Title
NUCLEAR ALIGNMENT IN HEAVY-ION REACTIONS

Permalink
https://escholarship.org/uc/item/8g66t1jq

Authors
Diamond, R.M.
Matthias, E.
Newton, J.O.
et al.

Publication Date
1966-05-01
NUCLEAR ALIGNMENT IN HEAVY-ION REACTIONS

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California
NUCLEAR ALIGNMENT IN HEAVY-ION REACTIONS

R. M. Diamond, E. Matthias, J. O. Newton, and F. S. Stephens

May 1966
NUCLEAR ALIGNMENT IN HEAVY-ION REACTIONS*

R. M. Diamond, E. Matthias, J. O. Newton, and F. S. Stephens

Lawrence Radiation Laboratory
University of California
Berkeley, California

May 1966

In this letter we would like to point out the usefulness for spectroscopic purposes of the nuclear alignment obtained in heavy-ion reactions.

It is well known that in compound-nucleus reactions the incoming particle brings orbital angular momentum to the compound system but only in the $m=0$ sub-states, taking the beam direction as the axis of quantization. Thus the compound nuclei have their spins aligned in the plane perpendicular to the beam axis; the only deviations are caused by the spins of the target nucleus and projectile. With heavy-ions as projectiles, the amount of orbital angular momentum brought in far exceeds the usual nuclear spins, and the resulting compound nuclei should be highly aligned. The evaporation of a few neutrons will leave the initial spin distribution of the compound system largely unaltered and will broaden the distribution in m. However, since evaporated neutrons do not carry off much angular momentum, the nuclei with high angular momenta will be expected to remain highly aligned even after the evaporation process. Thus the final gamma rays (or particles) emitted between discrete states of the residual nuclei will show angular distributions with respect to the beam direction provided that the alignment is not destroyed by some interaction with extranuclear fields.

It has previously been shown that the conversion electrons emitted following proton and alpha particle induced reactions are indeed anisotropic.
In a paper to be published elsewhere, we describe the results of a more detailed investigation with lithium-drifted Ge detectors of the angular distributions of the discrete gamma-ray cascades observed as the final de-excitation step in some twelve heavy-ion (\(^4\)He to \(^{19}\)F) induced reactions, producing deformed and spherical even-even nuclei in the mass range 160-200. The result of interest here is that very pronounced angular distributions were observed for all these stretched E2 cascades. Using the expression \(W(\theta) = 1 + A_2 P_2(\cos \theta) + A_4 P_4(\cos \theta)\) we have summarized the results of that work in Fig. 1, where \(A_4\) vs \(A_2\) has been plotted for the observed transitions other than the 2 \(\rightarrow\) 0. The line in Fig. 1 represents the relationship between \(A_4\) and \(A_2\) expected with a Gaussian distribution, centered at \(m=0\), for the population of magnetic substates. Figure 1 shows that: 1) the population can be approximately represented by a Gaussian about \(m=0\), although significant deviations from this appear; and 2) the \(A_2\) values are large and both \(A_2\) and \(A_4\) are reasonably well clustered about particular values (all data, \(I > 2\), fall within \(A_2 = +0.30 \pm 0.09\), and \(A_4 = -0.09 \pm 0.05\)). The latter result shows that this alignment will be an extremely useful tool, since it generally persists throughout the entire neutron and gamma ray cascade.

The gamma decay of nuclei formed in heavy-ion\(\times\)n reactions offers a very general method of studying the decay schemes of neutron deficient nuclei over a wide range of the periodic system. Although mainly studies of even-even nuclei have been reported so far, it is now clear that odd mass and odd-odd nuclei can also be successfully investigated. We feel that the strong alignment produced in these reactions is a very important feature which will be of great value particularly in the study of these more complex level schemes. One of the most obvious ways to exploit the alignment is the measurement of angular
distributions of the de-excitation gamma rays with respect to the beam direction. We would like to illustrate this with an example taken from a general study of the levels of the neutron deficient odd mass Tl nuclei.\footnote{UCRL-16889} In the reaction 197Au(4He,2n)199Tl we have found, among others, three transitions of 331, 370, and 701 keV which lie above the $9/2^-$ isomeric level at 749 keV. From the energies and intensities of these transitions, we believe they connect two higher levels with the isomeric one in a cascade arrangement with a cross-over (see insert in Fig. 2). We have measured the angular distributions of these radiations with respect to the beam direction and find large anisotropies for each transition. From these angular distributions, shown in Fig. 2, definite conclusions about a particular spin sequence can be based both on the signs of A_2 and A_4 and on their magnitudes, whenever the experimental values exceed that for complete alignment ($|m| = 1/2$). Also, if two transitions come from the same level, both distributions must be consistent with the same alignment of the state. In the present example, where we know initially only the arrangement of the levels (Fig. 2) and that the transitions must be dipole, quadrupole, or a mixture, the distributions alone unambiguously reduce the possible spin sequences from 19 to 3. It is then possible to go further and make probable conclusions based on the expected alignment of the state obtained from the range of A_2 and A_4 values observed above for the even-even nuclei. These considerations reduce the probable number of spin sequences to 3 and these probable spins are shown in Fig. 2. Conversion coefficient and other data can provide the basis for a choice among these remaining spin sequences. The E2-M1 amplitude mixing ratio for the mixed transitions can then be derived in cases where the alignment of the initial state can be deduced (e.g., when there is
also a pure transition coming from the same state), or probable ranges can be defined in less favorable cases. It can be seen that in this example a considerable amount of spectroscopic information can be obtained from the measurement of the angular distributions of these three transitions.

This high degree of alignment can also be used in the measurement of electromagnetic moments and hyperfine interactions of nuclear states by the method of perturbed angular distributions. This type of experiment requires a target structure which preserves the spin orientation of the reaction product for a period longer than the lifetime of the nuclear state of interest. The lower limit to the usable lifetime is set by the minimum time to get appreciable precession of the nuclear moment in the effective field, the upper limit by the relaxation time of the nuclei in their particular environment. In these studies the large recoil velocity of the product nucleus is very valuable in getting the nucleus quickly into a suitable environment for the experiment. Thus for short-lived levels in the 10^{-11} to 10^{-9} sec range, the product nuclei can be recoiled into a ferromagnetic lattice to obtain large effective magnetic fields to perturb the correlation. This technique has already been used in Coulomb excitation experiments,\(^5\) and should find general application in reaction experiments also. For half-lives in the 10^{-9}--10^{-3} sec range, the same ferromagnetic environment can be used for resonance destruction of the angular distribution.\(^6\) For this range of lifetime one needs to take advantage of the rf-amplitude enhancement in a ferromagnetic lattice while for longer lifetimes this may not be necessary.\(^7\) For conventional spin-rotation measurements in an external magnetic field, the recoil atoms should go into non-magnetic cubic metals, to avoid as far as possible attenuating interactions. Experiments along these lines are clearly feasible, and preliminary work is in progress.
In summary, our results have shown that a large and reasonably uniform degree of alignment is present throughout the neutron and gamma ray cascades following heavy-ion nuclear reactions. This has been demonstrated to be very useful for spin and multipolarity assignments in spectroscopic studies of the de-exciting product nuclei. It promises to be useful also for studies of the nuclear moments and hyperfine interactions of levels in the product nuclei. Taken together with 1) the wide variety of nuclei that can be produced in compound-nucleus reactions, 2) the broad population of levels in a given product nucleus, and 3) the large uniform recoil velocities of compound nuclei, it makes the use of these reactions a general and powerful tool in nuclear spectroscopy.
FOOTNOTES AND REFERENCES

This work was supported by the U. S. Atomic Energy Commission.

IV. CONCLUSIONS

The preliminary results of this investigation show clearly that transmission electron microscopy is a useful tool for studying the deformation mechanisms in polycrystalline MgO. However, it is imperative that the specimens used approximate to theoretical density, owing to the difficulty of preparing thin foils of even slightly porous material.
ACKNOWLEDGMENTS

The authors have pleasure in acknowledging the assistance given by P. Hart in the production of specimens, N. Olson in the mechanical testing, and L. Ernst in the electron microscopy.

This work was carried out under the auspices of the United States Atomic Energy Commission.
REFERENCES

7. T. G. Langdon, to be published
FIGURE CAPTIONS

Fig. 1. Polycrystalline MgO produced in this laboratory by hot-pressing (left) and produced commercially by sintering (right).

Fig. 2. Microstructure of (a) hot-pressed material and (b) sintered material.

Fig. 3. Typical grain boundary in unstrained hot-pressed material; the boundary is at an angle with the plane of the foil.

Fig. 4. Relatively dislocation-free grains in unstrained hot-pressed material. Dislocations may be generated by cutting of the foil, as at A.

Fig. 5. Triple point in unstrained sintered material. Pores are visible in the boundary at A.

Fig. 6. Dislocation structure in hot-pressed material deformed ~1.5% at 1400°C. A small angle boundary is visible at A.
Fig. 1
Fig. 2
Fig. 6
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.