Lawrence Berkeley National Laboratory

Recent Work

Title
Grain Orientation Mapping of Passivated Aluminum Interconnect Lines with X-ray Micro-diffraction

Permalink
https://escholarship.org/uc/item/8h0006cj

Journal
AIP Conference Proceedings - Characterization and Metrology for ULSI Technology, 449

Author
Chang, C.H.

Publication Date
1998
Grain Orientation Mapping of Passivated Aluminum Interconnect Lines with X-ray Micro-Diffraction

Advanced Light Source Division

Month 1996

Presented at the 1998 International Conference on Characterization and Metrology for ULSI Technology, Gaithersburg, MD, March 23–27, 1998, and to be published in the Proceedings.
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
GRAIN ORIENTATION MAPPING OF PASSIVATED ALUMINUM INTERCONNECT LINES WITH X-RAY MICRO-DIFFRACTION

C.H. Changa,b, A.A. MacDowella, A.C. Thompsonc,
H.A. Padmorea, J.R. Patela,b

aAdvanced Light Source
Ernest Orlando Lawrence Berkeley National Laboratory
University of California, Berkeley, California 94720

bSSRL/SLAC
Stanford University
Stanford, California 94309

cCenter for X-ray Optics
Ernest Orlando Lawrence Berkeley National Laboratory
University of California, Berkeley, California 94720

*This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division, of the U.S. Department of Energy, under Contract No. DE-AC03-76SF00098.
Grain Orientation Mapping of Passivated Aluminum Interconnect Lines with X-ray Micro-Diffraction

C.H. Chang¹,2, A.A. MacDowell¹, A.C. Thompson³, H.A. Padmore¹, and J.R. Patel¹,2

¹ Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
² SSRL/SLAC, Stanford University, Stanford, CA 94309
³ Center for X-ray Optics, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

A micro x-ray diffraction facility is under development at the Advanced Light Source. Spot sizes are typically about 1-μm size generated by means of grazing incidence Kirkpatrick-Baez focusing mirrors. Photon energy is either white or energy range 6-14 keV or monochromatic generated from a pair of channel cut crystals. Laue diffraction pattern from a single grain in a passivated 2-μm wide bamboo structured Aluminum interconnect line has been recorded. Acquisition times are of the order of seconds. The Laue pattern has allowed the determination of the crystallographic orientation of individual grains along the line length. The experimental and analysis procedure used is described, as is the latest grain orientation result. The impact of x-ray micro-diffraction and its possible future direction are discussed in the context of other developments in the area of electromigration, and other technological problems.

INTRODUCTION

Electromigration is the physical movement of atoms in metallic interconnect lines passing current at high electron density (typically in the range of 10⁵ amp/cm²). Significant material movement results in voids that consequently leads to breakage and circuit failure in the metal lines. This problem gets more severe as the line dimensions continue to shrink on integrated circuits. In spite of much effort in this field (1,2), electromigration is not understood in any depth or detail, but is strongly associated with the physical material properties (stress and strain) within the interconnect material. Throughout this century x-rays have been a powerful tool to measure such material properties, but the ability to make such measurements on the micron scale required by the semiconductor industry has only come into realization with the advent of the latest generation of high brightness synchrotron sources. In this paper we describe the beginnings of a program to carry out various x-ray diffraction measurements on the micron scale. It is presumed that the electromigration properties of a metal line will be dependent to some extent on the grain orientation of adjacent grains in the line. This paper describes the experimental and analysis techniques that allow the grain orientation and indexing of individual micron sized grains along the length of aluminum interconnect line.

X-rays are quite well suited to such measurements as they are able to penetrate several microns into matter. In general, interconnect lines are encased in the insulator silicon dioxide (passivation). X-rays are able to penetrate and study such buried samples.

EXPERIMENTAL

Figure 1 shows the experimental setup. The synchrotron
source of size typically 300 \times 30 \mu m \ FWHM \ (horizontal \ and \ vertical) \ is \ imaged \ with \ demagnifications \ of \ 300 \ and \ 60 \ respectively \ by \ a \ set \ of \ grazing \ incidence \ platinum-coated \ elliptically \ bent \ Kirkpatrick-Baez \ (K-B) \ focusing \ mirrors \ (3). \ Imaged \ spot \ sizes \ on \ the \ sample \ are \ about \ a \ micron \ in \ size. \ Photon \ energy \ is \ either \ white \ or \ energy \ range \ 6-14 \ keV \ or \ monochromatic \ generated \ by \ inserting \ a \ pair \ of \ Si(111) \ channel-cut \ monochromator \ crystals \ into \ the \ beam \ path. \ A \ property \ of \ the \ four \ crystal \ monochromator \ is \ its \ ability \ to \ direct \ the \ monochromatic \ primary \ beam \ along \ the \ same \ direction \ as \ the \ white \ radiation. \ Thus, \ the \ sample \ can \ be \ irradiated \ with \ either \ white \ or \ monochromatic \ radiation. \ White \ radiation \ is \ chosen \ for \ Laue \ experiments \ for \ the \ orientation \ determination \ and \ monochromatic \ radiation \ for \ d-spacing \ measurements \ in \ stress/strain \ determination \ of \ single \ grains \ in \ the \ metal \ line.

The sample was an aluminum line deposited to 0.5-\mu m thickness and 2-\mu m width on an oxidized silicon substrate. The line was passivated with a plasma-enhanced chemical vapor deposition (PECVD) nitride at 300°C to 0.3-\mu m thickness. Laue patterns were collected using white radiation and an x-ray CCD camera. The exposure time was 0.5 sec and sample-to-CCD distance was 16.4 mm. Fig. 2 shows the arrangement of the sample and CCD detector.

RESULTS

Figure 3 shows the Laue pattern from the silicon substrate. Figure 4 shows the Laue patterns from the silicon substrate and the somewhat fainter diffraction spots from a single grain in the aluminum line. Fig. 5a shows the aluminum Laue pattern obtained following digital
subtraction of the silicon pattern (Fig. 3) from the silicon and aluminum pattern (Fig. 4).

The origin on the CCD detector array was determined by moving the CCD camera radially from the sample and recording the silicon Laue patterns at various distances from the sample. The origin was determined at the CCD where the lines drawn through the succession of the same Laue spots intersected. All aluminum spot positions were coordinated to the origin and indexed using an indexing software package - LaueX (4). Fig. 5b shows the simulated pattern with reflections indexed. For conformation of the indexation the 4 crystal monochromator was inserted into the beam and scanned in energy to determine the d-spacing of the Al (111) spot.

The aluminum grain orientation can be referenced to the silicon substrate based on the orientation matrix R_{Si} and R_{Al} in the silicon substrate and aluminum grain, respectively. The matrix R relates the crystal system S with axes parallel to the basic crystallographic axes in the crystal to the reference system S^0 related to the primary beam direction:

$$ S^0 = RS. $$

The aluminum grain orientation measured is then referenced to the silicon substrate as the following orientation matrix:

$$ M = R_{Si}^{-1}R_{Al} $$

$$ = \begin{pmatrix}
0.707 & 0.475 & -0.524 \\
0.003 & 0.737 & 0.676 \\
0.707 & -0.481 & 0.518 \\
\end{pmatrix} \begin{pmatrix}
0.916 & 0.039 & 0.399 \\
0.308 & 0.571 & -0.761 \\
-0.257 & 0.822 & 0.509 \\
\end{pmatrix} $$

$$ = \begin{pmatrix}
0.468 & 0.612 & 0.637 \\
0.787 & 0.045 & -0.615 \\
-0.404 & 0.792 & -0.458 \\
\end{pmatrix} $$

The experimental accuracy in the determination of the orientation matrix M depends mainly on the angular resolution of the Laue camera system, because the Laue diffraction pattern of the aluminum grains always accompanies that of the silicon substrate that is the reference of the aluminum orientation. In the present case with the CCD of 23.5-μm pixel size and sample-to-CCD distance of 16.4 mm, the magnitude of the misorientation angle is determined within a precision of several minutes of arc.

CONCLUSION AND FUTURE DEVELOPMENT

We have demonstrated that the x-ray micro-diffraction is capable of determining the crystallographic orientation of individual grains in passivated interconnect lines. The orientation mapping can be done by collecting the Laue patterns from individual grains along the length of the lines. A computerized indexing code to automate this is under development. Beyond this the requirement is to measure the d-spacing of various aluminum planes to determine the stress and strain state of individual grains along the length of the aluminum interconnect line.

ACKNOWLEDGEMENTS

This work was supported by the Director, Office of Basic Energy Sciences, Materials Sciences Division of the US Department of Energy, under Contract no. DE-AC03-76SF00098. Samples from T. Marieb and equipment support from Intel Corporation, Santa Clara, CA.

REFERENCES
