Title
COMPARISON OF THE COUPLED REACTION CHANNELS and D.W.B.A. SERIES APPROACHES TO SEQUENTIAL TRANSFER PROCESSES

Permalink
https://escholarship.org/uc/item/8gf5w0r8

Author
Charlton, L.A.

Publication Date
1976-08-01
COMPARISON OF THE COUPLED REACTION CHANNELS AND D.W.B.A. SERIES APPROACHES TO SEQUENTIAL TRANSFER PROCESSES

L. A. Charlton

August 1976

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Comparison of the Coupled Reaction Channels and D.W.B.A. Series Approaches to Sequential Transfer Processes

L. A. Charlton
Lawrence Berkeley Laboratory, Nuclear Science Division
University of California, Berkeley, California 94720

ABSTRACT

The coupled reaction-channels and D.W.B.A. - series approaches to sequential transfer reactions are formally compared. It is found that coupled-reaction-channels calculations effectively over-predict higher order terms relative to the D.W.B.A. series.

Recently there has been a great deal of interest in reactions which are calculationally allowed to proceed through particle transfer channels. Examples are \(^{(3\text{He}, t)}\) as \(^{(3\text{He}, \alpha)}(\alpha, t)\),\(^{1,2}\) \(^{(p, n)}\) as \(^{(p, d)}(d, n)\)\(^{3}\) and \(^{(p, t)}\) as \(^{(p, d)}(d, t)\).\(^{4,5}\) The most common ways of viewing these first plus second order calculations are either as iterated coupled reaction channels (C.R.C.) calculations or as the first two terms in the D.W.B.A. series. As has been noted\(^{6}\) the two approaches don't obviously give the same answer when extended to third or higher orders or when more than one channel is allowed in second order. It is the purpose of this letter to report a term by term formal comparison which shows that the C.R.C. formalism effectively overpredicts the higher order terms relative to the D.W.B.A. series. In all that follows, spinless particle will be assumed for simplicity of notation.

The C.R.C. equations can be written as\(^{2}\)
where $K_{Y\delta}$ is defined by
\[
F_{Y\delta}(\xi_Y) = K_{Y\delta} \chi_{Y\delta}(r_{\delta}) = \int dr_{\delta} (\psi_{Y\delta} | \hat{V}_Y | \delta) \chi_{\delta}(r_{\delta}),
\]
and
\[
(\psi_{Y\delta} | \hat{V}_Y | \delta) = 0.
\]

Also, the round brackets denote integration over internal coordinates only, V_Y is the exact potential between the two fragments in channel Y, U_Y is the optical potential, and T_Y is the relative motion kinetic energy operator. Nonorthogonality effects are neglected throughout.

A series may be generated from Eq. (1) by first defining the incident channel to be α and imposing the proper boundary conditions. This gives
\[
\chi_{\alpha}(r_{\alpha}) = \chi_{\alpha}(r_{\alpha}) + G_{\alpha}(+) \sum_{\delta=1}^{C} K_{\alpha\delta} \chi_{\delta}(r_{\delta})
\]
and
\[
\chi_{Y}(r_{Y}) = G_{Y}(+) \sum_{\delta=1}^{C} K_{Y\delta} \chi(r_{\delta}), \quad (\gamma \neq \alpha)
\]
where
\[
(E_{\alpha} - T_{\alpha} - U_{\alpha}) \chi_{\alpha}(r_{\alpha}) = 0 \quad \text{and}
\]
\[
G_{Y}(+) = (E_{Y}^{+} - T_{Y} - U_{Y})^{-1}
\]

Defining β to be the final channel and iterating gives
\[
\chi_{\beta}(r_{\beta}) = G_{\beta}^{(+)} \left[K_{\beta\alpha} \chi_{\alpha}(r_{\alpha}) + \sum_{\gamma=1}^{C} K_{\beta\gamma} G_{\gamma}(+) K_{\gamma\alpha} \chi_{\alpha}(r_{\alpha})
\right.
\]
\[
+ \sum_{\gamma, \delta=1}^{C} K_{\beta\gamma} G_{\gamma}(+) K_{\gamma\delta} G_{\delta}(+) K_{\delta\alpha} \chi_{\alpha}(r_{\alpha}) + \cdots \]

Identifying the amplitude of the outgoing wave in channel β gives an equivalent T-matrix element of
\[T_{\beta\alpha} = \langle \chi_\beta (-) \mid \left((\beta \mid \hat{V}_\beta \mid \alpha) + \sum_{\gamma=1}^{C} (\beta \mid \hat{V}_\beta \mid \gamma) G_{\gamma}^{(+)} (\gamma \mid \hat{V}_{\gamma} \mid \alpha) \\
+ \sum_{\gamma, \delta=1}^{C} (\beta \mid \hat{V}_\beta \mid \gamma) G_{\gamma}^{(+)} (\gamma \mid \hat{V}_{\gamma} \mid \delta) G_{\delta}^{(+)} (\delta \mid \hat{V}_{\delta} \mid \alpha) + \ldots \right) \rangle_{\chi_\alpha}^{(+)} \]

(10)

The square bracket denotes integration over the relative coordinate between the two nuclei and a post prior interchange (allowed if nonorthogonality effects are neglected) has been performed in each term. The result expressed in Eq. (10) will be compared below to the D.W.B.A. series.

The D.W.B.A. series will be generated from

\[T_{\beta\alpha} = \langle \chi_\beta (-) \mid \left((\beta \mid \hat{V}_\beta \mid \alpha) + (\beta \mid \hat{V}_\beta \quad G_{\gamma}^{(+)} \quad V_{\gamma} \quad G_{\gamma}^{(+)} \mid \alpha) \right) \mid \chi_\alpha^{(+)} \rangle \]

(11)

where

\[G^{(+)} = (E^+ - H)^{-1}, \quad H = H_{Y}^{B} + T_{Y} + V_{Y}, \]

(12)

and \(H_Y^B \) contains the internal Hamiltonian's for the two nuclei involved.

The form usually used for the exact Green's function is

\[G^{(+)} = \overline{G}_{\gamma}^{(+)} + \overline{G}_{\gamma}^{(+)} \hat{V}_{\gamma} G^{(+)} , \quad \text{where} \]

(13)

\[\overline{G}_{\gamma}^{(+)} = (E^+ - H_{Y}^{B} - T_{Y} - U_{Y})^{-1} . \]

(14)

An equivalent expression, to be used here, is

\[G^{(+)} = \frac{1}{C} \sum_{\gamma=1}^{C} \overline{G}_{\gamma}^{(+)} + \frac{1}{C} \sum_{\gamma=1}^{C} G_{\gamma}^{(+)} \hat{V}_{\gamma} G^{(+)} . \]

(15)

This may be proven by direct formal manipulation. That it is equivalent to Eq. (13) may be seen by iterating Eq. (13) and using it \(C \) times in Eq. (11), redefining \(\gamma \) each time. Adding these \(C \) equations then gives the same second order term as using the iterated version of Eq. (15). The expression, found from Eq. (13), which gave the same second order term may then be used \(C \) times, redefining the new channel that appears in third order
each time, and the same third order term will result when these \(C \) equations are added. By the same procedure, it can be shown to any order that the iterated version of Eq. (15) gives the same answer as following the above procedure with Eq. (13). The channel symmetrized version of the exact Green’s function (Eq. (15)) would seem more desirable since it allows all channels to enter on an equal basis. By contrast, Eq. (13) allows one to pick only one second order intermediate state. The point here, however, is that the channel symmetrized version appears to be formally correct and it allows the desired term by term comparison with the C.R.C. series.

Placing the iterated version of Eq. (15) in Eq. (11) and assuming that only one bound state pair enters in the evaluation of the \(C_{\gamma}^{(+)} \)'s gives the desired form. Namely,

\[
T_{\beta\alpha} = \langle \chi_{\beta}^{(-)} | \left[(\beta | \hat{V}_{\beta} | \alpha) + \frac{1}{C} \sum_{\gamma=1}^{C} (\beta | \hat{V}_{\beta} | \gamma) G_{\gamma}^{(+)} (\gamma | \hat{V}_{\gamma} | \alpha) \right. \\
+ \frac{1}{C^2} \sum_{\gamma, \delta=1}^{C} (\beta | \hat{V}_{\beta} | \gamma) G_{\gamma}^{(+)} (\gamma | \hat{V}_{\gamma} | \delta) G_{\delta}^{(+)} (\delta | \hat{V}_{\delta} | \alpha) + \ldots \ldots \left. \right] | \chi_{\alpha}^{(+)} \rangle.
\]

(16)

The above result can be compared to the C.R.C. series (Eq. (10)). As is seem, the C.R.C. series overpredicts the higher order terms by factor of \(C^{n-1} \) with \(n \) the order.

The series generated by iterating Eq. (15) may be formally summed to yield

\[
G^{(+)} = \left[1 - \frac{1}{C} \sum_{\gamma=1}^{C} G_{\gamma}^{(+)} \right]^{-1} \frac{1}{C} \sum_{\gamma=1}^{C} G_{\gamma}^{(+)}.
\]

(17)

The inverse operator in the above equation can, in principle, be
evaluated by techniques similar to those in Ref. (5). However, it is not clear that this yields a calculationally useful result.

The above comparison says that the C.R.C. formalism over-predicts higher order terms. This implies that such calculations are consistent with the D.W.B.A. series only when the third and higher order terms are effectively zero. When this is true, a C.R.C. calculation, with three included channels, should yield the same answer as first plus second order D.W.B.A. with only one intermediate channel included. The author would like to acknowledge useful conversations with P. D. Kunz, N. K. Glendenning and M. H. Macfarlane.

This work was done with support from the U.S. Energy Research and Development Administration.

References

5 L. A. Charlton, "Finite Range Evaluation of (p-d, d-t) with Momentum Space Techniques," to be published, Phys. Rev. C.

6 D. Robson, Comments on Nuclear and Particle Physics 6, 3 (1973).

This report was done with support from the United States Energy Research and Development Administration. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the United States Energy Research and Development Administration.