Title
FRUSTRATION OF MAGNETIC ORDER IN GDAL3 (AND IN CEAL3-QUESTIONABLE)

Permalink
https://escholarship.org/uc/item/8dp4z1r5

Journal
JOURNAL OF PHYSICS F-METAL PHYSICS, 17(8)

ISSN
0305-4608

Authors
COLES, BR
OSEROFF, S
FISK, Z

Publication Date
1987-08-01

DOI
10.1088/0305-4608/17/8/006

License
CC BY 4.0

Peer reviewed
LETTER TO THE EDITOR

Frustration of magnetic order in GdAl₃ (and in CeAl₃?)

B R Coles†, S Oseroff‡ and Z Fisk§

† Blackett Laboratory, Imperial College. London SW7 2BZ, UK
‡ Department of Physics. San Diego State University. San Diego, CA 92182, USA
§ Los Alamos National Laboratory, Los Alamos, NM 87545, USA

Received 6 April 1987, in final form 1 May 1987

Abstract. Electron spin resonance measurements of 4f⁷ Gd moments confirm the suggestions of susceptibility measurements that the onset of antiferromagnetism in GdAl₃ is strongly frustrated. This raises the possibility that the isostructural heavy fermion compound CeAl₃ fails to order magnetically, unlike CeAl₂, because frustration has depressed the temperature of long-range ordering.

It is well known that in certain types of crystal lattices the existence of nearest-neighbour antiferromagnetic interactions between magnetic moments on lattice sites can frustrate the onset of long-range antiferromagnetic order. The most obvious examples are two-dimensional triangular lattices or face-centred cubic lattices where nearest neighbours of one moment are nearest neighbours of one another and receive competing instructions on the direction in which they should point. In MnO, for example, an average strength of the exchange interaction is indicated to be about 500 K from a value of that order for |θ| in a high-temperature fit of the susceptibility to the Curie-Weiss expression C/(T−θ). Since the final onset of antiferromagnetic order, in a structure governed by the relative strengths of second-neighbour and first-neighbour interactions, is at 100 K, long-range order is said to be frustrated in the temperature range ~100−500 K, and only short-range order is seen in neutron scattering experiments at room temperature.

The intermetallic compound GdAl₃ with the Ni₃Sn structure (DO₁₉) has a Néel temperature that is surprisingly low (17 K) compared with the value of |θ| (~90 K) obtained from fitting the Curie-Weiss law (χ=C/(T−θ)) to its susceptibility above 20 K (Buschow and Fast 1966). It is also low compared with the strength of interactions in its neighbouring ferromagnetic Laves phase GdAl₂ (Tc≈θ≈170 K).

Such large ratios of |θ|/T_N have been noted (Taylor and Coles 1975, Fisk et al 1971) in a number of other Gd intermetallic compounds, and have been shown to correlate with deviations from the a+bT form of temperature dependence for the linewidth of the electron spin resonance of the well known S-state Gd 4f⁷ resonance. In all such compounds the linewidth passes through a minimum at a temperature somewhat above |θ|, broadening rapidly as T is reduced towards T_N. This pattern of behaviour was ascribed to the frustration that can arise, as pointed out above, for antiferromagnetic interactions in some geometries.

Figure 1 shows the linewidth data for GdAl₃ at X band (9.23 GHz) in a sample grown from an aluminium melt. (The GdAl₄ phase forms only at temperatures below the 650 °C
eutectic and therefore does not prevent the growth of the XAl₃ phase here, as unfortunately the high peritectic temperature of Ce₃Al₁₁ prevents the growth of CeAl₃ by this technique.) At 300 K the g value of GdAl₃ was 2.00 ± 0.01, remaining unchanged down to about 50 K, below which temperature it seems to increase, reaching 2.03 ± 0.03 at 30 K. However, the rapid increase in linewidth below 50 K, which has already begun below 100 K and which is firm evidence for frustration, makes the g value increasingly uncertain at lower temperatures.

The ESR results are thus in strong agreement with the suggestion that GdAl₃ possesses competing interactions which suppress long-range order from an expected onset temperature of ~100 K to the observed Néel temperature of 17 K. The apparent enhancement of μ_{eff} to 8.3 μ_B may also be a consequence of short-range order effects below 100 K.

In the DO₁₉ structure the Gd atoms, which form a hexagonal lattice, lie in close-packed planes in which they are separated from one another by Al atoms. The stacking of the planes is such that each atom has six Gd neighbours out of its plane at ~4.4 Å and six other Gd neighbours within the plane at ~6.3 Å. For ferromagnetic interactions with the latter group the onset of order is clearly not frustrated, being simple ferromagnetic for ferromagnetic interactions with the former group and planar antiferromagnetic for antiferromagnetic interactions with them. If the 6.3 Å interaction is antiferromagnetic, however, the result must be frustration whatever the sign of the 4.4 Å interaction, and experiment indicates that this situation holds. It can be noted, without too much significance being attached to it, that for a free-electron Fermi surface with \(k_F = 1.75 \times 10^8 \text{ cm}^{-1} \) both these separations correspond to negative values of the RKKY coupling, lying between the fifth and sixth and between the seventh and eighth zeros respectively, and give inevitable frustration of the in-plane interactions.

Current interest in the heavy fermion problem (Fisk et al 1986) makes these results of slightly more than passing interest, since CeAl₃, isostructural with GdAl₃, is one of the heavy fermion compounds that (unlike CeAl₂ in spite of its very similar value of μ_{eff}) fails to give a magnetically ordered ground state, but also fails (unlike CeCu₂Si₂) to become
superconducting. Thus, if the ratio $T_c(GdAl_2)/T_N(GdAl_3)$ is any guide, the long-range order that is found below 3.8 K in CeAl$_2$ could not be expected above about 0.35 K in CeAl$_3$, by which temperature the Kondo compensation of the Ce moments is likely to have made a non-magnetic Kondo lattice more stable. The delicate question of how 'non-magnetic' this lattice has to be for a superconductive state to be stable is still not clear. It must also be borne in mind that the ordering of CeAl$_2$ is of an incommensurate character, and its Néel temperature may not be a good guide to what one would expect of CeAl$_3$ in the absence of frustration, especially if the Fermi surface geometry that leads to its characteristic ordering has been reconstructed (relative to that of GdAl$_2$) by its own f-conduction band hybridisation.

References