electrostatically actuated micromir-
rors is drifting of the mirror angle under a constant bias [30]. The
drifting can be minimized by reducing the areas of the exposed
dielectric [31], or using ac bias [3]. Our 2-D AVC scanner ex-
hibits very small angular rotation drifts. The silicon nitride in
comb fingers have been removed using standard MUMPs’ de-
sign rules to minimize dielectric charge-up.
The stability and repeatability of the scanner are characterized using a 2-D position sensing detector (PSD) (OnTrak 2L20SP). The experimental setup is shown in Fig. 12. The mirror is illuminated by a collimated red laser beam ($\lambda = 633$ nm) from a laser diode. The reflected light is detected by the PSD. The data acquisition was controlled by a personal computer using LabView from National Instruments.

The stability of the measurement setup is determined first using a bulk mirror. It is found to be less than $\pm 0.001^\circ$. The stability of the scanner is measured by applying dc voltages, while...
the repeatability is characterized by applying square waves with 50% duty cycles. For both measurements, the data is collected every 90 s for a total period of 1 h. The scanner stability is measured at four different scanner angles: \((0^\circ, 0^\circ), (6^\circ, 0^\circ), (0^\circ, 3^\circ),\) and \((6^\circ, 3^\circ).\) The variations of the mirror angles are shown in Fig. 13(a). The stability is better than \(\pm 0.003^\circ\) for all angles, though the variation is found to be slightly larger at high voltage bias, e.g., at \((6^\circ, 3^\circ).\) The repeatability of the mirror angle is measured when the mirror is switched between the origin, \((0^\circ, 0^\circ),\) and three final angles: \((6^\circ, 0^\circ), (0^\circ, 3^\circ),\) and \((6^\circ, 3^\circ),\) as shown in Fig. 13(b). The repeatability of the mirror angles are found to be within \(\pm 0.003^\circ\) for all angles. No systematic drifts are observed in the experiments.

VI. CONCLUSION

In this paper, we have successfully demonstrate a high-performance 2-D scanner with angular vertical comb (AVC) actuators by combining the surface- and the bulk-micromachining techniques. The scanner achieves fully decoupled x and y scanning with good stability \((\sim \pm 0.003^\circ)\) and repeatability \((\sim \pm 0.003^\circ).\) Large dc mechanical scan ranges \((\pm 6^\circ \text{ and } \pm 4.1^\circ),\) low actuation voltages \((55 \text{ and } 50 \text{ Vdc}),\) and large radius of curvature \((> 50 \text{ cm})\) have been achieved for the 1-mm-diameter scanning mirror. The experimental results agree well the theoretical calculations.

ACKNOWLEDGMENT

The authors would like to thank J.-C. Tsai, S. Mathai, L. Fan, M. Fujino, and E. K. Lau of the University of California at Los Angeles (UCLA) for their technical assistance.

REFERENCES

Wilool Piyawattanametha (M’03) received the M.S. and Ph.D. degrees in electrical engineering from the University of California, Los Angeles (UCLA), in 1999, and 2004, respectively. Prior to that, he received the B.Eng. (magna cum laude) in electronics engineering from King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok, Thailand, in 1994.

From 1994 to 1997, he worked at Schlumberger, Ltd. He has authored or coauthored 20 conference and journal papers, and contributed a book chapter (coauthored with Dr. M. C. Wu) in the field of optical MEMS. He is currently with National Electronics and Computer Technology Center (NECTEC), 12120 Thailand, and Stanford University in the Bio-X program, CA 94305 USA as a research scientist. His research interests include Micro-Electromechanical Systems (MEMS), biomedical imaging systems, neuroscience, and photonics.

Pamela R. Patterson (M’04) received the B.S. degree (cum laude) from the University of Cincinnati, OH, and the M.S. and Ph.D. degrees in electrical engineering from the University of California, Los Angeles (UCLA), in 2003, completing the dissertation year as recipient of an Intel foundation fellowship.

She is currently a Research Staff Member at HRL Laboratories, Malibu, CA, conducting research on heterogeneous integration of semiconductor materials. Her research interests are in the area of microfabrication process design and technology and she has authored or coauthored 14 conference papers, including three invited papers, and contributed a book chapter (coauthored with Dr. M. Wu) in this field as applied to optical MEMS devices. She has held senior engineering positions at TRW, Varian, and at UCLA where she helped to establish the Nanoelectronics Research Laboratory from 1994 to 2003.

Dr. Patterson is a Member of AAAS and Eta Kappa Nu.

Dooyoung Hah received the M.S. and Ph.D. degrees in electrical engineering from the Korea Advanced Institute of Science and Technology (KAIST), Korea, in 1996 and 2000, respectively. His Ph.D. dissertation topic was a low-voltage RF MEMS switch.

He is currently an Assistant Professor of Electrical and Computer Engineering at Louisiana State University (LSU), Baton Rouge. Before joining LSU, he was with the University of California, Los Angeles, as a Postdoctoral Researcher (2000–2001) and as a Staff Research Associate (2004–2005), and at the Electronics and Telecommunications Research Institute (ETRI), Korea, as a Senior Member of the Research Staff (2002–2004). His research interests include MOEMS, RF MEMS, MEMS for biomedical applications, microactuators, sensors, and nanotechnology. He has authored and coauthored over 40 publications including journal papers and international conference proceedings, and he also holds five U.S. and six Korean patents.

Dr. Hah was the third-place winner at the Student Paper Competition at the 2000 IEEE MTT-S.

Hiroshi Toshiyoshi (M’97) received the M. Eng. and Ph.D. degrees in electrical engineering from the University of Tokyo, Tokyo, Japan, in 1993 and 1996, respectively.

In 1996, he became a Ph.D. Lecturer with Institute of Industrial Science (IIS), University of Tokyo. From April 1999 to March 2001, he stayed as a Visiting Assistant Professor at University of California, Los Angeles, for his sabbatical years. Since September 2001, he has been a Co-Director of IIS’s Laboratory for Integrated MicroMechatronic Systems (LIMMS), a joint research group between IIS and Centre National de la Recherche Scientifique (CNRS), France. Since April 2002, he has been an Assistant Professor of VLSI Design and Education Center (VDEC) attached to University of Tokyo. His research interest is MEMS for free-space optics and nanomechatronics.

Ming C. Wu (S’82–M’83–SM’00–F’02) received the B.S. degree in electrical engineering from National Taiwan University in 1983 and the M.S. and Ph.D. degrees in electrical engineering and computer sciences from the University of California, Berkeley, in 1985 and 1988, respectively.

From 1988 to 1992, he was a Member of Technical Staff at AT&T Bell Laboratories, Murray Hill. In 1993, he joined the faculty of Electrical Engineering Department of UCLA, where he is currently Professor. He is also Director of UCLA’s Nanoelectronics Research Facility, and Vice Chair for Industrial Relations. His current research interests include MicroElectroMechanical Systems (MEMS), Optical MEMS (MOEMS), biophotonics, microwave photonics, and high speed optoelectronics. He has published over 340 papers, contributed four book chapters, and holds 11 U.S. patents.

Dr. Wu was the founding Co-Chair for IEEE LEOS Summer Topical Meeting on Optical MEMS in 1996. The meeting has now evolved into IEEE LEOS International Conference on Optical MEMS that are hosted in Europe, Asia, and U.S. He has also served in program committees of many other conferences, including Optical Fiber Communications (OFC), Conference On Lasers And Electrooptics (CLEO), IEEE Conference on Micro Electro Mechanical Systems (MEMS), LEOS Annual Meetings (LEOS), International Electron Device Meeting (IEDM), Device Research Conference (DRC), International Solid-State Circuit Conference (ISSCC), and Microwave Photonics (MWP) Conferences. He is a David and Lucile Packard Foundation Fellow (1992–1997).