Title
ISOBAEIC SPIN NON-CONSERVATION IN THE DELAYED ALPHA DECAY OF Na20

Permalink
https://escholarship.org/uc/item/8fb7b9tv

Authors
Macfarlane, R.D.
Siivola, A.

Publication Date
1964-07-01
ISOBARIC SPIN NON-CONSERVATION IN THE DELAYED ALPHA DECAY OF Na^{20}

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ISOBARIC SPIN NON-CONSERVATION IN THE DELAYED ALPHA DECAY OF Na20

R. D. Macfarlane and A. Siivola

July 1964
Isobaric Spin Non-Conservation In
The Delayed Alpha Decay of Na20

R. D. Macfarlane,
McMaster University,
Hamilton, Ontario, Canada,

and

A. Siivola,
Lawrence Radiation Laboratory,
University of California,
Berkeley, California.

Abstract: The delayed alpha emitter, Na20, was produced in bombardments of Ne20 ions with various targets by what may be a neutron-proton exchange reaction. The alpha particle spectrum associated with the $\beta^+\text{-decay}$ of Na20 was measured and four alpha groups were observed corresponding to transitions from known 2^+ states in Ne20 at 7.40, 7.82, 9.48, and 10.28 MeV to the ground state of O16. Evidence was obtained giving support to the suggestion that the 10.28 MeV level is the lowest lying $T = 1$ state of Ne20. The effect of isobaric spin admixing on enhancing beta decay transition rates and hindering alpha decay transitions is clearly seen in this study.

* This work was supported by the U.S. Atomic Energy Commission.
1. Introduction

The delayed alpha emitter, Na\(^{20}\), was first observed by Alvarez\(^1\) and confirmed shortly afterward by Sheline\(^2\). This nuclide decays by \(\beta^+\)-emission, with a half-life of 0.385 sec\(^3\) to alpha particle unstable states of Ne\(^{20}\) at excitation energies of 8-10 MeV. Prior to the work reported here, high resolution measurements had not been made of the alpha particle spectrum.

We have measured the alpha particle spectrum associated with Na\(^{20}\) decay and have found that each of the groups observed can be correlated with previously measured \(2^+\) levels of Ne\(^{20}\). Of particular interest is a \(2^+, T = 1\) state at 10.28 MeV in Ne\(^{20}\) which is significantly populated in Na\(^{20}\) \(\beta^+\)-decay and which alpha decays to the ground state of O\(^{16}\), a transition which does not conserve isobaric spin.

2. Experimental Procedure

Bombardments were made with the heavy ion beams of the Berkeley heavy ion linear accelerator (HILAC) and using a target assembly and detection system designed for studying short-lived alpha emitters. The details of this system are described elsewhere\(^4\). A gold-surface barrier solid state detector was used in obtaining particle spectra. The energy of the heavy ions was varied using Ni degrading foils placed close to the targets. The range-energy curves of Roll and Steigert were used to obtain the residual energy of the degraded beam\(^5\).

Some simple \(dE/dx\) experiments were performed in order to identify the particles detected. A thin Al leaf absorber of known thickness was placed between the source and the detector, and the decrease in the energies of the various groups was measured and compared with the expected attenuation for different types of charged particles.
Calibration of the system for alpha particle energy was made using ^{234}U (4.75 MeV (average))6, ^{241}Am (5.43 MeV)7 and ^{150}Dy (4.23 MeV)8. Points below 4 MeV were obtained using a calibrated pulse generator.

3. Results

3.1 Ne20 bombardments

Our first observation of Na20 delayed alpha activity was in measurements of the alpha particle spectra of the products of Ru96 + Ne20 and Pd102 + Ne20 reactions using 80 to 200 MeV Ne20 ions. We had been using these reactions to produce very neutron deficient Te and Sb isotopes in order to determine whether alpha or proton emitters could be detected in this region. With both the Ru96 and Pd102 targets, we observed alpha groups (established by dE/dx experiments) at 2.14, 2.49, 3.80, and 4.44 MeV (lab). Further bombardments using Al, Ni, and Cu targets and Ne20 as the projectile, also produced these alpha groups with the same relative intensities. This meant that the activity was associated with the Ne20 projectile and not with any particular target. This was confirmed by bombarding the same targets with O16 and F19 ions where only a very small amount of the alpha activity was observed. Meaningful excitation functions could not be obtained since both the target and absorber used to degrade the beam energy contributed to the production of this alpha activity. The most likely nucleide which could give rise to these alpha groups appeared to be Na20, a nucleide which decays by β^+-emission to alpha particle unstable states of Ne20. Alvarez1 established that the alpha particles had an energy greater than 2 MeV but a detailed spectrum has never been measured.

Half-life measurements of the stronger groups (2.14 and 4.44 MeV) when the activity was produced by the reaction Al27 + Ne20, yielded a value of
0.62 ± 0.06 sec., which is not in agreement with the reported value of the half-life of Na²⁰.

An alpha particle spectrum taken for the products of a Ne²⁰ + Al²⁷ reaction for a long bombarding time is shown in fig. 1. In addition to the four groups mentioned above, there was an indication of a group or groups between 4.6 and 5.2 MeV but the intensities of these were too low to establish their existence with certainty. Nothing was observed in the energy range 1 - 2 MeV where the background was still low enough to detect weak groups.

3.2 B¹⁰ and B¹¹ bombardments

In order to determine whether the alpha activity observed in the Ne²⁰ bombardments was due to Na²⁰, the alpha particle spectrum of this nucleide was measured when it was produced by simple compound nucleus reactions. The reactions studied were \(C^{12}(B^{10}, 2n)Na^{20} \), \(C^{12}(B^{11}, 3n)Na^{20} \), and \(B^{11} + B^{10} \). The products of the first two reactions yielded alpha particle spectra which contained groups with the same energy and relative intensity observed in the Ne²⁰ bombardments and which decayed with a half-life of 0.39 ± 0.05 sec., a value in agreement with the reported half-life of Na²⁰. The \(B^{11} + B^{10} \) reaction did not produce this alpha activity over a broad range of bombarding energies \([36 - 112 \text{ MeV (lab)}] \). This established that the activity was due to an isotope of Na. Excitation functions were obtained using the intensities of the more prominent 2.14 and 4.44 MeV alpha groups to determine the relative yield.

The shapes of the excitation functions, shown in fig. 2, are characteristic of compound nucleus reactions. For both the \(C^{12} + B^{11} \) and \(C^{12} + B^{10} \) reactions, the activity was not detected at low energies but became measurable at energies near and above threshold energies for the \(C^{12}(B^{11}, 3n)Na^{20} \) and.
The $^{12}\text{C} (^{10}\text{B}, 2n) \text{Na}^{20}$ reactions (23.8 and 12.4 MeV respectively)9. The relative intensities of the alpha groups were independent of bombarding energy. These results showed that the alpha groups were associated with the same nucleide and also established that this nucleide was Na^{20}.

4. Discussion

4.1 Interpretation of the half-life measurement on Na^{20}. The half-life of Mg^{20}

That the apparent half-life of Na^{20} was longer than the true half-life when Na^{20} was produced in $\text{Al}^{27} + \text{Ne}^{20}$ bombardments was interpreted to mean that some Mg^{20} was also produced and a good fraction of the Na^{20} was in a state of transient equilibrium with this nucleide. If this is the case, the apparent half-life obtained for Na^{20} (0.62 sec.) is actually the half-life for Mg^{20} decay. No experimental information has been reported for this nucleide but predictions have been made concerning its existence. Zeldovich reported that it should be stable toward proton decay, have an E_{β^+} of 9.4 MeV and decay with a half-life of 0.7 sec.10.

4.2 Mechanism of Na^{20} formation in Ne^{20} reactions

For the $\text{Ne}^{20} + \text{Al}^{27}$ bombardments, Na^{20} (plus other nucleides which eventually β^+ decay to Na^{20}) can be produced as a spallation product of the target and projectile. When higher Z targets far removed from Na^{20} are used, it appears that Na^{20} is produced mainly from the Ne^{20} projectile. Simple energy considerations suggest that the most plausible mechanism of formation is a proton-neutron exchange between the target nucleus and projectile. Measurements of the angular distribution and kinetic energies of the Na^{20} product would show whether this was indeed the mechanism.
4.3 Delayed alpha decay scheme of Na_{20}

The values for the alpha particle energies and their relative intensities are listed in table 1.

Using these Q-values and the alpha particle binding of Ne_{20} (4.730 MeV)11, the energies of the alpha decaying levels in Ne_{20} can be calculated. These are compared in table 2 with previously measured energy levels of Ne_{20} which coincide in energy together with their spins and parities. A partial decay scheme showing the alpha transitions is given in fig. 3.

With the exception of the 10.28 MeV level, the total widths of the levels which are significantly populated in the \(\beta^+\) decay of Na_{20} have been previously measured by nuclear reaction studies11. In each case the total width is essentially equal to the alpha width because the partial widths for radiative transitions at this excitation energy should not be more than \(~\text{100 ev}\). This is based on single particle estimates of the lifetime of an unhindered E1 transition. The relative intensities of the alpha groups then, are directly related to the beta branching fraction to these levels.

As shown in table 2, the major levels of Ne_{20} which are populated by the \(\beta^+\) decay of Na_{20} and which alpha decay are all \(2^+\) levels. The ground state spin and parity of Na_{20} are not known. However, the most probable assignment based on F_{20} measurements11 is that it is \(2^+\). Positron decay from Na_{20} to the \(2^+\) levels of Ne_{20} should then fall into the classification of allowed unfavoured transitions. To determine whether this is consistent with our data, we obtained estimates of log ft values for the transitions which involve delayed alpha particle emission. The nucleide F_{20} decays 100% to the \(2^+\) level of Ne_{20} at 1.65 MeV and the log ft for this transition is 5.1. We assigned this same log ft value to
Na20 decay to the 1.63 MeV level and to the 7.40 MeV 2^+ level which is alpha particle unstable. No levels are known between these two 2^+ levels which would be populated by an allowed beta transition from Na20. From the intensities of the alpha groups decaying from the 7.82, 9.48, and 10.28 MeV levels relative to the intensity from the 7.40 MeV level, log ft values and beta branching fractions were calculated. These are listed in table 3. The log ft values for the transitions to the 7.82, 9.48, and 10.28 MeV levels are consistent with the values observed for allowed unfavoured transitions.

Errors in our estimates of these log ft values and beta branching fractions could arise from the presence of 1^+ and 3^+ levels below 10 MeV since these would also be populated in Na20 decay by allowed transitions but would have extremely small alpha widths for decay to the ground state of 16O. No 1^+ or 3^+ levels have been observed but the techniques which have been used for studying the levels of Ne20 may have been fairly insensitive to the detection of these levels. The presence of a quadrupole γ-vibrational band below 10 MeV for example could give rise to a highly excited 3^+ level. If this level were significantly populated in Na20 decay a search for alpha decay from this level to the ground state of 16O would provide one of the strongest tests of parity conservation in strong interactions.

Analysis of the low-lying energy levels of Ne20 by Litherland12, Hunt13, Pearson14, and Kuehner15, has shown that they can be ascribed to well-defined sets of rotational levels associated with various modes of vibration of the Ne20 nucleus. The alpha decaying states at 7.40, 7.82, and 9.50 MeV have been assigned to different rotational bands.
4.4 The 2^+ level at 10.28 MeV

Isobaric spin assignment

This level was first reported by Pearson and Spear16 who detected it by the reaction $^{16}\text{O}(\alpha, \gamma)^{20}\text{Ne}$. They assigned a spin and parity of 2^+ to this state and postulated that it was the lowest lying $T = 1$ state of ^{20}Ne on the basis of radiative width measurements.

Levels in this region of excitation have also been extensively studied by Hunt using the $^{16}\text{O}(\alpha, \alpha)^{16}\text{O}$ reaction13. He did not observe this level but this is the result to be expected if the state is indeed $T = 1$. Alpha particle elastic scattering from this state could only arise from the very small isobaric impurity component of the ground state of ^{16}O. Reactions of the type $^{16}\text{O}(\alpha, \gamma)^{20}\text{Ne}$, however, can proceed via $T = 1$ states of ^{20}Ne because the isobaric spin impurity component of the highly-excited intermediate state can be quite large.

Our results show that the β^+ decay of ^{20}Na to the 10.28 MeV level of ^{20}Ne is highly favoured over transitions to lower lying states having the same spin and parity and to states just above the 10.28 MeV level. The reason for this enhanced beta transition is undoubtedly due to the fact that the 10.28 MeV level is the lowest lying $T = 1$ state of ^{20}Ne and is the $T_z = 0$ state of the mass 29 isobaric triplet.

The presence of a $T = 1, \frac{1}{2}^+$ level at 10.28 MeV affects the properties of the 2^+ level at 9.50 MeV, as one would expect. This level elastically scatters alpha particles so it must, therefore, have a large $T = 0$ component. However, our results show that it is preferentially populated over lower lying 2^+ states in $^{20}\text{Na} \beta^+$ decay which indicates the presence of a significant $T = 1$ impurity component from the 10.28 MeV.
Comparison of the calculated and experimental energy of the first \(T = 1 \) state of Ne\(^{20}\).

Wilkinson has developed a method for calculating the position of the first \(T = 1 \) state of self conjugate nuclei making use of experimentally determined ground state mass differences of the \(T_z = +1 \) and \(T_z = 0 \) isobars of mass number \(A \), and the mass differences of the \((A-1) \) mirror pairs to obtain the Coulomb energy correction. The difference between the calculated and experimental energy (\(\Delta \)) has been interpreted by Wilkinson as being due to a measure of the relative strengths of the n-n and n-p singlet forces.

For Ne\(^{20}\), the necessary atomic masses needed for the calculation are known with a high degree of precision. The assignment of the first \(T = 1 \) state is now known with certainty and its position has been measured with relatively high precision. From these data, a precise value of \(\Delta \) for Ne\(^{20}\) can be obtained. The value of \(\Delta \) is defined as:

\[
\Delta = E_{T=1}^{\text{calc}} - E_{T=1}^{\text{exp}}
\]

Using the mass tables of König et al\(^9\), and making the necessary corrections for the difference between the neutron and proton masses, and effect of nuclear radius on the Coulomb energy, a value of 10.219 ± 0.005 is obtained for \(E_{T=1}^{\text{calc}} \). Comparing this with the experimental energy, a value for \(\Delta \) of -0.06 ± 0.011 MeV is calculated. The experimental energy and the calculated result are quite close as it was in the cases considered by Wilkinson. This agreement is, of course, a reflection of the well-established charge independence of nuclear forces. The value of \(\Delta \) for Ne\(^{20}\) is negative, however, whereas for the nucleides considered by Wilkinson, an average
positive value was obtained, an indication that the n-p force is slightly stronger than the n-n force. It would be difficult to determine the reasons for the negative \(\Delta \) for Ne\(^{20} \). Another nucleide in this region, \(F^{18} \), also has a negative \(\Delta (-0.046 \pm 0.014) \) so that there may be some effect peculiar to the region around Ne\(^{20} \). The fact that some nucleides in this region are now known to be deformed may have some bearing since deformation will alter the nuclear Coulomb energy.

4.6 Alpha widths

The total widths (essentially the alpha widths) of the 7.40, 7.82, and 9.48 MeV \(2^+ \) levels which are populated in Na\(^{20} \) \(\beta^+ \) decay, are known from previous work and are listed in table 3\(^{10} \). From our measurements we conclude that the width of the 10.28 MeV level is \(< 10\) keV. The Coulomb barrier is mainly responsible for the low values of \(\sqrt{ } \) for the 7.40 and 7.82 MeV levels. For levels above \(\sim 8 \) MeV, the alpha barrier-penetrability factor approaches unity and the widths for several levels above this energy approach 1 MeV. The width of the 9.48 MeV \(2^+ \) level (24 keV) is quite low and must be due to the \(T = 1 \) impurity admixture from the 10.28 MeV level. Calculations made following the procedure used by Wilkinson show that the alpha width of the \(T = 0 \) level at 9.48 MeV should be reduced to \(\sim 16 \) keV due to the presence of a \(2^+, T = 1 \) state at 10.28 MeV.

The 10.28 MeV \(T = 1 \) level is in a region of excitation where large isobaric spin impurities of levels may be expected due to the high density of states. The origin of the \(T = 0 \) impurity of the 10.28 MeV which allows it to alpha decay to the ground state of O\(^{16} \) may be the \(2^+ \) level at 9.50 MeV or higher lying \(2^+ \) levels which have not been identified.
Acknowledgements

We would like to express our appreciation to Professors I. Perlman and J. O. Rasmussen and Dr. E. K. Hyde for the opportunity of carrying out this work at the Lawrence Radiation Laboratory and for their kind hospitality. The assistance of the staff at the Hilac and the Electronics Division is gratefully acknowledged.
References

1) L. W. Alvarez, Phys. Rev. 80 (1950) 519

2) R. K. Sheline, Phys. Rev. 82 (1951) 954

3) C. A. Birge, private communication, quoted in by F. Ajzenberg and T. Lauritson, Revs. Mod. Phys. 24 (1952) 321

4) R. D. Macfarlane and R. D. Griffioen, Nucl. Inst. and Meth. 24 (1963) 461

5) P. G. Roll and F. E. Steigert, Nuclear Physics 17 (1960) 54

7) F. Asaro, F. L. Reynolds and I. Perlman, Phys. Rev. 97 (1952) 277

10) Ya. B. Zeldovich, JETP (Soviet Physics) 32 (1960) 1123

13) W. E. Hunt, "The Elastic Scattering of Alpha Particles by O\(^{16}\) from 5.8 to 10.0 MeV" (thesis) Florida State University (1962)

17) D. H. Wilkinson, Phil. Mag. 1 (1956) 1031

18) D. H. Wilkinson, Phil. Mag. 1 (1956) 379
Table 1

Summary of Results of Alpha Energy Measurements

<table>
<thead>
<tr>
<th>E_a (MeV) lab</th>
<th>Q_a (MeV) c.m.</th>
<th>Relative Intensity*</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.14 ± 0.02</td>
<td>2.67 ± 0.02</td>
<td>100</td>
</tr>
<tr>
<td>2.49 ± 0.03</td>
<td>3.09 ± 0.03</td>
<td>5</td>
</tr>
<tr>
<td>3.80 ± 0.03</td>
<td>4.75 ± 0.03</td>
<td>1.6</td>
</tr>
<tr>
<td>4.44 ± 0.01</td>
<td>5.55 ± 0.01</td>
<td>2.1</td>
</tr>
</tbody>
</table>

* Normalized to the intensity of the 2.14 MeV group which was arbitrarily set equal to 100
<table>
<thead>
<tr>
<th>Ne20 Excitation Energy (MeV) (from alpha energy measurements)</th>
<th>Known Levels of Ne20 which coincide in energy 11</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Energy</td>
</tr>
<tr>
<td>7.40 ± 0.02</td>
<td>7.43</td>
</tr>
<tr>
<td>7.82 ± 0.03</td>
<td>7.84</td>
</tr>
<tr>
<td>9.48 ± 0.03</td>
<td>9.50</td>
</tr>
<tr>
<td>10.28 ± 0.01</td>
<td>10.27</td>
</tr>
</tbody>
</table>
Table 3

Estimated Log ft Values and Beta Branching Fractions Related to the Na20 Decay Scheme

<table>
<thead>
<tr>
<th>Transition</th>
<th>Level (Ne20)</th>
<th>$E_{\beta}^+\ max$</th>
<th>$t_{1/2}$ (Sec)</th>
<th>Log ft</th>
<th>Beta Branching Fraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Na20(2^+) \rightarrow 2^+$</td>
<td>1.63 MeV</td>
<td>12.7 MeV</td>
<td>0.41</td>
<td>5.1*</td>
<td>0.94</td>
</tr>
<tr>
<td>$\rightarrow 2^+$</td>
<td>7.40</td>
<td>6.9</td>
<td>~8</td>
<td>5.1*</td>
<td>~0.047</td>
</tr>
<tr>
<td>$\rightarrow 2^+$</td>
<td>7.82</td>
<td>6.5</td>
<td>~160</td>
<td>6.3</td>
<td>~0.002</td>
</tr>
<tr>
<td>$\rightarrow 2^+$</td>
<td>9.48</td>
<td>4.8</td>
<td>~500</td>
<td>6.1</td>
<td>~0.0008</td>
</tr>
<tr>
<td>$\rightarrow 2^+$</td>
<td>10.28</td>
<td>4.0</td>
<td>~38</td>
<td>4.7</td>
<td>~0.01</td>
</tr>
</tbody>
</table>

* Assumed value taken from F20 decay
Figure Captions

Figure 1 The alpha particle spectrum associated with the delayed alpha decay of Na20

Figure 2 Excitation functions for the production of Na20 by $C^{12} + B^{10}$ and $C^{12} + B^{11}$ reactions. E_B refers to the centre-of-mass energy of the B10 and B11 projectiles.

Figure 3 Partial decay scheme for Na20 showing the transitions which involve alpha decay to the ground state of O16.