Title
Amino acid synthesis pathways in Desulfovibrio vulgaris

Permalink
https://escholarship.org/uc/item/8q47971b

Author
Arkin, Adam P.

Publication Date
2014-04-21
Amino acid synthesis pathways in Desulfovibrio vulgaris

Morgan N. Price1,2, Swapnil R. Chhabra1,2,3, Yinjie J. Tang1,2, Peter I. Benke1,2,3, Edward E. Baidoo1,2,3, on-Yi Fook1,2,3, Samuel Myers1, Paramvir S. Dehal1,2, Aindrila Mukhopadhyay1,2,3, Jennifer V. Kuehl1,2, Thomas R. Juba1, Grant M. Zane1,2,4, Judy. D. Wall1,2,4, Jay D. Keasling1,2,3,5, Adam P. Arkin1,2,3,5

1Virtual Institute for Microbial Stress and Survival, \url{http://vimss.lbl.gov/}; 2Lawrence Berkeley National Laboratory, Berkeley, CA; 3DOE Joint BioEnergy Institute, Emeryville, CA; 4University of Missouri, Columbia, MO; and 5Department of Bioengineering, University of California, Berkeley, CA

Acknowledgements

This work was part of the Virtual Institute for Microbial Stress and Survival (http://VIMSS.lbl.gov) supported by the U. S. Department of Energy, Office of Science, Office of Biological and Environmental Research, Genomics:GTL program through contract DE-AC02-05CH11231 between Lawrence Berkeley National Laboratory and the U. S. Department of Energy

Several steps in amino acid synthesis pathways are not annotated in the Desulfovibrio vulgaris genome. We computationally predicted several new reactions, including isoleucine synthesis via citramalate synthase (DVU1914), methionine synthesis via a potential bifunctional cystathionine gamma-synthase and beta-lyase (DVU0171), synthesis of alpha-ketoglutarate and glutamate via an Re-citrate synthase (DVU0398), and synthesis of chorismate and aromatic amino acids via an archaeal-like transaldolase and 3-dehydroquinate cyclase/deaminase (DVU0460,DVU0461). We are using genetic knockouts and complementation assays to test these predictions.