Lawrence Berkeley National Laboratory
Recent Work

Title
1,5-DISUBSTITUTED CYCLOOCTATRAENES

Permalink
https://escholarship.org/uc/item/8gr574c2

Authors
Lyttle, M.H.
Streitwieser, A.
Miller, M.J.

Publication Date
1988-10-01
Materials & Chemical Sciences Division

Submitted to Journal of Organic Chemistry

1,5-Disubstituted Cyclooctatraenes

M.H. Lyttle, A. Streitwieser, and M.J. Miller

October, 1988

Prepared for the U.S. Department of Energy under Contract Number DE-AC03-76SF00098.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
1,5-Disubstituted Cyclooctatraenes

Matthew H. Lyttle, Andrew Streitwieser*, and Michael J. Miller

Department of Chemistry, University of California, Berkeley California 94720, and Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, California 94720.

Abstract

1,5-Di-t-butylcyclooctetatraene 1B and 1,5-diphenylcyclooctetatraene 1P have been prepared from 1,5-cyclooctadiene in ten steps and in 11% and 1%, respectively, overall yield. An alternative route gave 1P in 10% overall yield in eight steps, but this route was not effective for 1B. Both pathways share a common appropriately substituted intermediate, 5-phenyl-9-oxobicyclo[3.3.1.]nonan-1-ol, 5P, and 5-t-butyl-9-oxabicyclo[3.3.1.]nonan-1-ol, 5B. 1,1',5,5'-Tetra-t-butyluranocene prepared from 1B was stable to water and substantially insensitive to air.
For many years cyclooctatetraene (COT) and compounds containing the COT ring have been the focus of theoretical interest as well as a source of synthetic challenge. Most of the synthetic work towards substituted COTs has been done to investigate the ring inversion and bond shift isomerization phenomena exhibited by these compounds. Our interest has been in the preparation of substituted uranocenes and related actinide and lanthanide sandwich complexes. These compounds are generally air sensitive but the reaction with oxygen is slowed by the presence of bulky groups on the [8]annulene rings. The uranocene prepared from 1,3,5,7-tetraphenylcyclooctatetraene is particularly stable and it was of interest to determine the effect of fewer bulky groups. In this paper we present a new route to di-t-butyl- and 1,5-diphenylcyclooctatetraenes, 1B and 1P, respectively.

Two methods have been used for the preparation of 1,5-disubstituted cyclooctatetraenes. 1,5-Dimethylcyclooctatetraene has been prepared by pyrolysis of bridgehead dimethylated semibullvalene, in which the substituent methyl groups stem from the starting material biacetyl. Accordingly, this route lacks generality and was considered to be inappropriate for the t-butyl and phenyl substituents. The syntheses of 1,5-dicarbomethoxy-, 1-carbomethoxy-5-cyano- and 1,5-dicyanocyclooctatetraenes have been reported in which the key step is a regioselective addition of a monosubstituted acetylene to a substituted quadricyclanone. Thermal extrusion of carbon monoxide and carbocyclic rearrangement gave the 1,5-disubstituted cyclooctatetraenes in low yield. This method also lacks generality because it appears to be limited to electron-attracting substituents.

The synthesis developed here starts with inexpensive commercially available 1,5-cyclooctadiene, 2, and is outlined in Scheme I. Although the subsequent transformations make use of known reactions, the 8-membered ring provides conformation and proximity effects that make the sequence less straightforward and add significant interest. Hydroboration of 2 following Knights and Brown gave 1,5-cyclooctanediol, 3, which was oxidized with PCC to 1,5-cyclooctadione, 4, in 80% overall yield. 4 was made in the 60's by the Rapoport group at Berkeley by condensing two equivalents of acrylonitrile with acetone followed by hydrolysis and decarboxylation of the resulting 4-cyano-5-iminocyclooctan-1-one. The dione can also be prepared by Collins oxidation of the hemiketal, 9-oxabicyclo[3.3.1.]nonan-1-ol (15; 5, R=H). The
oxidation of 3 is not straightforward because of transannular interactions. Collins oxidation of 3 gave 4 and the hemiketal 15 in roughly equal amounts. Normal oxidation of 3 with PCC gave only 15. The use of 7 equivalents of PCC (3.5 equivalents per alcohol functionality) and refluxing for 3 days in methylene chloride led to the desired dione in good yield. We also attempted to oxidize 9-BBN to the dione directly, using chromic acid in a manner similar to that reported by Brown and Garg for the conversion of alkylboranes into ketones, but to our surprise, only cyclooctanone was isolated, in good purity and yield.

Treatment of 4 with t-butyl- or phenyllithium reagents gave the 5-substituted 9-oxabicyclo[3.3.1]nonan-1-ol, 5, in good yield. The presence of only five sp³-hybridized carbon resonances in the CMR spectrum of 5P supports the structure, which possesses a mirror plane. The hemiketal alkoxide is stable and will not react with excess lithium reagent. Thus, further reaction required removing the ether link to free the carbonyl group. This approach also provided an opportunity to introduce the necessary third double bond.

Dehydration of 5 with small amounts of p-toluenesulfonic acid in benzene in a Dean-Stark apparatus gave the 5-substituted-4-cyclooctene-1-one, 6, in fair yield. Treatment of these unsaturated ketones with lithium diisopropylamide (LDA) followed by phenylselenyl bromide gave the corresponding 2-phenylseleno-compounds, 7, after aqueous workup and chromatography. The yield of 7B was satisfactory (75%), but that of 7P was not (24%). In both cases only one isomer was formed, as evidenced by NMR data and subsequent chemistry. Molecular models of 6 show a hydrogen in the 2-position as being the most periplanar with the carbonyl carbon p-orbital and should make the enolates leading to the observed products kinetically favored. An important difference between 6B and 6P is that 6P is a styrene, which would be more subject to reduction and polymerization; a large amount of high molecular weight material accompanied the formation of 7P.

7B and 7P were treated with t-butyllithium and phenyllithium, respectively, to give the corresponding alcohols, 8. The yield of 8B was moderate (56%) whereas that of 8P was poor (16%). The low yield of 8P was again accompanied by much high molecular weight material. In both reactions very little of the starting ketones were recovered. As far as NMR spectroscopy could tell,
both 8B and 8P were single diastereomers. Oxidation and elimination of the phenylseleno group10 furnished the unsaturated alcohols 9 in good yields. A 180 MHz PMR spectrum of the t-butyl compound, 9B, shows an ABC pattern in the vinyl region, which suggests a conjugated diene system unsplit by sp3 protons. The ultraviolet spectrum shows a λ_{max} of 228 nm; 1,3-cyclooctadiene also has $\lambda_{\text{max}} = 228$ nm.11

Attempted dehydration of 9B with thionyl chloride/pyridine gave no hydrocarbon product. When 9B was heated above 200 °C in another attempt at dehydration it produced instead a mixture of 1,5-di-t-butylbicyclo[4.2.0]-1,3-octadiene, 16, and 1,5-di-t-butyl-3,6-cyclooctadiene-1-ol, 10B. 16 probably arises by a 6-electron cyclization of 1,5-di-t-butyl-1,3,5-cyclooctatriene, 17, formed by the dehydration of 9B (Scheme II). The complete isomerization of the triene 17 into the bicyclic diene 16 is unusual because the parent unsubstituted 1,3,5-cyclooctatriene is in equilibrium with only about 10% of bicyclo[4.2.0]octa-1,3-diene.12 The preference for the bicyclic isomer in the t-butyl case undoubtedly is due to a relaxation of steric compression. When 16 was treated with potassium amide, no color indicative of the formation of a COT dianion was observed. It was hoped that a small amount of 17 would be present in a mobile equilibrium with 16; its deprotonation would then result in conversion of all of the material to the dianion.

Boiling 9B or 9P in toluene overnight gave the corresponding rearranged dienol 10 in quantitative yield. The isomeric dienols were cleanly dehydrated to mixtures of the corresponding disubstituted 1,3,5- and 1,3,6-cyclooctatrienes, 11, by treatment with thionyl chloride and pyridine. Reaction of 11 with potassium amide in a mixture of tetrahydrofuran (THF) and liquid ammonia at -33 °C gave deeply colored solutions, which after treatment with iodine gave the desired 1,5-disubstituted cyclooctatetraenes 1. The yield of 1B was fair (70%), but 1P was obtained in mediocre yield (39%). The use of sodium amide in THF at room temperature gave better results; a 70% yield of 1P was obtained. The overall yield of 1 was 11% but that of 1P was an unacceptable 1%.

An alternative route to 1 was based on the known reaction of 1,5-cyclooctadiene with butyllithium and tetramethylethlenediamine (TMEDA) to
give COT dianion. Treatment of 6B with t-butyllithium gave 1,5-di-t-butyl-4-cyclooctene-1-ol, 13B, as a low melting solid. Dehydration gave a product which did not give a COT dianion on treatment with butyllithium and TMEDA. 14B was allowed to react with N-bromosuccinimide (NBS) followed by base, but the products were viscous tars from which no characterizable hydrocarbon could be isolated. The same synthetic methodology did work to prepare the phenyl analog. Treatment of 1,5-diphenyl-1,4-cyclooctadiene, 14P, prepared from 6P, with one equivalent of bromine followed by reflux with excess sodium amide in THF gave a black solution which gave 1P in 35% yield on chromatography after treatment with iodine. The overall yield of 1P was 10% from 1,5-cyclooctadiene using these steps.

When the bromine adduct of 14P was treated with a solution of sodium hydroxide in methanol, a white crystalline solid was obtained. Analysis and mass spectroscopy showed the presence of only one bromine. The only structure which fits the NMR data is that of 1,5-diphenyl-8-bromo-bicyclo[4.2.0]oct-4-ene, 18. This product may be an intermediate in the conversion of diene 13P into 1P because 18 reacts with sodium amide to give black solutions from which 1,5-diphenylcyclooctatetraene is obtained. One rationalization (Scheme III) for the formation of 18 is that an initially formed bromonium ion is transannularly attacked by the double bond on the other side of the ring to give a benzylic cation that loses a proton to yield the observed product. Subsequent elimination with strong base could occur as shown in Scheme III to give a disubstituted cyclooctatriene which is easily deprotonated to give 1,5-diphenylcyclooctatetraene dianion, 12P.

1B was reduced with potassium to the dianion and treated with uranium tetrachloride to give the corresponding uranocene as black crystals melting without decomposition at 338-340 °C. The compound is stable to water or acetic acid in THF. Crystals could be exposed to air for 24 hours with little effect. Some oxidation did occur because the exposed crystals would only partially dissolve and left brown material behind. Nevertheless, this behavior is far different from most uranocenes that decompose immediately on exposure to air.

Experimental Section

General. Unless otherwise noted all NMR spectra are in CDCl₃, ultraviolet
spectra are in ethanol, and infrared spectra are on liquid films. Melting points are uncorrected. Combustion and mass spectral analyses were done at the Analytical Services Facility, College of Chemistry, UCB.

1,5-Cyclooctadione (4). A solution of 250 mL of 1 M borane-THF complex in THF was cooled to 0 °C in a dried flask fitted with a condenser, dropping funnel, and nitrogen bubbler. To the cooled, nitrogen filled apparatus was slowly added a mixture of 25 g (0.23 mmol) of 1,5-cyclooctadiene in 50 mL of THF. After addition was complete, the clear solution was refluxed for 1 hr and allowed to cool. To this mixture was slowly added 50 mL of 3 M sodium hydroxide, followed by 50 mL of 30% hydrogen peroxide, which was added dropwise at a rate which caused the solution to reflux gently. The cloudy mixture was allowed to cool for 0.5 hr and saturated with potassium carbonate. The layers were separated and the aqueous phase was extracted with 200 mL of ether. The combined organic layers were dried over magnesium sulfate and evaporated to a clear tar. This product was dissolved in 1500 mL of methylene chloride in a flask equipped with a condenser and mechanical stirrer. To this was cautiously added 350 g (1.62 mol) of pyridinium chlorochromate in small portions with stirring. The solution became black, and was refluxed for one day. The black mixture was cooled and poured through a large column packed with silica in 1:1 ether/hexane. The column was rinsed with an additional liter of this solvent. The eluant was evaporated to a semi-solid mass which was distilled, b.p. 100 °C (0.15 torr); the yield was 26 g (80%) of a white semi-solid material. Recrystallization of a small amount of the material from a 2:1 ether:pet. ether mixture gave crystals, mp 68.8-69.6 °C (lit. 71-72 °C); 1H NMR (60 mHz, δ ppm, CDCl3) 2.1 (m, 4H), 2.4 (m, 8H). U.V. λmax 297 nm (ε 29.5, CHCl3), I.R. 5.85 μ. Anal. C8H12O2: C, H.

5-Phenyl-9-oxabicyclo[3.3.1]nonan-1-ol (5P). To a solution of 16 g (0.114 mol) of 1,5-cyclooctanedione 4 in 500 mL of dry THF under N2 was slowly added 65 mL (0.12 mol) of phenyllithium (1.85 M in pentane and ether). The mixture was stirred for 1 hr and allowed to warm to r.t. It was then quenched with 100 mL of ammonium chloride solution. Next, 200 mL of ether was added and the yellow solution was washed with 200 mL of water followed by 100 mL of brine. The solution was dried using potassium carbonate and the solvent was removed with vacuum to yield 23.2 g (93%) of tan crystals. A small amount was recrystallized from ether-hexane: 1H NMR (60 mHz) δ 1.2-2.6 (m, 12H), 3.4 (s, 4H),
7.0-7.6 (m, 5H); IR 3400 cm⁻¹; mass spectrum m/z (rel. intensity) 218(M⁺, 37.85), 120(100), 105(622.88), 77(28.34); ¹³C NMR 149, 127, 126, 123, 95, 78, 35.5, 35.3, 21. Anal. C₁₄H₁₈O₂: C, H.

An analogous procedure with 4.2 g (30 mmol) of 4 and 23 mL of 1.9 M t-butyllithium in pentane 5.5 g (93%) of t-butyl-9-oxabicyclo[3.3.1]nonan-1-ol, 5B, as a semicrystalline solid; ¹H NMR (60 mHz, δ, CCl₄) 1.9 (s, 9H), 1.1-1.5 (m, 8H), 2.35 (broad s, 1H); I.R. (CCl₄) 2.81, 2.94, 3.41 μ; mass spectrum m/e (rel. intensity) 198(9.3), 170(17), 155(19), 141(59), 113(71); 97(48), 95(54), 83(85), 71(70), 57(79), 41(100).

5-Phenyl-4-cyclooctene-1-one, (6P). A mixture of 23.15 g (0.106 m) of 5P and 2 g of toluenesulfonic acid in 1.5 L of benzene was refluxed for 2 h in a flask fitted with a Dean-Stark trap and condenser. About half of the solvent was removed from the cooled deep blue solution. The remaining portion was mixed with 500 mL of ether and filtered through a 5x25 cm column of silica gel wetted with a 1:1 mixture of hexane and ether. The column was rinsed with an additional 1 L of this same solvent. The combined organic eluant was treated with 2 mL of triethylamine and evaporated to a dark yellow oil which was distilled in a kugelrohr at 100 °C, 1 torr, to give 16.37 g (77% yield) of a light yellow odorless oil. ¹H NMR (60 mHz) δ 1.7-2.0 (m, 2H), 2.4-2.7 (m, 8H), 5.8-6.2 (m, 1H), 7.1 (s, 5H). ¹³C NMR (ppm) 213, 142, 141, 127, 126, 125, 47, 40, 29.5, 23.2, 23.0. I.R. 1700 cm⁻¹. Mass spectrum m/z (rel. intensity) 200(100), 185(13.42), 171(42.0), 143(55.51), 129(88.28), 115(76.22), 91(47.74), 77(31.21).

Anal. Calcd for C₁₄H₁₆O: C, 83.96; H, 8.05. Found: C, 83.64; H, 8.02.

A similar procedure with 9 g of 5B gave 5.3 g (66%) of 6B, b.p. 100 °C, 0.1 torr. ¹H NMR (CCl₄, 60 mHz, δ) 1.05 (s, 9H), 1.4-2.0 (m, 4H), 2.1-2.5 (m, 6H), 5.45 (m, 1H). IR 5.85 μ (neat). Mass spec. m/z (rel. intensity) 180(27), 156(10), 152(21), 147(18), 137(15), 123(53), 106(68), 95(50), 81(44), 67(41), 57(50), 55(51), 51(100).

2-Phenylseleno-5-phenyl-4-cycloocten-1-one (7P). A solution of lithium diisopropylamide was prepared by adding 24.5 mL (42 mmols) of 1.72 M butyl-lithium in pentane to 6.44 mL (4.64 g, 46 mmols) of diisopropylamine in 200 mL
of dry THF under argon at -78°. The solution was stirred for 20 min, and 7 g (35 mmols) of 6P dissolved in 15 mL of THF was added slowly. The solution was stirred for 15 min, during which time it turned green. To this was quickly added a mixture of 6.58 g (21 mmols) of diphenyl diselenide and 1.1 mL (3.43 g, 21 mmol) of bromine in 10 mL of dry THF. The black phenylselenyl bromide solution was decolorized as rapidly as it was added, resulting in a yellow solution which was immediately quenched with 50 mL of saturated ammonium chloride solution. The mixture was allowed to warm to r.t. and 100 mL of ether was added. The resulting 2-phase mixture was separated and the organic layer was washed successively with 1 N HCl, saturated sodium bicarbonate, and brine. The yellow solution was dried over potassium carbonate and evaporated to an orange oil having a strange odor. The crude product, 7 g, was chromatographed on silica eluted with a 5:1 mixture of hexane and ether. The first fraction was 3 g of diphenyl diselenide. The last fraction was 3.0 g the desired product contaminated with an unknown substance. 1H NMR (250 mHz) δ 2.2-2.4 (m, 2H), 2.5-2.7 (m, 4H), 2.7-3.0 (dt, J=10,3, 1H), 3.0-3.2 (dt, J=12,3, 1H), 3.8-4.0 (dd, J=12,4.5, 1H), 5.7-6.0 (dd, J=10,3, 1H), 7.1-7.6 (m, 10H). 13C NMR (25 mHz, ppm) 208.5, 143, 142.7, 134.6, 134.3, 129, 128.6, 128.4, 128.1, 127.1, 125, 54.5, 37.7, 31, 29.5, 24.7. Both spectra also had small peaks due to the impurity. IR 1690 cm$^{-1}$. Mass spectrum m/z (rel. intensity) 356(6.17), 314(1.93), 279(1.15), 199(23), 157(13.7), 155 (15), 105(28.5), 91(58), 77(36.5).

High resolution mass spectrum (HRMS). Calcd. for C$_{20}$H$_{20}$OSe: 356.0689. Found: 356.0680.

A similar procedure was applied to 1 g (5.6 mmol) of 6B to give 1.4 g (75%) of 7B as a light yellow oil. 1H NMR (60 mHz) δ 1.0 (s, 9H), 1.8-3.3 (m, 8H), 3.5-3.8 (dd, J=12,7.5, 1H), 5.2-5.65 (dd, J=8.5,10, 1H), 7.0-7.5 (m, 5H). 13C NMR (25 mHz, ppm) 151.3, 134.1, 129.0, 128.3, 127.8, 119.1, 53.9, 37.6, 36.7, 28.9, 27.2, 25.9, 9.4. (carbonyl carbon not seen). IR 1700 cm$^{-1}$. Mass Spectrum m/z (rel. intensity) 336(3.64), 334(1.67), 179(16.65), 123(16.75), 121(17.32), 57(100).

Anal. Calcd for C$_{18}$H$_{24}$OSe: C, 64.47; H, 7.16. Found: C, 64.88, H, 7.38.

1,5-Diphenyl-2-phenylseleno-4-cycloocten-1-ol (8P). To a solution of 3 g (8.5 mmol) of 7P in 200 mL of dry THF cooled under N$_2$ to -78° was slowly added 4.5 mL (8.5 mmol) of 1.89 M phenyllithium in an ether-pentane mixture. The
solution was stirred, allowed to warm to r.t. and quenched with 50 mL of ammonium chloride solution. After addition of 100 mL of ether the layers were separated and the organic phase was washed with water and brine. The resulting yellow solution was dried over potassium carbonate and evaporated to give 4 g of a yellow oil which was dissolved in a mixture of hexane and ether and allowed to stand at r.t. for a week to yield 600 mg (16%) of white solid. A small amount was recrystallized from a hexane-ether mixture, yielding tan crystals, m.p. 160 °C. 1H NMR (250 MHz) δ 1.7-1.9 (m, 1H), 1.0-2.2 (m, 2H), 2.2-2.4 (m, 1H), 2.6-3.0 (m, 4H), 4.0 (dd, J=3.3, 7.9, 1H), 6.3-6.4 (t, J=8, 1H), 7.1-7.5 (m, 1H). Mass spectrum m/z (rel. intensity): 434(M+, 7.64), 277(39,35), 259(28.8), 157(100), 105(97.18), 91(87.71), 77(71.82).

Anal. Calcd for $C_{26}H_{26}OSe$: C, 72.05; H, 6.05. Found: C, 71.67; H, 6.22.

A similar procedure using 0.4 g (1.4 mmol) of 7B gave 8B as a yellow oil which was chromatographed on a silica column eluted with a 2:1 mixture of hexane/ether to give 262 mg (56%) of an oil which crystallized to a yellow solid on standing. 1H NMR (60 MHz) δ 1.1 (s, 9H), 1.5-2.8 (m, 9H), 3.8-4.0 (dd, 1H), 5.6-6.0 (m, 1H), 7.1-7.8 (m, 5H). 13C NMR (25 MHz, ppm) 138.9, 124.6, 122.1, 120.1, 188.6, 113.8, 79.5, 59.6, 46.9, 43.5, 42.0, 39.3, 36.9, 36.3, 35.7, 34.1. IR 3500 cm$^{-1}$. Mass spectrum m/z (rel. intensity) 394(2.67), 392 (1.47), 337(1.35), 317(0.97), 259(1.53), 237(5.34), 57(100).

Anal. Calcd for $C_{22}H_{34}OSe$: C, 67.17; H, 8.65. Found: C, 67.49; H, 8.89.

1,5-Diphenyl-2,4-cyclooctadien-1-ol (9P). A solution of 760 mg of 8P in 200 mL of methanol and 10 mL of water was treated with 0.5 g of sodium bicarbonate, which did not all dissolve. The mixture was stirred, and 750 mg of sodium periodate (3.5 mmols) was added in small portions. The cloudy white mixture was stirred for 24 hr, but TLC revealed the presence of starting material. An additional 750 mg of sodium periodate was added, and TLC showed that the starting material was gone after 1 hr. The mixture was poured into 100 mL of hexane and extracted twice with 100 mL portions of water. The clear colorless solution was washed with 60 mL of brine and dried over potassium carbonate. The solution was evaporated to a light yellow oil and chromatographed on silica eluted with a 6:1 mixture of hexane and ether. The yield was 480 mg (99%) of an odorless colorless liquid. 1H NMR (250 MHz) δ 1.3-1.5 (m, 1H), 1.7-2.35 (m, 4H), 2.6-2.8 (m, 2H), 5.6-5.7 (d, J=12.4, 1H), 5.9-6.1 (dd, J=12.4, 5, 1H), 6.5 (d, J=5, 1H), 7.0-7.7 (m, 10H). U.V. λ_{max} -
286 nm (EtOH, ε=12500). Mass spectrum m/z (rel. intensity) 276(M+, 6.35), 258(7.08), 156(28.47), 177(100), 105(39), 91(42.64), 77(33.25).

HRMS. Calcd for C_{20}H_{20}O: 276.1514. Found: 276.1527.

1,5-Di-t-butyl-2,4-cycloocten-1-ol (9B) A mixture of 100 mg (0.25 mmol) of 8B, 200 mg of sodium bicarbonate, 50 mL of THF and 3 mL of water was cooled to 0° with stirring. To this was slowly added 3 mL of 30% hydrogen peroxide. The mixture was allowed to warm and was stirred overnight, then poured into a separatory funnel which contained a mixture of 20 mL of water and 60 mL of ether, shaken and separated. The organic phase was washed successively with two 60 mL portions of water and one 60 mL portion of brine. The clear colorless solution was dried over magnesium sulfate and evaporated to a cloudy oil. The residue was chromatographed on a silica column eluted with a 2:1 mixture of hexane and ether, which resulted in a yield of 58 mg (97%) of a clear oil.

1H NMR (180 MHz) δ 0.95 (s, 9H), 1.1 (s, 9H), 1.2-2.5 (m, 7H), 5.7 (d, J=12 Hz, 1H), 5.8 (dd, J=12.3 Hz, 1H), 6.0 (d, J=3, 1H). 13C NMR (25 MHz) PPM 150.8, 134.2, 126.3, 120.1, 77.7, 38.9, 36.6, 29.3, 27.8, 27.0, 25.1, 21.0. IR 3500 cm⁻¹. Mass spectrum m/z (rel. intensity) 236(1.77), 218(4.71), 203(2.57), 179(59.65), 57(100). UV λ_max 228 nm (ε = 5800).

HRMS. Calcd for C_{16}H_{28}O: 236.2140. Found: 236.2147.

When about 50 mg of 9B was heated without solvent at 200 °C for 30 m the sample turned brown, and TLC revealed the presence of two products, one polar (1,5-di-t-butyl-3,5-cyclooctadiene-1-ol 10B) and one non-polar, which was isolated by filtering the sample through a silica column eluted with hexane. About 20 mg of 1,5-di-t-butylbicyclo[4.2.0]octa-1,3-diene, 13, was isolated as a clear colorless oil. 1H NMR (250 MHz) δ 0.82 (s, 9H), 1.0 (s, 9H), 1.65-1.8 (m, 1H), 1.8-1.9 (m, 1H), 1.95-2.1 (quintet, J=9.7, 1H), 2.2-2.4 (quartet, J=9.0, 1H), 3.0-3.1 (t, J=9.1), 5.5-5.6 (m, 2H), 5.9-6.0 (dd, J=5.7, 9.8, 1H).

Anal. C_{16}H_{26}: C, H.

1,5-Diphenyl-3,5-cyclooctadien-1-ol (10P) and 2,6-Diphenyl-1,3,6-cyclooctatriene + 1,5-Diphenyl-1,3,5-cyclooctatriene (11P). A solution of 500 mg (1.8 mmol) of 9P in 100 mL of toluene was refluxed for 36 hr. The solvent was removed from the cooled solution, resulting in 500 mg of 10P as a white solid, m.p. 108 °C. 1H NMR (250 MHz) δ 1.6-2.2 (m, 3H), 2.3-2.6 (m, 2H), 2.6-2.8 (m, 2H), 6.0-6.2 (m, 1H), 6.3-6.6 (m, 2H), 7.2-7.6 (m, 10H). UV λ_max=254
To a solution of 350 mg (1.27 mmol) of 10P in 100 mL of dry ether under N₂ at 0 °C was added 2 mL of pyridine followed by 0.2 mL of thionyl chloride. The cloudy mixture was stirred for 1 h and another 0.2 mL of thionyl chloride was added. The mixture was separated and the yellow organic phase was washed with 100 mL of water followed by 60 mL of brine. The solution was dried over potassium carbonate and evaporated to a yellow oil. This oil was chromatographed on silica eluted with hexane, resulting in 200 mg (60% yield) of a clear oil. ¹H NMR (250 mHz): δ 2.7-2.9 (m, 2H), 3.0-3.1 (t, J=6.8, 1H), 3.1 (d, J=7.7, 1H), 5.8-6.1 (m, 2H), 6.2 (m, 1H), 6.3 (t, J=6.7, 0.5H), 6.5 (d, J=9.9, 0.5H), 7.2-7.6 (m, 10H). Mass spectrum m/z (rel. intensity) 258(M+, 26.78), 230(100), 154(42.06), 105(36.47), 91(24.75), 77(23.35).

HRMS. Calcd for C₂₀H₁₈: 258.1408. Found: 258.1401.

1,5-Di-t-butyl-3,5-cyclooctadien-1-ol (10B), and 2,6-Di-t-butyl-1,3,6-cyclooctatriene + 1,5-di-t-butyl-1,3,5-cyclooctatriene (11B). A solution of 70 mg of 9B in 40 mL of toluene was refluxed overnight. The solvent was removed, yielding 70 mg of 10B as a colorless oil. ¹H NMR (250 mHz) δ 0.94 (s, 9H), 1.04 (s, 9H), 1.2-1.4 (m, 3H), 1.8-1.95 (dd, J=7.2,12.6, 1H), 5.6 (t, J=7.9, 1H), 5.7-5.8 (m, 1H), 6.2 (d, J=10.8, 1H). Mass spectrum m/z (rel. intensity) 236(3.17) 218(1.46), 203(1.27), 179(31.7), 57(100). UV λmax 206 nm (ε = 5800).

To a solution of 200 mg (90.85 mmol) of 10B in 150 mL of dry ether and 2 mL of pyridine at 0° under nitrogen was added 0.2 mL of thionyl chloride slowly and dropwise. The mixture developed a white ppt. immediately and was stirred for 0.5 h. A small amount of water was added, along with 60 mL of hexane. The mixture was washed successively with 2 60 mL portions of water and one portion of brine. The clear solution was dried over magnesium sulfate and evaporated. The residue was chromatographed on a silica column eluted with hexane to give 140 mg (75%) of 11B as a clear oil. ¹H NMR (250 mHz): δ 1.03 (s, 9H), 1.07 (s, 9H), 3.6-3.7 (m, 4H), 5.2 (t, J=7.4, 1H), 5.5 (m, 2H), 6.3 (d, J=10.1, 1H). Mass spectrum m/z (rel. intensity) 218 (8.96), 203(6.01), 190(10.71), 175(68.25), 161(31.75), 57(100).

Anal. C₁₆H₂₆: C, H.

1,5-Di-t-butylcyclooctatetraene (1B). Into an oven-dried nitrogen-filled flask containing 1 mg of dry iron trichloride and fitted with a filled Dry Ice condenser cooled to -78 °C under positive argon pressure was introduced 30 mL
of dry liquid ammonia. Next, 120 mg of potassium (3 mmol) was added and the resultant blue solution was allowed to warm until it became grey. To this was added 10 mL of dry THF followed by a solution of 100 mg (0.145 mmol) of 11B in 10 mL of THF. The mixture slowly turned orange, and the ammonia was allowed to evaporate. To the resulting green solution was cautiously added 0.5 g of iodine (NOTE: such a mixture should not be allowed to evaporate to dryness, because the explosive nitrogen triiodide would undoubtedly be formed). The brown mixture was poured into 100 mL of saturated sodium thiosulfate and extracted with 100 mL of hexane. The organic phase was washed with 60 mL of water and 60 mL of brine. The solution was dried over magnesium sulfate and evaporated. The residue was filtered through silica with hexane as the solvent, yielding 70 mg (70%) of a clear colorless oil. \(^1H \) NMR (250 mHz) \(\delta \): 104 (s, 18H), 5.6 (d, J=2.5, 2H), 5.8 (dd, J=2.5, 11.5, 2H), 5.9 (d, J=11.5, 2H). Mass spectrum m/z (rel. intensity) 216(16.52), 201(28.01), 159(90.99), 145(79.37), 57(100).

Anal. C_{16}H_{24}: C, H.

1,5-Diphenyl-4-cycloocten-1-ol (13P). A solution of 15.5 g (77.5 mmol) of 6P in 250 mL of dry THF was cooled to -78 °C under N\(_2\) and 77 mL (138.5 mmol) of 1.8 M phenyllithium was added slowly. The clear brown solution was stirred for 1 h and was then quenched with 50 mL of saturated ammonium chloride solution. To this light yellow solution was added 200 mL of ether, the mixture was separated and the organic phase was washed with 200 mL of water followed by 100 mL of brine. It was then dried over potassium carbonate and evaporated to a yellow oil, 21.1 g (98%). \(^1H \) NMR (250 mHz) \(\delta \): 1.6-1.8 (m, 1H), 1.8-2.1 (m, 5H), 2.2-2.4 (m, 2H), 2.5-2.7 (m, 2H), 2.8-3.0 (m, 1H), 6.2 (t, J=7, 1H), 7.1-7.5 (m, 10H). IR 3450 cm\(^{-1}\). Mass spectrum m/z (rel. intensity) 278(33.72), 260(78.47), 231(32.81), 183(2.76), 129(76.11), 105(100), 91(97.92), 77(68.19).

Anal. Calcd for C\(_{24}\)H\(_{22}\)O: C, 86.28; H, 7.96. Found: C, 85.95; H, 7.45.

1,5-Diphenyl-1,4-cyclooctadiene (14P). To a solution of 21 g (75.5 mmol) of 13P in 1600 mL of dry ether at 0 °C under N\(_2\) was added 20 mL of dry pyridine. Thionyl chloride was then added slowly, (5 mL over 10 min) and the resulting cloudy white suspension was stirred for 16 hrs. The reaction mixture was quenched with 50 mL of water and the layers were separated. The organic phase was washed with 1.2 M HCl and twice with saturated sodium bicarbonate. The yellow solution was washed with brine and dried over potassium carbonate.
The solution was evaporated to a yellow oil and filtered through a silica column eluted with hexane. The solvent was evaporated, resulting in 13.6 g (69% yield) of a clear colorless oil. 1H NMR (250 MHz), δ: 1.6-1.8 (m, 2H), 2.8 (t, J=6.2, 4H), 3.1 (t, J=5.9, 2H), 6.0 (t, J=5.9, 2H), 7.1-7.5 (m, 10H). Mass spectrum m/z (rel. intensity) 260(100), 232(42.36), 156(32.64), 128(69.85), 91(90.33), 77(35.34).

Anal. C$_{24}$H$_{20}$: C, H.

1,5-Diphenylcyclooctatetraene (1P), from 11P. A suspension of 1 g of sodium amide in 200 mL of dry THF under argon was combined with 337 mg (1.3 mmol) of 11P. The mixture was stirred for 2 days, during which time it gradually changed in color from light yellow to deep purple. The reaction was quenched by adding iodine until the mixture ceased to bubble. The red solution was poured into 100 mL of saturated sodium thiosulfate solution and extracted with 100 mL of hexane. The yellow organic phase was washed with 60 mL of brine and dried over potassium carbonate. The solvent was evaporated and the residue was filtered through a short column of silica eluted with hexane. The yield was 250 mg (75%) of a yellow oil. 1H NMR (250 MHz): δ 6.1-6.2 (d, J=11.2, 2H), 6.2-6.3 (dd, J=11.2, 3.4, 2H), 6.3-6.4 (d, J=3.4, 2H), 7.2-7.4 (m, 10H). Mass spectrum m/z (rel. intensity) 256(M+, 100), 230(54.39), 178(26.21), 154(31.89), 115(30.24), 91(25.7), 77(18.16). Crystals were obtained by dissolving the oil in hexane and cooling, m.p. 95-96°.

Anal. C$_{20}$H$_{16}$: C, H.

From 14P. A solution of 500 mg (1.9 mmol) of 14P in 100 mL of carbon tetrachloride was treated with 1.9 mL of 1 M bromine in carbon tetrachloride (1.9 mmol) over 5 min, and the solvent was then removed. The resulting brown oil was subjected to a 1 micron vacuum for 5 min, and 100 mL of dry THF was added. About 1 g of sodium amide was added, and the mixture was refluxed under argon for 2 days. During this time the solution became black. It was cooled and iodine was added until the solution no longer bubbled. The mixture was shaken with saturated sodium thiosulfate solution and with hexane. The layers were separated and the yellow organic phase was washed with water and brine. The solution was dried over potassium carbonate and evaporated to an oily solid. This material was filtered through a short column of silica gel eluted with hexane. The solvent was evaporated to give 180 mg (36% yield) of 1P identical to that obtained above.
1,5-Diphenyl-8-bromobicyclo[4.2.0]-4-octene (18). To a solution of 3.31 g (12.7 mmol) of 14 in 400 mL of carbon tetrachloride was added 0.66 mL (13 mmol) of bromine dropwise over 20 min. The bromine was decolorized as it was added. The resulting yellow solution was evaporated and the brown solid was subjected to high vacuum. This material was dissolved in 200 mL of methanol and a few sodium hydroxide pellets were added. The solution was stirred overnight and then poured into 500 mL of water. The cloudy solution was extracted twice with hexane and the combined organic layers were washed with 100 mL of brine and dried over magnesium sulfate. The solution was filtered and evaporated to about 40 mL in volume. Chilling of this solution gave 1.1 g (25% yield) of brown rocky crystals. This material was recrystallized from hexane to give white needle-like crystals, m.p. 119 °C. \(^1\)H NMR (250 MHz), \(\delta\): 1.8 (m, 1H), 2.0 (m, 1H), 2.2-2.4 (t, 2H), 3.0 (dt, J=7.9, 9, 1H), 3.3 (t, J=8.6, 1H), 4.7 (t, J=8, 1H), 7.4 (d, J=6, 1H), 7.12-7.6 (m, 10H). \(^13\)C NMR (25 MHz) ppm: 148.1, 140.0, 138.2, 128.4, 128.3, 127.2, 126.5, 125.9, 124.7, 51.4, 51.0, 39.4, 38.4, 31.2, 21.7. Mass spectrum m/z (relative intensity) 340(9.17), 338(8.83), 259(26.98), 232(100), 154(39.42), 91(93.61), 77(61.64).

Anal. C\(_{18}\)H\(_{19}\)Br: C, H.

Bis(1,5-di-t-butyl[8]annulene)uranium(IV). Commercial uranium tetrachloride (Alfa) was purified by refluxing in thionyl chloride for 24 h, removing the thionyl chloride under high-vacuum, dissolving in THF under inert atmosphere, filtering and evaporating the solvent. To a solution of 360 mg (1.66 mmol) of 1B in 200 mL of dry THF under argon was added 200 mg (5.1 mmol) of clean potassium. The mixture was stirred overnight and the unreacted potassium was removed mechanically. To the resulting green solution was added 313 mg (0.83 mmol) of purified uranium tetrachloride. After stirring the dark solution for 1 h the solvent was removed by vacuum transfer. The resulting black tar was wash three times with hexane and the combined hexane solutions were filtered. Removal of solvent by vacuum transfer left a green powder which was recrystallized from hexane to give 400 mg (71%) of shiny black crystals, m.p. 338-340 °C. An analytical sample was prepared by sublimation at 120 °C (1 torr). \(^1\)H NMR (THF-d8, 25 °C) –11.7 (s, 36H), -33.3 (s, 4H), -35.8 (s, 8H). Mass spectrum m/z (relative intensity) 670(M+, 100.00), 454(49.73), 422(25.58), 340(19.88), 159(23.57), 119(10.33), 91(10.67), 57(93.20). Visible spectrum, \(\lambda_{\text{max}}\): 632, 662, 682 nm.

Anal. C\(_{32}\)H\(_{48}\)U: C, H.
Acknowledgement. This work was supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, Chemical Sciences Division of the Department of Energy, under Contract Number DE-AC03-76SF00098.

References

 1968, 90, 7364.

Scheme I

2 → 3 → 4 → 5

6 → 7 → 8 → 9 → 10

11 → 12 → 1

B: R = t-Bu
P: R = Ph
Scheme II

\[9B \rightarrow 10B + 16 \]

17
Scheme III

14P → 18

12P → 18

B: H