Lawrence Berkeley National Laboratory
Recent Work

Title
Heavy-Fermion Systems in Magnetic Fields: The Metamagnetic Transition

Permalink
https://escholarship.org/uc/item/8hb366kt

Journal
Physical Review B, 46(2)

Authors
Freericks, J.K.
Falicov, L.M.

Publication Date
1991-08-01
Submitted to Physical Review B

Heavy-Fermion Systems in Magnetic Fields: The Metamagnetic Transition

J.K. Freericks and L.M. Falicov

August 1991
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
HEAVY-FERMION SYSTEMS IN MAGNETIC FIELDS:

THE METAMAGNETIC TRANSITION*

J. K. Freericks and L. M. Falicov

Department of Physics
University of California
Berkeley, CA 94720

and

Materials Sciences Division
Lawrence Berkeley Laboratory
Berkeley, CA 94720

August 1991

*This work was supported in part by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U. S. Department of Energy under Contract No. DE-AC03-76SF00098.
Heavy-Fermion Systems in Magnetic Fields: The Metamagnetic Transition

J. K. Freericks and L. M. Falicov
Department of Physics,
University of California,
Berkeley, CA 94720,

and

Materials Sciences Division,
Lawrence Berkeley Laboratory,
Berkeley, CA 94720.

ABSTRACT

Heavy-fermions have a large number of low-lying excitations. Antiferromagnetic superexchange typically favors low-spin arrangements for the ground state. A magnetic field favors high-spin arrangements over low-spin arrangements. The transition from a low-spin ground state to a high-spin ground state, as a function of magnetic field, passes through a range where there is a peak in the many-body density of states. This range qualitatively describes the metamagnetic transition.

August 14, 1991

Principal 1990 PACS number 75.20.Hr; secondary PACS numbers 71.28+d, 75.30.Mb.
Heavy-Fermion Systems in Magnetic Fields: The Metamagnetic Transition

J. K. Freericks and L. M. Falicov

Department of Physics, University of California, Berkeley, CA 94720,

and

Materials Sciences Division, Lawrence Berkeley Laboratory, Berkeley, CA 94720.

Heavy-fermion systems have been an active area of research for both experimentalists1 and theorists2-4 since their discovery in the mid-1970's. Heavy-fermion systems are characterized by huge coefficients (γ) to the term linear in T in the specific heat, quasi-elastic spin excitations (large magnetic susceptibility), and poor metallic conductivity. These features may be qualitatively described by a Fermi liquid with a very large density of states at the Fermi level.2-4 Heavy-fermion systems may become superconductors (UPt_3, UBe_{13}, $CeCu_2Si_2$, URu_2Si_2, etc.), possess long-range magnetic order (UPt_3, URu_2Si_2, $NpBe_{13}$, U_2Zn_{17}, etc.), or remain paramagnetic metals ($CeRu_2Si_2$, $CeAl_3$, $CeCu_6$, etc.) at low temperatures.

Recent experimental work has concentrated on the properties of heavy-fermion systems in high magnetic fields.5-8 A "transition" is observed (the so-called metamagnetic transition) at a characteristic magnetic field (B_c) in $CeRu_2Si_2$ ($B_c = 7.8 \, T$), UPt_3 ($B_c = 21 \, T$), and URu_2Si_2 ($B_c = 36 \, T$). The transition is characterized by a magnetic-field dependence of the coefficient γ, the elastic coefficients, and the magnetic properties. At the critical field B_c, the coefficient γ has a single peak, the elastic coefficients are softened, and the magnetic fluctuations change character. The magnetization shows a steplike structure as a function of magnetic field strength. This contribution presents a many-body theory (without the assumptions of Fermi-liquid theory) that describes all
of the above electronic properties of heavy-fermion systems (except superconductivity) and their field dependence.

Every heavy-fermion system is composed of ions with localized \(f \)-orbitals (lanthanides and actinides) that do not overlap with the corresponding \(f \)-orbitals on neighboring ions, but do hybridize with the extended states of the conduction-band electrons. The \(f \)-electrons interact very strongly with each other via a screened (on-site) coulomb interaction \(U \) that acts only between two \(f \)-electrons that are localized about the same lattice site. Double-occupied \(f \)-orbitals are effectively forbidden, since the coulomb energy is larger than any other energy in the problem \((U > 10 \text{ eV})\). The physics of such an electronic system is described by the lattice (or periodic) Anderson impurity model\(^9\)

\[
H_A = \sum_{k\sigma} \epsilon_k a_{k\sigma}^+ a_{k\sigma} + \epsilon \sum_{i\sigma} f_{i\sigma}^+ f_{i\sigma} + U \sum_i f_{i\uparrow}^+ f_{i\uparrow} f_{i\downarrow}^+ f_{i\downarrow} + \sum_{ik\sigma} [V_{ik} f_{i\uparrow}^+ a_{k\sigma} + V_{ik}^* a_{k\sigma}^+ f_{i\sigma}] ,
\]

in the large-\(U \) \((U \to \infty)\) limit.\(^10\) The parameters and operators in Eq. (1) include the conduction-band creation (annihilation) operators \(a_{k\sigma}^+ \left(a_{k\sigma} \right) \) for a conduction electron in an extended state with wavevector \(k \), spin \(\sigma \), and energy \(\epsilon_k \); the localized electron\(^11\) creation (annihilation) operators \(f_{i\sigma}^+ \left(f_{i\sigma} \right) \) for localized electrons in an atomic orbital centered at lattice site \(i \) with energy \(\epsilon_i \); the on-site coulomb interaction \(U \); and the hybridization integral \(V_{ik} \) that mixes together the localized and extended states. The hybridization matrix elements are assumed to be of the form

\[
V_{ik} = \exp(i \mathbf{R}_i \cdot \mathbf{k}) V g(k) / \sqrt{N} ,
\]

with \(g(k) \), the form factor, a dimensionless function of order one, and \(N \) the number of lattice sites. The Fermi level \(E_F \) is defined to be the maximum energy of the filled conduction band states, in the limit \(V \to 0 \) and the origin of the energy scale is chosen so that \(E_F = 0 \). The conduction-band density of states per site at the Fermi level is
then defined to be ρ.

Heavy-fermionic behavior may occur in the region\(^1\) where $\epsilon_\rho = -V^2\rho^2 < 0$. The localized orbitals are almost singly occupied ($\langle f_i^{\uparrow} \bar{f}_i^{\uparrow} + f_i^{\downarrow} \bar{f}_i^{\downarrow} \rangle = 1 - \nu$, $\nu \ll 1$) and the conduction electron density of states at the Fermi level is small. The Anderson Hamiltonian (1) may be mapped onto the large-U limit of the Hubbard\(^1\) Hamiltonian which, in turn, may be mapped onto a $t-J$ model\(^1\)

$$H_{t-J} = -\sum_{ij\sigma} t_{ij} (1 - f_i^{\uparrow} f_i^{\downarrow}) f_j^{\uparrow} f_j^{\downarrow} (1 - f_j^{\uparrow} f_j^{\downarrow}) + \sum_{ij} J_{ij} S_i \cdot S_j. \quad (3)$$

The hopping matrix t_{ij} satisfies

$$t_{ij} = \sum_k \frac{V_{ik}^* V_{jk}}{\epsilon_k - \epsilon} = \frac{V^2}{N} \sum_k \frac{g^2(k)}{\epsilon_k - \epsilon} e^{-i\mathbf{k} \cdot (\mathbf{R}_i - \mathbf{R}_j)} \quad (4),$$

and the antiferromagnetic superexchange is defined to be $J_{ij} \equiv 41 t_{ij}^2 / U$.

A heavy-fermion system is characterized\(^1\) by a many-body ground state with a very large number of low-lying excited states that have many different spin configurations (a partial decoupling of spatial and spin degrees of freedom). The localized states broaden into a strongly correlated narrow band in which all electronic transport takes place; the conduction band is (effectively) decoupled and acts only as a buffer that determines the concentration of electrons in the narrow band. The formation of a heavy-fermion ground state (and its low-lying excitations) require a fine-tuning of the parameters in the (effective) $t-J$ model and depends strongly upon the geometry and connectivity of the lattice.

One way to study the formation of a many-body ground state that possesses the properties of a heavy-fermion system (without any a priori assumptions of Fermi-liquid behavior) is to diagonalize exactly the many-body problem for small systems — the so-called small-cluster approach.\(^1\) This approach to the many-body problem begins with the periodic crystal approximation (replacing an infinite lattice by a lattice with N sites and periodic boundary conditions) with a small number of inequivalent sites.
The cluster is chosen to be small enough that the many-body hamiltonian may be exactly diagonalized but (hopefully) large enough that the physics of the infinite lattice is captured. An understanding of exactly how to extrapolate the results for a small-cluster calculation to the thermodynamic limit \((N \to \infty) \) has not yet been found.

The lattice Anderson impurity model [Eq. (1)] has been studied16-18 for various small clusters with at most four sites (for a review see Ref. 19). The results for the tetrahedral cluster17,18 (with one electron per site) illustrate the formation of the heavy-fermionic state and how sensitive it is to variations in the parameters. When the band structure \(\varepsilon_k \) is such that the bottom of the band is at the \(\Gamma \) point of the face-centered-cubic Brillouin zone, a small range of values for \(\varepsilon \) are found where the ground state is a spin singlet with (nearly degenerate) triplet and quintet excitations. The specific heat has a huge low temperature peak and the magnetic susceptibility is large. When \(\Gamma \) is the top of the conduction band, a magnetically ordered heavy-fermionic state is sometimes observed.

The small-cluster approach has also been applied to the \(t-J \) model20 which corresponds to the parameter regime of the lattice Anderson impurity model in between the Kondo lattice and the intermediate-valence state.12 A very good example of a heavy-fermion system lies in an eight-site face-centered cubic-lattice cluster with seven electrons.20 When the hopping parameters and antiferromagnetic superexchange parameters are chosen to be

\[
t_{ij} = \begin{cases}
t > 0, & i, j = \text{first-nearest neighbors}, \\
0.1 t, & i, j = \text{second-nearest neighbors}, \\
0, & \text{otherwise},
\end{cases}
\]

\[
J_{ij} = \begin{cases}
J, & i, j = \text{first-nearest neighbors}, \\
0, & \text{otherwise},
\end{cases}
\]

(5)

then the many-body eigenstates possess a low-energy manifold of 96 states (out of a total of 1024 states) that is split-off from the higher-energy excitations and which include many different spin configurations (see Table 1). These many-body states are

\[
- 4 -
\]
degenerate at \(J = 0 \) but the degeneracy is partially lifted for finite \(J \), with low-spin configurations favored (energetically) over high-spin configurations.

A magnetic field (in the \(z \)-direction) partially lifts the degeneracy even more, since the many-body eigenstates with \(z \)-component of spin \(m_z \) have an energy

\[
E(B) = E(0) - m_z g \mu_B B = E(0) - m_z b J
\]

in a magnetic field \(B \). The symbols \(g \), \(\mu_B \), and \(b \) denote the Landé \(g \)-factor, Bohr magneton, and dimensionless magnetic field, respectively. The high-spin eigenstates are energetically favored in a strong magnetic field and level crossings occur as a function of \(b \).

The phenomena described above are all of the necessary ingredients for a metamagnetic transition. The heavy-fermion system is described by a ground state with nearly degenerate low-lying excitations of many different spin configurations. The antiferromagnetic superexchange pushes high-spin states up in energy with splittings on the order of \(J \). The magnetic field pulls down these high-spin states (with maximal \(m_z \)) and generates level crossings in the ground state. In the region near the level crossings, there is an increase in the density of low-lying excitations that produces a peak in the specific heat as a function of \(b \). The magnetization and spin-spin correlation functions both change abruptly at the level crossings.

To illustrate the metamagnetic transition for the simple model above, the specific heat and magnetization are calculated as a function of the magnetic field (at a fixed low temperature). The specific heat satisfies

\[
\frac{C_V(b)}{k_B} = \beta^2 \left[\frac{\sum_n E_n^2 \exp(-\beta E_n)}{\sum_n \exp(-\beta E_n)} - \left\{ \frac{\sum_n E_n \exp(-\beta E_n)}{\sum_n \exp(-\beta E_n)} \right\}^2 \right],
\]

where \(k_B \) is Boltzmann’s constant, \(\beta \) is the inverse temperature (\(\beta = 1/k_B T \)) and \(E_n \) is the energy of the \(nth \) many-body eigenstate in a magnetic field \(b \) (the summations are restricted to the 96 eigenstates in Table 1). Similarly the magnetization is expressed.
by

\[M(b) = \frac{\sum_n m_z \exp(-\beta E_n)}{\sum_n \exp(-\beta E_n)} \quad , \quad (8) \]

where \(m_z \) is the z-component of spin for the \(nth \) many-body eigenstate. The results for the specific heat and magnetization are given in Figures 1 and 2, respectively, at the temperature where \(\beta J = 1 \) and in Figures 3 and 4, respectively, at the temperature where \(\beta J = 5 \).

The results for \(\beta J = 1 \) are representative of the high-temperature regime \(\beta J < 2 \) where the temperature is larger than the energy-level spacing. The specific heat has a single broad peak as a function of magnetic field with the center of the peak moving to larger values of \(b \) and the zero-field intercept becoming smaller as the temperature increases. The magnetization smoothly changes from a value of zero to a value of 5/2 as a function of magnetic field, showing little structure.

The results for \(\beta J = 5 \) are representative of the low-temperature regime \(\beta J > 2 \) where the temperature is smaller than the energy-level spacing. The specific heat has a multiple-peak structure arising from each level crossing in the ground state and the magnetization shows steps at the various level crossings.

The results fit the experimental data\(^5-8\) extremely well. The specific-heat measurements resemble the "high-temperature" result (Fig. 1) with a single-peak structure and the magnetization measurements resemble the "low-temperature" result (Fig. 4) with noticeable steps. This is to be expected since magnetization measurements take place at a constant low temperature while specific-heat measurements require measurements over a temperature range. Figure 3 suggests that specific-heat measurements may show additional structure if they can be made at lower temperatures.

In summary, the physics of the metamagnetic transition can be described as follows: a heavy-fermion system is composed of a ground-state with nearly degenerate low-lying excitations of many different spin configurations; the weak antiferromagnetic
superexchange interaction slightly favors low-spin arrangements over high-spins (at zero magnetic field); a magnetic field pulls down the high-spin configurations causing (multiple) level crossing(s) in the ground state and producing a peak in the many-body density of states. The result is a peak in the specific heat (and possibly a richer structure at lower temperatures), steplike transitions in the magnetization, and abrupt changes in ground-state correlation functions.

The authors acknowledge stimulating discussions with A. R. Mackintosh. This research was supported at the Lawrence Berkeley Laboratory, by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division, U.S. Department of Energy, under contract No. DE-AC03-76SF00098.
References

10. The large-U limit incorporated here implies both $U \to \infty$ and $\varepsilon + U \to \infty$, so that there is never more than one electron per f-orbital.
The degeneracy of the f-electrons is neglected in this model. Additional f-electron orbitals may easily be added without changing the qualitative nature of the model.

Table 1. Low-energy manifold of many-body eigenstates, at zero magnetic field, for the model heavy-fermion system discussed in the text. The notation is that of Ref. 20.

<table>
<thead>
<tr>
<th>Energy</th>
<th>Total Spin</th>
<th>Degeneracy</th>
<th>Spatial Symmetry Label</th>
</tr>
</thead>
<tbody>
<tr>
<td>$-6t + 6t' - 3J$</td>
<td>$\frac{1}{2}$</td>
<td>14</td>
<td>$\Gamma_2 \oplus X_1 \oplus X_2$</td>
</tr>
<tr>
<td>$-6t + 6t' - 2J$</td>
<td>$\frac{1}{2}$</td>
<td>16</td>
<td>L_3</td>
</tr>
<tr>
<td>$-6t + 6t' - \frac{3}{2}J$</td>
<td>$\frac{3}{2}$</td>
<td>32</td>
<td>$\Gamma_{12} \oplus X_1 \oplus X_2$</td>
</tr>
<tr>
<td>$-6t + 6t' - \frac{1}{2}J$</td>
<td>$\frac{3}{2}$</td>
<td>16</td>
<td>L_2</td>
</tr>
<tr>
<td>$-6t + 6t' + J$</td>
<td>$\frac{5}{2}$</td>
<td>18</td>
<td>X_2</td>
</tr>
</tbody>
</table>
Figure Captions

Fig. 1. Calculated specific heat as a function of magnetic field for the heavy-fermion model discussed in the text. The temperature is fixed at $T = J/k_B$. The horizontal axis contains the dimensionless magnetic field and the vertical axis contains the dimensionless specific heat C_V/k_B. Note the single peak in the specific heat, characteristic of the high-temperature regime.

Fig. 2. Calculated magnetization as a function of magnetic field at a temperature $T = J/k_B$. Note the smooth transition in the magnetization, characteristic of the high-temperature regime.

Fig. 3. Calculated specific heat as a function of magnetic field at a temperature $T = J/5k_B$. Note the multipeak structure in the specific heat, characteristic of the low-temperature regime.

Fig. 4. Calculated magnetization as a function of magnetic field at a temperature $T = J/5k_B$. Note the steplike transitions in the magnetization at each level crossing, characteristic of the low-temperature regime.
Figure 1
Figure 2
Figure 3