Title
Whipple's disease masquerades as dementia with Lewy bodies.

Permalink
https://escholarship.org/uc/item/8hb9x3b0

Journal
Alzheimer disease and associated disorders, 29(1)

ISSN
0893-0341

Authors
Hurth, K
Tarawneh, R
Ghoshal, N
et al.

Publication Date
2015

DOI
10.1097/WAD.0b013e3182a715da

Peer reviewed
Whipple’s Disease Masquerades as Dementia With Lewy Bodies

Kyle Hurth, MD, PhD,* Rawan Tarawneh, MD,† ‡ Nupur Ghosal, MD, PhD,‡ ‡ Tammie L.S. Benzinger, MD, PhD,† ‡ § David B. Clifford, MD,§ Michael Geschwind, MD, PhD,|| John C. Morris, MD,† ‡ James E. Galvin, MD,* Robert E. Schmidt, MD, PhD,* and Nigel J. Cairns, PhD, FRCPath† ‡

Key Words: Whipple’s disease, bacterial infection, dementia with Lewy bodies

Received for publication March 25, 2013; accepted July 1, 2013.

From the *Department of Pathology and Immunology, Division of Neuropathology; †Charles F. and Joanne Knight Alzheimer’s Disease Research Center; ‡Department of Neurology; ‡Millinocket Institute of Radiology, Washington University School of Medicine, Saint Louis, MO; §Department of Neurology, University of California, San Francisco, CA; and ||Comprehensive Center on Brain Aging, New York University Langone School of Medicine, New York, NY.

K.H., R.T., and N.G. contributed equally.

Supported by grants from the National Institute on Aging of the National Institutes of Health (PS0-AG05681, P01-AG03991), the Hope Center for Neurological Disorders, the Buchanan Fund, the Charles F. & Joanne Knight Alzheimer’s Disease Research Center, and the Barnes-Jewish Hospital Foundation.

A summary of these data were presented at the 2012 Annual Meeting of the American Association of Neuropathologists.

N.G. has participated or is currently participating in clinical trials of anti-dementia drugs sponsored by Elan/Janssen, Eli Lilly and Company, Wyeth, Pfizer, Novartis, and Bristol-Myers Squibb. T.L.S.B. declares an interest as a consultant for Biomedical Systems, ICON Medical Imaging, Eli Lilly Advisory Board, and Avid Radiopharmaceuticals. D.B.C. serves on Data Safety Boards for Amgen, Biogen, GlaxoSmithKline, Millennium, Genzyme, Genentech, and Pfizer. He has been a consultant to Brinker, Biddle, Reath [Progressive Multifocal Leuкоencephalopathy (PML) Consortium], Genentech, Genzyme, Bristol-Myers Squibb, Millennium, Biogen Idec, and Pfizer. He has received research support from the Alzheimer’s Association, Biogen Idec, Eli Lilly, Roche and Pfizer. He has received speaking fees from Biogen, University of Kentucky, ECTRIMS, and CMS/CACTRIMS. J.C.M. declares an interest as a consultant for: Eisai, Elan/Janssen Alzheimer Immunotherapy Program, GlaxoSmithKline, Novartis, Otsuka Pharmaceuticals, Pfizer/Wyeth, Eli Lilly, AstraZeneca, Bristol-Myers Squibb, Genentech, Merck, and Schering Plough; support form NIH/NIA; speaking fees: Dickinson address at Ohio Wesleyan, ABA Soriano Lectureship, Morrell Lecture (Chicago), Eisai (South Korea), Bial Neurology Forum (Portugal); royalties from: Blackwell Medical, Taylor and Francis. J.E.G. serves on a scientific advisory board for the American Federation for Aging Research and on the Board of Directors and the Scientific Advisory Council for the Lewy Body Dementia Association; he serves on speakers bureaus for Pfizer Inc., Eisai Inc., Novartis, and Forest Laboratories Inc.; has served as a consultant for Novartis, Forest Laboratories Inc., Pfizer Inc., Eisai Inc., Janssen, and Medivation Inc.; he has received license fee payments for ADs dementia screening test (copyrighted); license agreements between Washington University and Pfizer Inc. and Eisai Inc., and Novartis; and receives research support from Novartis, Eli Lilly and Company, Elan Corporation, Wyeth, Bristol-Myers Squibb, the NIH/NIA, and the Alzheimer Association. The remaining authors declare no conflicts of interest.

Reprints: Nigel J. Cairns, PhD, FRCPath, Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, Saint Louis, MO 63110 (e-mail: cairns@wustl.edu).

Copyright © 2013 Wolters Kluwer Health, Inc. All rights reserved.

CASE HISTORY

Dr George Whipple first described the disease which bears his name in 1907.1 He described a 36-year-old male physician who presented with a 5- to 6-year history of insidious symptoms including cough, recurrent attacks of arthritis, gradual weight loss, and asthenia. By the end of his life, skin changes, diarrhea, abdominal swelling, and mesenteric adenopathy were prominent. Pathologic examination showed macrophages and fat vacuoles in the small bowel and inflammation and macrophages within pleura, peritoneum, and the aortic valve. Silver staining demonstrated rod-shaped structures. Electron microscopy has revealed that these aggregates consist of networks of membranous structures and bacillary bodies of the bacterium Tropheやyma whipplei.2,3 Bacterial DNA sequencing and antibodies to T. whipplei may now be used to confirm the diagnosis.

We report a 49-year-old white man with a 4-year history of progressive cognitive and behavioral impairment, parkinsonism, cognitive fluctuation, altered sleep-wake cycles, myoclonus, visual hallucinations, and subsequent death. His past medical history included hypertension, chronic obstructive pulmonary disease, smoking, alcohol use, and cadaveric growth hormone replacement for delayed puberty as a child. There was no family history of dementia or movement disorder. He worked as a painter and was frequently exposed to solvents. He was in his usual state of health until approximately 2 years before initial evaluation. At that time, behavioral disturbances were noted by the family from whom he was estranged. He was described as depressed and severely withdrawn.

Approximately 12 to 16 months into his course, he became forgetful of recent events and conversations and repeated himself. He had increasingly odd behavior including sleeping during the day and being awake at night, wandering outside inappropriately dressed, and confabulating. His cognition fluctuated from staring spells to deep sleep from which he was difficult to arouse. At other times he was alert and fully oriented without recollection of prior events. He began to have well-formed visual hallucinations that he described as “brightly-colored pets” or “small people” and occurred during periods of lucidity. Eighteen months after onset, he was evaluated at an outside hospital for pneumonia, confusion, and agitation. He had notable parkinsonism and myoclonus of the left upper extremity. Imaging and diagnostic studies were unrevealing. Valproic acid partially improved his myoclonus movements. He was also treated with intravenous thiamine given his prior alcohol use and presentation concerning for Wernicke-Korsakoff syndrome. Small doses of risperidone and olanzapine produced generalized rigidity and drowsiness. He had one unexplained syncopal episode during his admission. Between episodes, he was alert and fully oriented and was discharged to a skilled nursing facility.

Sporadic Creutzfeldt-Jakob disease was considered because of the rapid cognitive decline and a history of treatment with cadaveric growth hormone extract led to the suspicion of iatrogenic Creutzfeldt-Jakob disease. However, the absence of periodic sharp wave complexes in the context of mildly left predominant
intermittent generalized slowing, along with the lack of diffusion-weighted magnetic resonance imaging (MRI) findings, negative cerebrospinal fluid (CSF) testing for 14-3-3 protein (sensitivity: 85%), neuron-specific enolase (9 ng/mL; normal < 20; sensitivity: 80%), and the relatively long antemortem course were not supportive of a prion disease.

Six months later, he was transferred to Barnes-Jewish Hospital, St. Louis, Missouri, for further investigation. The patient's instability had progressed and he developed recurrent falls. Gait was slow and shuffling with reduced arm swing, impaired postural reflexes, and en bloc turning. He had reduced facial expressions, reduced blinking, and a monotonous hypophonic speech. He also had involuntary myoclonic movements of the left arm consisting of flexion at the elbow and adduction at the shoulder with or without flexion of the neck. Cranial nerve examination showed mild horizontal and vertical gaze apraxia. Oculomotor reflexes and spontaneous eye movements were intact. Rigidity was noted symmetrically in both arms and legs without truncal rigidity. Tremor was not evident. No abnormal movements were noted in the eyes, face, or palate. Aside from a poor appetite resulting in weight loss, a review of systems was unremarkable.

White blood cell count (13.9 K/mm³), erythrocyte sedimentation rate (51 mm/h), and ferritin levels (505 ng/mL; normal range: 15 to 45 ng/mL) were mildly elevated. Laboratory studies indicated a nonmegaloblastic anemia (mean corpuscular volume, 81.9 fL; hemoglobin 11.4 g/dL, hematocrit: 35.2%). A complete metabolic panel, B12, 444 pg/mL; methylmalonic acid, 290 nmol/L (normal range: 0 to 400 nmol/L); homocysteine, 9.3 μmol/L (normal range: 0 to 20 μmol/L); folate, 6.6 ng/mL (normal range: > 4.1 ng/mL); ammonia, 57 μg/dL (normal range: 27 to 90 μg/dL); and rheumatologic panel [antinuclear antibody (negative) and extractable nuclear antigen (negative)] were unremarkable. Bacterial and fungal cultures of blood and urine were negative. Antithyroid antibodies were not detectable. Serum and urine protein electrophoresis and immunofixation were normal.

Brain MRI showed mild diffuse volume loss, and nonspecific FLAIR hyperintensities involving the posterior body and splenium of the corpus callosum and subcortical white matter. No contrast-enhancing lesions were noted. The basal ganglia, thalamus, and medial temporal lobes were normal. Diffusion-weighted imaging was unremarkable. Continuous video EEG monitoring showed generalized slowing with right parietooccipital slowing, but no epileptiform discharges or periodic sharp wave complexes. Chest x-ray showed a persistent opacity in the left lower lobe. Computed tomography of the neck, chest, abdomen, and pelvis, and scrotal ultrasonography showed no evidence of malignancy. Whole-body positron emission tomography was normal.

A course of IV methylprednisolone yielded no significant improvement. A trial of carbidopa-levodopa did not improve his parkinsonism. Myoclonic movements responded partially to sodium valproate. A history of smoking and presence of a persistent opacity on chest imaging led to a paraneoplastic syndrome being considered. Brain MRI in paraneoplastic encephalitis often shows evidence of medial temporal lobe involvement, and CSF abnormalities are detected in 80% of cases of paraneoplastic encephalitis. However, in this patient, imaging and laboratory evaluation showed no evidence of an occult malignancy or associated paraproteinemia. A paraneoplastic antibody screen was negative.

Following the exclusion of numerous infectious (viral, bacterial, spirochetal, fungal, and parasitic) etiologies, we considered the possibility of a steroid-responsive autoimmune encephalopathy associated with thyroiditis (eg, Hashimoto’s encephalopathy). Hashimoto’s encephalopathy occurs most often in young females and is characterized by a fluctuating encephalopathy with behavioral changes. However, cases in older men and with gait disturbance, hallucinations, myoclonus, focal or generalized seizures, transient aphasia, and somnolence have also been described. Collagen vascular diseases, sarcoidosis, and celiac disease may also produce neuropsychiatric and extrapyramidal abnormalities. Given the absence of serum markers and

FIGURE 1. Macroscopy. A, A coronal slice of the right hemibrain shows discoloration and granularity of the amygdala (arrow). A photomicrograph of the left hippocampus (B) shows diminished size and gray discoloration (arrow). C, The cerebellum is unremarkable (left panel) and the substantia nigra (center panel) and locus coeruleus of the pons (right panel) show no significant pallor. There is an area of dark-brown discoloration at the junction of the tegmentum and basis pontis (arrow) which corresponded to a nidus of bacteria-containing macrophages seen microscopically.
the patient’s poor response to corticosteroids these disorders were thought unlikely. The findings of progressive cognitive impairment with prominent cognitive fluctuations, frequent visual hallucinations, parkinsonism in the absence of other infectious, toxic, endocrine, or systemic causes of cognitive impairment led to a diagnosis of dementia with Lewy bodies (DLB). The presence of myoclonus, recurrent falls, syncope, and possible neuroleptic sensitivity further supported this diagnosis.12

Nine months after hospitalization, he had become completely dependent in all activities of daily living. Neurobehavioral exam showed a clinical dementia rating of 3 (severe dementia), MMSE of 12/30, and a Short Blessed Test score of 24/28. He scored 13/15 on the Boston Naming Test and 2/23 on the Wechsler Logical Memory Test. Eight months later, the patient scored 11/30 on the Mini-Mental State Examination, 25/30 on the Short Blessed Test, 8/15 on the Boston Naming Test, and 0 on the Wechsler Logical Memory Test. Eight months after this examination (nearly 4 y following disease onset) the patient died of sepsis, multiorgan failure, and inanition.

NEUROPATHOLOGY

Consent was obtained for a brain-only autopsy in accordance with Institutional Review Board protocols. The unfixed brain weighed 1350 g and had an unremarkable external surface with minimal atherosclerosis of the Circle of Willis. Coronal slices showed minimal generalized atrophy, mild atrophy of the amygdalae and hippocampi, and areas of discoloration and granularity were concentrated in the temporal lobes, amygdalae, hippocampi, putamina, and adjacent white matter (Fig. 1). Although there was a history of significant alcohol consumption, there was no evidence of Wernicke’s encephalopathy. The substantia nigra and the locus coeruleus were well pigmented.

Sections of the hippocampi and amygdalae showed an inflammatory infiltrate containing monocytes, lymphocytes, plasma cells, and CD68-immunoreactive macrophages admixed with large atypical reactive astrocytes and residual neurons (Fig. 2). Basophilic aggregates were observed within the cytoplasm of macrophages. Associated parenchyma showed disruption, gliosis, and neuronal loss (Fig. 2). Changes were present in nearly all sections; however, the medial temporal lobes, bilateral amygdalae, and hippocampi were most involved. Microscopy showed no evidence of α-synuclein-positive neuronal inclusions (Lewy bodies or neurites), β-amyloid-immunoreactive diffuse or neuritic plaques, cerebral

![FIGURE 2. Microscopy and fine structure of *Tropheryma whipplei* encephalitis. There is parenchymal disruption, reactive astrocytosis, and macrophages with basophilic staining of intracellular material [(A), hematoxylin and eosin (HE), × 400; (B), HE, × 1000], and a granular staining pattern with periodic acid-Schiff stain [(C), × 1000]. Gram stain shows predominantly pale blue staining of intracellular debris with occasional foci of strong gram positivity [(D), arrows: Gram stain, × 1000]. Anti-*T. whipplei* antibodies highlight macrophages [(E), *T. whipplei* immunohistochemistry, × 1000], and transmission electron microscopy reveals lamellar structures consistent with degraded bacteria [(F), scale bar = 500 nm].]
amyloid angiopathy, neurofibrillary tangles, tau-immunoreactive neurons, or TDP-43-immunoreactive neuronal or glial inclusions. After excluding viral, other bacterial, fungal, and protozoal infections, positive immunohistochemistry using bacterium-specific T. whipplei antibodies led to a final neuropathologic diagnosis of Whipple’s disease (WD) encephalitis.

DISCUSSION

Diagnostic testing for WD may be challenging. Neurological findings occur in up to one half of cases, and are most often reported late in the course of WD. However, rare cases have been reported in which neurological manifestations occurred early or were the sole manifestation of disease. Neurological manifestations are variable and include cognitive impairment, altered level of consciousness, psychiatric features, ataxia, seizures, myoclonus, supranuclear ophthalmoplegia, hypothalamic dysfunction, and sensory deficits. Oculomasticatory and oculofacial-skeletal myorhythmia, when present, are pathognomonic features; however, these are only seen in 20% of the cases. Other less common manifestations include proximal myopathy, myelopathy, stroke-like episodes, papilledema, headache, leptomeningeal inflammation, progressive deafness, and pyramidal or extrapyramidal disorders.

CSF analysis often reveals mildly elevated protein, mild pleocytosis, increased immunoglobulin production or oligoclonal bands, but may be completely normal, as with this patient. One CSF hallmark of central nervous system (CNS) WD is the presence of histiocytes containing granular periodic acid-Schiff-positive cytoplasmic particles on cytocritic analyses. Although there are no specific imaging findings for CNS WD, brain MRI may show high signal intensity on T2-weighted imaging involving the hypothalamus, optic chiasm, mammillary bodies, cerebellar peduncles, medial temporal lobes, and uncus. Lesions may exhibit restricted diffusion or gadolinium enhancement. EEG has been reported to show nonspecific slow wave activity and abolition of sleep-wake cycles. Stereotactic brain biopsy may be helpful in select cases, chiefly when other tests cannot exclude a treatable disease. In an attempt to improve diagnostic accuracy, guidelines for diagnostic screening and biopsy of WD were proposed in 1996 (Table 1). A diagnosis of definite CNS WD requires the presence of at least one of the following: positive tissue biopsy, positive polymerase chain reaction analysis, and oculomasticatory myorhythmia or oculofacial-skeletal myorhythmia. In the absence of all these 3 criteria, additional studies should be undertaken to confirm the diagnosis of possible CNS WD.

This challenging case presented with several features that led to an antemortem diagnosis of DBL. Supportive features included the presence of myoclonus, repeated falls, fluctuating level of consciousness, syncope, and neuroleptic sensitivity. Although rapid forms of DBL have been described, these remain atypical with an average disease course of 5 to 7 years before death in most cases. Gaze apraxia is not a typical feature, but has previously been reported in DBL. Although a rapidly progressive dementia with psychiatric features and myoclonus are the recognized complications of CNS WD, other clinical features were not typical of this diagnosis. The absence of the typical movement disorders of CNS WD, along with the unremarkable information provided by CSF and MRI investigations, increased the diagnostic difficulties of this case. WD remains a challenging diagnosis despite improved diagnostic testing and may masquerade as a more frequent neurodegenerative disorder. A high index of suspicion for this disorder is needed in any patient presenting with a rapidly progressive dementia.

ACKNOWLEDGMENTS

The authors would like to thank the patient and his family for their help. Written consent for publication was obtained from the next-of-kin. They thank Deborah Carter, Toral Patel, Lisa Taylor-Reinwald, and Karen Green for expert assistance.

REFERENCES

TABLE 1. Diagnostic Guidelines for CNS Whipple’s Disease

<table>
<thead>
<tr>
<th>Category</th>
<th>Criteria</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definite CNS WD</td>
<td>Must have 1 of the following 3 criteria: Oculomasticatory myorhythmia or oculofacial-skeletal myorhythmia. Positive tissue biopsy. Positive PCR analysis.</td>
</tr>
<tr>
<td>Possible CNS WD</td>
<td>Must have 1 of 4 systemic symptoms, including the following: Fever of unknown origin. Gastrointestinal symptoms (steatorrhea, chronic diarrhea, abdominal distention, pain). Chronic migratory arthralgias or polyarthralgias. Unexplained lymphadenopathy, night sweats, or malaise. Must also have 1 of 4 unexplained neurological signs, including the following: Supranuclear vertical gaze palsy. Rhythmic myoclonus. Dementia with psychiatric symptoms. Hypothalamic manifestations.</td>
</tr>
</tbody>
</table>

CNS indicates central nervous system; PCR, polymerase chain reaction; WD, Whipple’s disease.

Adapted from Louis et al.