Title
Bonnima sp. (Trilobita; Corynexochida) from the Chambless Limestone (Lower Cambrian) of the Marble Mountains, California: First Dorypygidae in a cratonic region of the southern Cordillera

Permalink
https://escholarship.org/uc/item/8fq03184

Journal
PaleoBios, 30(2)

ISSN
0031-0298

Author
Foster, John R.

Publication Date
2011-10-19

Peer reviewed
Boninna sp. (Trilobita; Corynexochida) from the Chambless Limestone (Lower Cambrian) of the Marble Mountains, California: First Dorypygidae in a cratonic region of the southern Cordillera

JOHN R. FOSTER
Museum of Western Colorado, P.O. Box 20,000, Grand Junction, CO 81502; jfoster@westcomuseum.org

A trilobite pygidium, likely referable to the genus Boninna, is the first evidence of a member of the Corynexochida reported from the Lower Cambrian (Dyрен Stage) Chambless Limestone of the southern Marble Mountains in the Mojave Desert of California. This specimen represents the first occurrence of the family Dorypygidae in the cratonic facies of the Lower Cambrian in the California-western Nevada region, as all of the few previous reports of the family (mostly Boninna) have been from much thicker, more distal open-shelf deposits far to the northwest in the White-Inyo–Esmeralda County region of California and Nevada. Although still relatively rare, the occurrence of Dorypygidae across a range of environments biofacies realms in this area is typical of their distribution in other regions.

INTRODUCTION

The Chambless Limestone is a Lower Cambrian unit exposed in the Marble and Providence mountains in the Mojave Desert of San Bernardino County, California (Hazzard and Crickmay 1933). The formation was named by Hazzard (1954) for outcrops northeast of the town of Chambless along Highway 66, about 10 miles east of Amboy. The Chambless Limestone is well known for containing abundant oncoids and fragments of brachiopods and trilobites in the gray, micritic limestone facies that makes up most of the formation. This unit forms a distinct, steep outcropping of gray limestone throughout the Marble and Providence mountains. Olenellids (Olenellus, Bolbolenellus, and Bristolia) comprise the bulk of the trilobites found in the Chambless Limestone to date, with the ptychopariid Poulsenia very rare. In addition, the known non-trilobite fauna from the Chambless Limestone includes several genera of brachiopods, hyoliths, molluscs, and the cocrinoid Gogia (Mount 1974, 1976, 1980, Webster et al. 2003, University of California, Riverside, catalog). A recently collected fauna from stratigraphically low in the formation, in interbedded gray shale and orange carbonate, includes the first member of the Corynexochida reported from the formation.

The specimen was found with a fauna consisting of body fossil material and molds of approximately 25 specimens of trilobite fragments, hyoliths, brachiopods, trace fossils, and cocrinoid plates. All were collected from a Chambless Limestone outcrop in the southern Marble Mountains in the west ½, NW 1/4, Sec. 12, T5N, R14E, approximately 500 m west-northwest of UCR 7359 (a published site in the overlying Cadiz Formation, Fuller 1980).

Institutional Abbreviations: MWC, Museum of Western Colorado, Fruita; UCR, University of California, Riverside.

GEOLoGIC SETTING

In the Marble Mountains, the Chambless Limestone consists of 48 m of gray, oncotic limestone with beds that are from 5 cm to 1 m thick, and these beds generally decrease in thickness upward in the formation. The Chambless Limestone is also known from the Providence Mountains 30 miles north of the Marble Mountains; the formation is not recognized north of the Providence range, but equivalent units of varying thickness do occur (Palmer and Halley 1979). The abundant oncoids are 2–4 cm in diameter low in the formation and 5 mm to 3 cm in the middle and top sections and are often round or spherical in shape throughout the formation (Unal and Zinsmeister 2007). These oncoids are particularly concentrated in the lower few meters of the formation.

The Chambless Limestone is approximately equivalent to the Gold Ace Limestone and Echo Shale members of the Carrara Formation in the Death Valley region and to the lower Bright Angel Shale in the western Grand Canyon and Las Vegas areas (Stewart 1970, Palmer 1971, Palmer and Halley 1979, Webster 2003). According to Hall (2007), the Chambless Limestone forms part of the Sauk II transgressive sequence, along with the underlying Latham Shale (Gaines and Droser 2002) and the overlying Cadiz (Foster 1994) and Bonanza King formations. Trilobites of the Chambless Limestone are within the Boninna-Olenellus zone (Rascti 1951) and range from the Peachella iddingsi zonule at the base of the Chambless Limestone to the Bolbolenellus euryparia zonule for most of the formation (Webster 2003).

The fossils collected for this study were found in an approximately 5-m-thick unit of interbedded light brown fossilic shale and gray-green to brown and orange, silty limestone or dolomite with beds of 0.5–15.0 cm thick; this unit is stratigraphically low in the formation with m-scale beds of gray, oncotic limestone, typical of the formation, above and below (Fig.1). The fossils were found in ~6–20 mm, thin weathered plates of orange to brown limestone or dolomite stratigraphically low in this unit. The thicker ~15–20 mm carbonate layers in this interval have small, cm-scale crossbeds and preserve, on some bedding surfaces, apparent interference (ladder-back) ripples.
SYSTEMATIC PALEONTOLOGY

TRILOBITA
CORYNEXOCHIDA Kobayashi 1935
DORYPYGIDAE Kobayashi 1935
BONNIMA SEMIDISCOIDEA Fritz 1991

Bonnima sp. indet.

Referred Specimen—MWC 6961, pygidium preserved in internal/ventral view; from approximately 2 m up into the ~5-m-thick shaly zone in the stratigraphically lower part of the Chambless Limestone, southern Marble Mountains, San Bernardino County, California; Bonnia-Olenellus zone (Bolbolenellus eurygaria zonule), Dyeran Stage.

Description—The pygidium is 8.24 mm long and 9.18 mm wide, with an axial lobe 2.84 mm wide at the anterior end; the axial lobe tapers slightly posteriorly (Fig. 2A). Preserved height of the pygidium is approximately 3 mm. There are seven pygidial axial rings and six pygidial pleural ribs (Fig. 2B). The structure of the pygidium is fairly clear; however, the pygidial pleural furrows become progressively fainter posteriorly so the exact number of axial rings and pleural ribs is difficult to ascertain and the size of the terminal axial piece hard to confirm. There is no evidence of anterolateral spines on the pygidium, nor of a distinct pygidial border. MWC 6961 is preserved in internal/ventral view and most of the element is intact, so the nature of the external/dorsal surface of the pygidium cannot be described, but the impression of the external surface, as preserved at the margins in the surrounding sediment, suggests the outer surface was smooth.

Discussion—Fritz’s (1991) diagnosis of Bonnima notes its overall similarity to Bonnia but lists several features that distinguish it from the latter genus: (1) smoother external surfaces of the cranidium and pygidium with very low relief and indistinct furrows; (2) occipital ring much narrower; (3) pygidial border furrow absent on dorsal surface and very shallow (or absent) on internal surface; and (4) a “semidetached” anterior pleural segment on the pygidium. Although the external surface of the pygidium may be nearly smooth in Bonnima, the internal surface shows the form of the furrows much more clearly.

MWC 6961 is similar to the pygidium of Bonnima semidiscoidea Fritz 1991 in the number of pleural ribs and axial rings, length-to-width proportions, lack of a pygidial border, lack of anterolateral spines, and smooth outer edge of the pygidium. The “semidetached” anterior pleural segment characteristic of Bonnima (Fritz 1991) appears to be mostly broken off anteriorly with only the posterior edge remaining and with a deep pleural furrow between it and the rest of the pygidium. Part of the left anterior pleural segment may be present just anterior to the rest of the pygidium.

The specimen is distinct from Bonnia in having a higher (more nearly 1:1) length-to-width ratio than most species of that genus, in lacking a defined pygidial border, in having less distinct axial rings and pleural furrows, a more tapered axial lobe, and a greater number of pleural ribs and axial rings (when compared with Bonnia as illustrated in Rasetti 1948, Palmer 1964, and Fritz 1991). The pygidium of Palmer’s (1964) Bonnia caperata, for example, is distinctly wider than long, has a clear border, distinct furrows, and only three pleural ribs.

MWC 6961 differs from Bonniella desiderata in lacking the long pygidial spines and expanded pygidial flanges of B. desiderata (Walcott 1890, Resser 1937) and differs from Resser’s (1938) various additional species of Bonniella (=Bonnia) lacking spines, a pygidial border area, and in having less distinct furrows. Bonniopsis virginica also appears to possess border spines (Palmer 1964), which distinguishes that species from MWC 6961 as well.

The preservation of the internal/ventral view of the pygidium and lack of access to the dorsal surface prevents confirmation of the smooth dorsal surface of the pygidium characteristic of Bonnima. However, the internal definition

Figure 1. Stratigraphic section showing the level of the Bonnima sp. indet. specimen (MWC 6961) within the Chambless Limestone in the Marble Mountains. Associated fauna is from same level. Bottom and top boundaries of section shown are the top of the Zabriskie Quartzite and the Lower-Middle Cambrian contact within the Cadiz Formation. Shown for comparison (on left) is a section of the Carrara Formation in same interval from the southern Last Chance Range, California. Note different scales and the cratonic Marble Mountains section is approximately half the thickness of Last Chance Range section. Marble Mountains section measured by the author; Last Chance Range section from data in Palmer and Halley (1979).
of pygidial features is more subtle than in \textit{Bonnia}, and the impression of the external pygidial surface along the rim of the fossil, where the edge of the pygidium is broken off, appears to be smooth. Thus, the fossil appears to better match \textit{Bonnima} than either \textit{Bonnia}, \textit{Bonniopsis}, or \textit{Bonniella}.

DISCUSSION

This is the first evidence of a corynexochid in the Chambless Limestone and if the identification is correct, the first occurrence of \textit{Bonnima} in the southwestern United States. More importantly, it is the first occurrence of the Dorypygidae in one of the few thin, cratonic Lower Cambrian sections in the southern Cordilleran region. All previously reported occurrences of Dorypygidae in the region (mostly \textit{Bonnia}) have been found in miogeoclinal strata (Fig. 3). The designation of the cratonic-miogeoclinal boundary in Figure 3 is based on Stewart (1970) and Nelson (1978), which are in close agreement on the placement of the transition and what it represents. In cratonic sections Cambrian strata are often comparatively thin and rest on Precambrian granitics and metamorphics, whereas miogeoclinal strata thicken dramatically toward the northwest and often lie on thick sequences of Proterozoic strata (Stewart 1970). Cratonic sections probably represent shallow-shelf deposits closest to the shoreline. The most distal sites with \textit{Bonnia} specimens (the Last Chance Range, California, and sites in Esmeralda County, Nevada) are close to what are probably the deep-water deposits of the shelf edge as exposed near Miller Mountain, Nevada (Stevens and Greene 1999). In between the two would have been the open-shelf environments of the miogeoclinal strata.

The only other reported occurrences of the Dorypygidae in this region are from much more distal environments to the northwest, away from the cratonic setting of the Marble Mountains. Palmer and Halley (1979) identified two cranidia of \textit{Bonnia} sp. in the Mule Spring Limestone from the Mule Spring locality and from a Nevada Test Site locality. Palmer and Halley (1979) originally recorded the Mule Spring occurrences as Gold Ace Limestone Member of the Carrara Formation, but they reported no
other corynexochids from the Lower Cambrian of the Carra rara Formation; the Eagle Mountain, Thimble Limestone, Echo Shale, and lower Pyramid Shale members all appear to be devoid of these trilobites. About a half dozen specimens of Bonnia caperata have been reported in the lower Saline Valley Formation at a level approximately equivalent to the lower Carrara Formation (Palmer 1964), and the genus has also been identified from several sites in the Harkless Formation and Mule Spring Limestone (Albers and Stewart 1972, J.S. Hollingsworth, personal communication 2010). These fossils from the Saline Valley, Harkless, and Mule Spring, are all from Esmeralda County, Nevada, approximately the same distance from the Lower Cambrian craton as the Last Chance Range occurrence from Palmer and Halley (1979). Although each of these occurrences consists of just a few specimens, Fritz (1968) recorded more than 150 Bonnia copia specimens in the Pioche Formation in the Egan Range north of Ely, Nevada. Lochman (1952) also reported eight specimens of Bonnia sonora from the Buena Formation near Caborca in northern Mexico; the Buena is also part of a miogeoclinal section (Stewart et al. 2002).

Bonnia has been found in eastern and western Canada (Fritz 1972, Bohach 1997), Virginia, the Death Valley area, and numerous other regions (Resser 1938, Palmer and Halley 1979, Fritz 1991). Bonnilla is known from the Lower Cambrian of sites mostly in eastern North America, including Vermont, Pennsylvania, and Virginia (Resser 1937, 1938, Resser and Howell 1938, Shaw 1955), but has been reassigned to Bonnia (Bohach 1997). Bonnina was first described by Fritz (1991) from the upper Illyth Formation (Dyerean) in the Yukon Territory and was also identified by Fritz (1991) in eastern Canada. I have been unable to find reference to its previous occurrence in the Lower Cambrian of the Great Basin or Mojave Desert, making the Chambless Limestone specimen possibly the first of that genus in this region. Except at the Pioche Formation locality in the Egan Range of Nevada, Dorypygididae in general do not appear to be abundant in the Lower Cambrian of the Southwest, and where they do occur they appear to be in most cases distal facies, possibly deeper-water species. But the Chambless Limestone occurrence of MWC 6961 demonstrates that the southern Cordillera they could range well into the cratonic biofacies realm as defined by Lochman-Balk and Wilson (1958) and supported by Rowell et al. (1973). The cratonic biofacies probably represents a shallow, restricted shelf setting (Palmer 1977), and although lateral equivalents of the Chambless Limestone out as far as the Nopah and Last Chance ranges suggest similar environmental settings existed across the miogeoclinal shelf, slightly deeper water might be expected in these areas. Bonnia and other dorypygidids commonly range across several environments and biofacies realms in younger sections and in other regions (Lochman-Balk and Wilson 1958).

The shale interval in the Chambless Limestone that yielded MWC 6961 and the associated fauna may represent a brief flooding event bringing outer, open-shelf forms such as Bonnina onto the craton; alternatively, it could represent a temporary shift in the carbonate shoal environments of the area with little change in depth, one that simply brought in more terrigenous influence for a period of time. The presence of apparent interference ripples in the carbonate layers containing the fossils in this sample may support the latter scenario. If the shale and thin carbonate interval does not represent a flooding event, then the apparent environmental range of Dorypygididae along the shelf, from the proximal Chambless Limestone occurrence to the distal localities with Bonnia specimens (Palmer 1964, Fritz 1968, Albers and Stewart 1972, Palmer and Halley 1979), would be consistent with the family’s apparent broad tolerance of variable environmental conditions in other regions (Lochman-Balk and Wilson 1958). If the shale and carbonate interval does represent a flooding event, then the Bonnina specimen provides evidence for a temporary expansion of the ranges of typically open-shelf species onto the craton.

ACKNOWLEDGEMENTS

Thanks to the Museum of Western Colorado crews that helped with this exploratory survey of Chambless Limestone and Cadiz outcrops in the Marbles and, over the years, with the work in the Latham Shale. Thanks also to M. Kooser for compiling and sending data from the UCR catalog regarding the Chambless Limestone, and to F. Sundberg and J. S. Hollingsworth for reviews of the manuscript. Field work for this project was conducted under Bureau of Land Management permit CA-08-00-002P.

LITERATURE CITED

Fuller, J.E. 1980. A Middle Cambrian fossil locality in the Cadiz Formation, Marble Mountains, California. Southern California Paleontological Society Special Publication 2:30–33.

Gaines, R.R., and Droser, M.L. 2002. Depositional environments, ichnology, and rare soft-bodied preservation in the Lower Cam-