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Purpose of review

Many studies have reported that individuals with autism spectrum disorder (ASD) have different brain
connectivity patterns compared with typically developing individuals. However, the results of more recent
studies do not unanimously support the traditional view in which individuals with ASD have lower
connectivity between distant brain regions and increased connectivity within local brain regions. In this
review, we discuss different methods for measuring brain connectivity and how the use of different metrics
may contribute to the lack of convergence of investigations of connectivity in ASD.

Recent findings

The discrepancy in brain connectivity results across studies may be due to important methodological
factors, such as the connectivity measure applied, the age of patients studied, the brain region(s)
examined, and the time interval and frequency band(s) in which connectivity was analyzed.

Summary

We conclude that more sophisticated electroencephalography analytic approaches should be utilized to
more accurately infer causation and directionality of information transfer between brain regions, which
may show dynamic changes of functional connectivity in the brain. Moreover, further investigations of
connectivity with respect to behavior and clinical phenotype are needed to probe underlying brain
networks implicated in core deficits of ASD.
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INTRODUCTION

Autism spectrum disorder (ASD) is a neurodevelop-
mental disorder featuring deficits in social com-
munication and language acquisition, as well as
restricted interests and repetitive behaviors [1].
Much research has attempted to understand the
neural underpinnings of ASD by the identification
of biomarkers (i.e., objectively measured biological
markers that indicate risk for autism [2]) that relate
to its core deficits. Measures of brain connectivity
are promising ASD biomarkers [3], yet a plethora
of methods for extracting and delineating brain
networks from recordings of functional brain
activity exist.

Why connectivity? Brain connectivity measures
infer which brain regions are physically or function-
ally connected to form brain networks that subserve
either cognitive/behavioral task performance or
the brain’s resting/default state [4]. Although hun-
dreds of genes convey risk for ASD [5], many of
these genes notably converge on synaptic pathways
[6–9,10

&

,11]. On a microscopic level, this conver-
gence underscores synaptic connectivity as a
ht © 2016 Wolters Kluwe

rs Kluwer Health, Inc. All rights rese
potential neurobiological mechanism of ASD; how-
ever, on a macroscopic level, it points towards axo-
nal or functional connectivity patterns as a plausible
biomarker for ASD. The number of publications with
the keywords ‘brain connectivity’ has grown expo-
nentially over the past 30 years (1985–2015, Fig. 1)
[12], whereas the number of publications for ‘brain
imaging’ has grown almost linearly over the same
period. The exponential explosion in brain connec-
tivity publications underscores the importance of
this new field in understanding the brain as an
integrated system.
r Health, Inc. All rights reserved.
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KEY POINTS

� Individuals with ASD have different brain connectivity
patterns compared with typically developing
individuals.

� There are discrepancies in brain connectivity results
across studies that may be due to important
methodological factors, such as the type of connectivity
measure used, the age of patients studied, the brain
region(s) examined, and the time interval and
frequency band(s) in which connectivity was analyzed.

� We recommend that future studies compare cross-
correlation or coherence to sophisticated measures
of connectivity to determine whether the results
converge.
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FIGURE 1. Exponential growth of Scopus hits for brain
connectivity. Comparison of hits for ‘brain connectivity’
(gray) and ‘brain imaging’ (black) by year (abscissa) for
1970–2014 from academic search engine Scopus (date of
search 11/06/15). Number of papers (ordinate) is
normalized showing both traces on the same scale, thus
emphasizing style of growth rather than raw number of
papers. Both fields of research show approximately constant
publication output until 1985, after which publications for
brain connectivity show exponential growth compared with
almost linear growth for brain imaging publications. One
can attribute the exponential growth in brain connectivity
publications as a push against the functional segregation
approach of traditional brain imaging, replacing such
approaches with an integrated understanding of the brain
as a distributed network.
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Published studies on brain connectivity in ASD
yield inconsistent results, not only because of the use
of different imaging modalities and techniques for
(re)constructing brain networks but also because of
the challenges inherent in the selection of appropri-
ate methods for delineating brain networks to test a
given hypothesis. Additionally, choosing a proper
neuroimaging technique that suits a clinical cohort
may avoid detrimental filtration of the sample, that
is, omitting low-functioning individuals with severe
cognitive impairments who yield noisy data or out-
liers for a given brain connectivity technique. For
example, in cohorts with ASD, motor stereotypies
and cognitive level must be taken into account when
considering imaging techniques that are sensitive to
motion artifacts or require the participant to lie
motionless for a long period of time.

This following is not meant to be an exhaustive
review on the literature; rather, we provide a critical
review of the specific methods used to capture brain
connectivity, methods that quantify the delicate
balance between functional segregation and integ-
ration of neuronal circuits. We discuss how different
brain connectivity approaches can lead to divergent
results – even when applied to the same data. We
conclude with general recommendations for con-
nectivity measures that are most promising – in
terms of feasibility, robustness, and sensitivity –
for studying individuals with ASD.
OVERVIEW OF BRAIN CONNECTIVITY
APPROACHES

Brain connectivity approaches can be categorized as
structural or functional. Within functional connec-
tivity, methods that infer causality and directional-
ity of information transfer are considered effective
connectivity.
(1)
Hea
In structural brain connectivity approaches,
regions of the brain are considered to be con-
nected if there are anatomical (white matter)
connections between distinct brain regions.
Structural connectivity may vary across devel-
opment and can be used as an index of brain
plasticity.
(2)
 In functional connectivity approaches, the
interdependency among activities of different
brain areas is measured using statistical
methods, such as correlation, covariance, phase
coherence, and phase locking. These methods
characterize the strength of the relationship
(e.g., correlation) but not the direction of infor-
mation flow or causality. Functional connec-
tivity can illustrate the integration and
segregation of brain networks in much finer
lth, Inc. All rights reserved.
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temporal resolution than structural connec-
tivity methods.
(3)
 Effective connectivity examines interactions –
inferred to be casual – between nodes of brain
networks while showing directionality of infor-
mation transfer. Common approaches to
measure effective connectivity are Granger cau-
sality and its derivatives, as well as phase
slope index.
Diffusion magnetic resonance imaging (MRI)and
diffusion tensor imaging (DTI) represent methods for
mapping structural connectivity that characterize
anatomical fibers within brain networks. Both
methods are sensitive to the diffusion of water mol-
ecules along axon fibers [13]. Delineation of func-
tional brain networks is arguably less straightforward
than that of structural brain networks, as statistical
dependencies are far less concrete than anatomical
fibers. Functional networks may be obtained by uti-
lizing hemodynamic imaging techniques such as
functional MRI (fMRI) or other measures of brain
activity such as electroencephalography (EEG) and
magnetoencephalography (MEG). EEG and MEG sig-
nals reflect approximate measures of postsynaptic
pyramidal cell activity with millisecond temporal
resolution ideal for describing brain dynamics. How-
ever, the spatial resolution of both methods is poor
compared with MRI, even though this limitation can
be partially compensated using advanced signal proc-
essing analytic techniques. The spatial resolution of
MEG exceeds that of EEG owing to the fact that
magnetic fields are less distorted by the skull and
scalp than electric fields [14].
Cortex
(a) (b)

Scalp

FIGURE 2. Example of volume conductance of a dipolar
cortical source. A neural generator modeled as a dipolar
source in the cortex (a) and its back projection onto the
scalp (b). Because of the volume conductance issue, one
may incorrectly conclude that the polarity in the frontal and
occipital regions in the scalp map is from different dipolar
sources if only the scalp potential map is being used.
BRAIN IMAGING TECHNIQUES FOR
CONNECTIVITY ANALYSIS

Choice of an appropriate noninvasive in-vivo neu-
roimaging technique for delineating brain networks
depends on the clinical population of interest and
the type of connectivity to be analyzed. In the
context of neurodevelopmental disorders such as
ASD, the developmental level of the individual is
also an important consideration.

Although many studies use fMRI to study task-
related and resting state functional connectivity,
EEG/MEG are preferable for describing functional
and effective connectivity due to their rich temporal
dynamics. Both fMRI [15] and MEG [16] are highly
sensitive to motion artifacts, making both tech-
niques largely impractical for young children and/
or children with repetitive, stereotyped behaviors.
Other MRI techniques used for mapping structural
connectivity, such as diffusion MRI and DTI, share
this limitation.
 Copyright © 2016 Wolters Kluwe

-7540 Copyright � 2016 Wolters Kluwer Health, Inc. All rights rese
CHARACTERIZING THE BRAIN
NETWORK’S NODES AND EDGES

One of the most commonly used approaches for
characterizing a network and its components is
graph theory. In the parlance of graph theory,
brain regions, or recording sensors (e.g., voxels
or electrodes) are treated as the network’s nodes
and the connections between those nodes are the
edges of the network. The most straightforward
approach to choosing network nodes is to use
sensor location as nodes. However, signals in sen-
sor space may exhibit spurious functional and
effective connectivity due to volume conduction.
Volume conduction is a phenomenon whereby
electrical signals are spread out widely as they
travel through brain tissue and spatially smeared
by the skull, like a narrow point of light viewed
through frosted glass. As a result of volume con-
duction, spatial relationships measured from the
scalp may not represent true neural connectivity
but rather artifacts of volume conduction. Spatial
filters [17] such as current source density – the
second spatial derivative (Laplacian transform-
ation) of sensor-space recordings [18

&&

] – have
been introduced by researchers to deal with the
volume conductance issue (Fig. 2). Alternatively,
by using an inverse model approach such as
standardized low resolution brain electromagnetic
tomography, beamforming, and independent
components analysis for dipole localization,
spatial locations of ‘cortical activity’ sources can
be estimated and considered as the nodes of the
network [19].
r Health, Inc. All rights reserved.
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Choosing network edges – measures of
connectivity

The existence or strength of a network’s edges is an
important factor when studying brain connectivity.
Here, we discuss different methods to quantify edges
commonly used in functional and effective connec-
tivity approaches.
(1)
FIGU

cohe
seen

140
Time-lag measures: The simplest time-lagged
measure is cross-correlation, which is the degree
of similarity between activation of one brain
region with a shifted (time-lagged) activation
of another region. This measure can estimate
the neural processing delay between two
regions. For example, when measuring cross-
correlation between brain areas A and B, if the
time lag is 500 ms, the cross correlation will
represent the degree of similarity between
activity in area A at 0 ms and activity in area
B 500 ms later.
(2)
 Coherence: This is a measure of synchronization
between two signals of the same frequency, and
it quantifies the extent to which they share a
constant oscillating frequency and phase differ-
ence. For instance, two signals that are oscillat-
ing at the same frequency f0 may have a phase
difference value ranging anywhere from zero
(in-phase) to 1808 (antiphase). In this case, they
have a magnitude coherence value of 1 because
they share the same oscillation frequency f0;
however, their phase coherence value may vary
from 0 to 1 for antiphase to in-phase, respect-
ively (Fig. 3). In theory, neuronal ensembles
oscillate coherently to share information [20].
(3)
 Causality: Although true causal relationships
cannot be extracted from EEG or MEG record-
ings without applying electrical or magnetic
stimulation [4], Granger causality is a weaker
 Copyright © 2016 Wolters Kluwer Hea
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notion of causality: at frequency f0, if past values
of one brain recording ‘A’ help to predict future
values of brain recording ‘B’ beyond what can be
inferred from past values of recording B alone,
then (according to Granger causality), ‘A’ has a
Granger causal effect on ‘B’. Although not true
causality, Granger causality is useful for infer-
ring directionality of neural information trans-
fer [18

&&

].
The methods mentioned above can be applied
to data from many neuroimaging modalities includ-
ing fMRI, MEG, and EEG. However, it should be
noted that the accuracy of determining coherence
or Granger causality at frequency f0 depends on the
length of data. For example, to investigate low fre-
quencies, longer recording time is required. There-
fore, choice of frequency band plays a critical role in
the interpretation of connectivity data, as will be
discussed in later sections.
Graph theory measures

How does one summarize connectivity in a network
with hundreds to thousands of edges? Edges weaker
than a certain threshold strength are often elimi-
nated to create a pruned network/graph. Next, the
architecture of the network is described using graph
theory measures, several of which are described
below and illustrated in Fig. 4.

Small worldness

This refers to the property by which any two nodes
in a network are connected by a small number of
steps or ‘hops’ (Fig. 4). For instance, consider a
global network of airports where any given city
can be reached by three or fewer connecting flights.
Such a network has small-world properties. As a
lth, Inc. All rights reserved.
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FIGURE 4. Examples of three network architectures described by graph theory. (a) An inefficient network with large path
length and small clustering coefficient. Note that a metaphorical walk from one arbitrary node to another will take many more
steps than the network in (b) owing to the lack of hub nodes in (a), that is, nodes connected to many neighbors that facilitate
quick trips across the network. (b) A small-world network with small path length and small clustering coefficient. Hub nodes
(dark gray) greatly reduce the path length and increase the efficiency of the network, such that all nodes are connected by a
small number of steps. (c) A highly modular small-world network with small path length and large clustering coefficient. Like
(b), this network is highly efficient, but also more integrated owing to the larger proportion of realized edges (i.e., higher
clustering coefficient) creating densely interconnected modules or subnetworks linked by a central hub node (dark gray).

Brain connectivity in ASD Mohammad-Rezazadeh et al.
result, within the brain’s small-world network, the
information flow is highly efficient with minimal
serial-synaptic conduction delay. Small-world net-
works are also more robust to deletion of random
nodes or damage to the network.

Path length

The efficiency of a network is related to the path
length, or the average number of edges between any
two nodes, which is minimal for small-world net-
works (Fig. 4). For instance, social networks are said
to have a path length of 6, meaning any two people
in the world know each other through six series
of acquaintances.

Modularity

Also relevant to efficiency and small-worldness, this
term describes the tendency for nodes to form hier-
archical and recursive clusters within clusters
(Fig. 4). Closely related is the clustering coefficient,
a measure of local interconnectedness or ‘cliquish-
ness,’ which reflects the degree to which clustering
occurs around an average node.
BRAIN CONNECTIVITY FINDINGS IN
AUTISM SPECTRUM DISORDERS

Considering the growing interest in brain connec-
tivity in ASD (Fig. 1), a reasonable skeptic might ask if
many of these studies are largely the product of a
bandwagon effect. However, given the growing
insights gained from autism genetics, with many
pathways converging on synaptic function and struc-
ture, efforts to characterize connectivity in ASD hold
biological validity. ASD can be better understood
through the lens of network science, which may
 Copyright © 2016 Wolters Kluwe
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elucidate the role of genetic factors, clinical charac-
teristics, and phenotypic heterogeneity.
Brain connectivity and genetics in autism
spectrum disorder

Many potential autism risk genes regulate synaptic
connectivity, with mutations leading to micro-
scopic neuronal dysconnectivity [6–9,10

&

,11]. The
concordance rate for ASD between monozygotic
twins is 77% for male twins and 50% for female
twins [21], suggesting genetic risk patterns with
strong but not absolute penetrance. Intermediate
phenotypes of ASD should show similar levels of
heritability and genetic influence. An analysis of
small-world resting-state EEG functional networks
from twins and siblings computed with synchroni-
zation likelihood (a method which can deal with
nonstationary dynamics of EEG data) has found that
37–62% of differences in path length are heritable
[19]. Clustering coefficient showed similar genetic
influence, with 46–89% of individual differences
found to be heritable. The high heritability of these
small-world parameters opens them to future con-
sideration as ASD or ASD-risk endophenotypes.
However, it should also be noted that many inher-
ited and de novo ASD risk genes converge on synap-
ses [5,9,22–25]. Thus, heritable brain networks –
while promising as risk biomarkers – are incomplete
endophenotypes of ASD risk and, moreover, agnos-
tic with respect to specific genetic factors.
Long-range vs short-range connectivity in
adults with autism spectrum disorder

Results from studies of connectivity in ASD are
variable, largely due to discrepancies in the
r Health, Inc. All rights reserved.
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Statlonary(a) (b)

Window 1 Window 2 Window 1 Window 2

Non-statlonary

FIGURE 5. Stationarity vs nonstationary EEG signals. A stationary process is one whose statistical properties (such as its
average, standard deviation, etc.) do not change over different time windows. For example, in panel (a), the average
oscillation frequency and standard deviation values are the same for both time windows 1 and 2. However, it is obvious these
values are not the same for panel (b) in time windows 1 and 2.
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experiment and its cognitive or behavioral com-
ponents, the type of functional brain data (e.g.,
EEG, MEG, or fMRI), the age of patients examined,
the anatomical region(s) examined, and the time
interval and frequency band(s) in which connec-
tivity was analyzed. Considerable focus has been
placed on long vs short-range connectivity patterns.
Several fMRI studies support the prevailing notion
that individuals with ASD have lower connectivity
(or hypoconnectivity) between distant brain regions
(such as the frontal and parietal lobes) and increased
connectivity (or hyperconnectivity) between local
brain regions (such as within the frontal lobe)
[26,27

&&

,28
&&

]. Contrary to these findings, recent
studies of neural connectivity with higher temporal
resolution using EEG/MEG do not support this
notion. For example, Khan et al. [29] examined
event-related MEG recordings from male young
adults and adolescents with ASD and an age-
matched control group of typically developing
(TD) individuals during a face-viewing task.
Source-localized signals in fusiform face area (FFA)
were used as a seed-region, with local connectivity
measured by phase-amplitude coupling – the
strength of the relationship between the phase of
oscillations in the a band (i.e., 8–12 Hz) and the
amplitude of oscillations in the g band (above
40 Hz) – and long-range connectivity measured as
coherence between FFA and other regions. Contrary
to prior findings [26,27

&&

,28
&&

], Khan et al. [29]
found significantly reduced local and long-range
connectivity in cohort with ASD compared with
controls. For long-range connectivity, this differ-
ence was significant in a band coherence. Not only
did participants with ASD feature hypoconnectivity
rather than hyperconnectivity at the local scale,
but moreover, reduced local connectivity correlated
with the social component of the autism diagnostic
observation schedule (ADOS) in this cohort.

In addition to a band coherence, differences
in functional connectivity between ASD and TD
controls have been found in other frequency
 Copyright © 2016 Wolters Kluwer 
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bands. For example, a study by Barttfeld et al.
[30] supported the traditional view of local hyper-
connectivity in ASD during resting-state EEG
recordings from high functioning adults with
ASD. Specifically, they found enhanced local, lat-
eral frontal connections accompanied by reduced
long-range fronto-frontal and fronto-occipital
connections as measured with d (0.5–3.5 Hz) band
synchronization likelihood. Furthermore, Bartt-
feld et al. [30] demonstrated that EEG networks
from cohort with ASD featured lower clustering
coefficient and higher path length compared with
an age and gender-matched TD cohort. Although
this study only examined the d band, the func-
tional and/or mechanistic significance of d oscil-
lations in ASD remains unclear a priori, though d

band coherence abnormalities have also been
found in REM sleep EEG recordings from young
adults with ASD [31].

It is important to note that analyzing low fre-
quency oscillations – such as d oscillations or default
mode network – requires longer temporal segments
of EEG recordings (at least twice the duration of the
period of the slowest oscillation). This caveat alone
may lead to inaccuracy of connectivity estimation
due to the nonstationarity, that is, the fact that
statistical properties of the signal (such as its mean
and variance) change over the temporal interval of
one segment (Fig. 5).

Thus, studying connectivity mediated by rela-
tively fast oscillations may be more accurate. For
example, a oscillations, which are associated with
restful focus and may relate to the ability of an
individual to concentrate his or her focus while
habituating to distracting stimuli [32,33], may be
an ideal frequency band for computing functional
connectivity. It has been shown that the coher-
ence at a oscillations measured over right centro-
parietal regions is inversely related to the tendency
for adults with ASD to notice and process details
[34]. Furthermore, in resting-state eyes-closed
recordings, adults with ASD also have globally
Health, Inc. All rights reserved.
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reduced a coherence in frontal networks com-
pared with TD adults [35]. Interestingly, the same
study showed that the coherence of u oscillations
–which play a similar role as a in executive func-
tion and working memory [33,36] – are locally
enhanced in left frontal and temporal regions in
adults with ASD [35]. Thus, proper frequency
ranges should be chosen while studying short or
long-range brain connectivity patterns.
Relating connectivity to clinical phenotypes
and circuit dysfunction

Ultimately, future work along these lines relating
connectivity differences to clinical phenotypes
rather than broad diagnosis may be beneficial for
stratifying this very heterogeneous disorder into
more homogeneous subpopulations. Very few
studies have correlated EEG or MEG connectivity
metrics with behavioral symptoms or clinical phe-
notypes in ASD. In addition to the previously
mentioned Khan et al. [29] study, which correlated
ADOS scores with local connectivity from a face
processing task, Grice et al. [37] used evoked (for
early sensory processing and local feature process-
ing) and induced (for later configurational feature
and top-down processing) g band coherence from
EEG recording in adults with ASD to compare
frontal connectivity in a face processing paradigm
using upright faces and inverted faces as stimuli.
No significant change in induced/evoked g band
coherence between frontal electrodes was reported
for cohort with ASD, whereas TD adults showed
greater induced g coherence for upright faces. In
addition, they found no modulation of the g

response compared with controls when the faces
were inverted. This lack of sensitivity to the face
inversion in the ASD group may represent deficits
in the integration and information binding of
local features during face processing. Similar work
in the future may be beneficial for probing neural
circuits implicated in core behaviors implicated
in ASD. Therefore, choice of experimental task,
latency of specific sensory/cognitive processes, fre-
quencies of interest, and network features (nodes
and edges) are important factors in quantifying
and interpreting brain connectivity patterns and,
consequently, classifying ASD into biologically
relevant subgroups.
Connectivity as an autism spectrum disorder
risk marker in early and middle development
stages

Brain connectivity may have potential as a risk
marker for ASD in early and development stages.
 Copyright © 2016 Wolters Kluwe

1350-7540 Copyright � 2016 Wolters Kluwer Health, Inc. All rights rese
Of paramount interest to clinicians are connectivity
measures that can identify ASD risk early in develop-
ment prior to diagnosis or inform prognosis of
children with ASD. Given our understanding of
the convergence of genetic risk factors on synaptic
pathways, one could postulate that aberrant
neuronal connectivity should be able to be quanti-
fied in early infancy. Recently, Orekhova et al. [38

&&

]
analyzed functional brain connectivity by phase lag
index in 14-month-old infants at high and low risk
for ASD using EEG while infants attended to videos.
At 36 months, the high-risk infants were assessed for
symptoms of ASD. High-risk infants who were later
diagnosed with ASD featured higher functional con-
nectivity compared with both low-risk infants and
high-risk infants who did not meet criteria for ASD.
The degree of hyperconnectivity in frontal regions
at 14 months strongly correlated with the severity of
restricted and repetitive behaviors in participants
later diagnosed with ASD at 3 years. Another large
study of sleep EEG recorded from 106 children with
ASD and 70 TD controls ages 2–6 years identified
distinct differences in coherence across different
frequency bands in slow wave sleep [39

&

].
A smaller study of 20 older children with ASD

(ages 6–11 years) and 20 controls matched for
age, IQ, and gender [40] identified distinct patterns
of EEG coherence across multiple frequency bands
in eyes-closed resting recordings, both within and
between hemispheres. Relative to controls, children
with ASD exhibited a pattern of hypoconnectivity,
which included decreased intrahemispheric d and
u coherences across short to long interelectrode
distances. Additionally, d and u coherences in
the ASD group were low across the frontal region,
interhemispherically.

However, these studies did not explicitly
address concerns regarding multiple comparisons,
spurious connectivity due to volume conductance,
or nonstationarity in long EEG recording seg-
ments. Collectively, these studies suggest that
brain connectivity may index risk for ASD diagno-
sis or altered developmental trajectory. However,
careful consideration should be given to the selec-
tion of the appropriate brain connectivity method
and important methodological factors that may
confound results.
CONCLUSION

Although many studies have identified differences
in functional connectivity with EEG/MEG between
individuals with ASD and TD individuals, more
studies that investigate and identify such differences
in early development as markers of ASD risk are
greatly needed. There are few longitudinal studies
r Health, Inc. All rights reserved.
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of EEG/MEG connectivity in infants or young chil-
dren with ASD. Moreover, further investigations of
connectivity with respect to behavior and clinical
phenotype are needed to probe underlying brain
networks implicated in core deficits of ASD. Con-
sidering that the theoretical basis for studying con-
nectivity in ASD is rooted in ASD risk genes pointing
towards synaptic dysfunction [6–9,10

&

,11], we
recommend investigations of EEG functional con-
nectivity in relation to single nucleotide polymor-
phisms, copy number variants, or other genotypic
measures.

The vast majority of studies reviewed here have
relied on coherence to measure EEG functional con-
nectivity. Coherence is a linear measure of connec-
tivity that is based on similarity of activations in
different regions while not taking into account non-
stationarity or directionality of information trans-
fer. Additionally, volume conductance, especially
between spatially adjacent recording electrodes,
may lead to spurious connectivity and misinterpre-
tation of results. For these reasons, we recommend
that future studies compare cross-correlation or
coherence to more sophisticated measures of con-
nectivity, such as synchronization likelihood,
which takes into account nonstationarity [41–43],
or effective connectivity measures such as Granger
causality [44,45], which infers causation and direc-
tionality of information transfer. In addition, the
above methods can be applied to data obtained from
source localization methods rather than channel
space data to eliminate the volume conductance
problem [19]. In Table 1, we summarize and com-
pare some frequently used functional/effective
connectivity methods.

Finally, dynamic changes in functional connec-
tivity patterns have yet to be deeply investigated.
The tendency of the brain to become ‘stuck’ (vs
flexibly adaptive) in a redundant pattern of func-
tional connectivity may relate to motor and cogni-
tive systems [49] in ASD, which are also ‘stuck’ in a
series of repetitive behaviors or restricted interests,
respectively. In this way, cortical and subcortical
dynamics of coordinated activity lead to generation
of inflexible brain connectivity patterns which may
relate to core deficits of ASD such as repetitive
behaviors [50]. In conclusion, cutting-edge method-
ologies sensitive to nonlinear and/or causal relation-
ships drawn from multiple recording modalities
may be fruitful for discovering risk and outcome
markers of ASD.
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