Title
Sickeningly Sweet: Does Sugar Cause Type 2 Diabetes? Yes

Permalink
https://escholarship.org/uc/item/8j8663rb

Journal
CANADIAN JOURNAL OF DIABETES, 40(4)

ISSN
1499-2671

Author
Lustig, RH

Publication Date
2016-08-01

DOI
10.1016/j.jcjd.2016.01.004

Peer reviewed
Sickeningly Sweet: Does Sugar Cause Type 2 Diabetes? Yes

Robert H. Lustig MD, MSL

Department of Pediatrics, Institute for Health Policy Studies, University of California, San Francisco, San Francisco, California, USA

The metabolic syndrome, of which type 2 diabetes mellitus is a hallmark disease, affects more than 25% of the adult population in the United States (U.S.) (1). Specifically, type 2 diabetes currently exhibits a U.S. prevalence of 9.3%, while prediabetes is currently estimated to be present in up to 40% of adults. It is assumed that the epidemic rise in obesity is the cause of this upswing in the rate of type 2 diabetes. However, there are 4 separate reasons to doubt this thesis.

1) Although obesity prevalence and diabetes prevalence correlate, they are not concordant; there are countries in which populations are obese without having diabetes (such as Iceland, Mongolia and Micronesia), and there are countries in which populations have diabetes without being obese (such as India, Pakistan and China, which manifest a 12% diabetes rate). This lack of concordance is further reinforced by looking at years of life lost because of diabetes as opposed to obesity (3).

2) People forget that 20% of morbidly obese individuals are metabolically healthy and have normal life spans (4–6), while up to 40% of normal-weight adults harbour metabolic perturbations similar to those that occur with obesity, including hypertension, dyslipidemia, nonalcoholic fatty liver disease and cardiovascular disease (7,8).

3) The trend of diabetes in the U.S. between 1988 and 2012 has demonstrated a 25% increase in prevalence in both the obese and the normal-weight populations (9).

4) The aging process does not explain the prevalence of type 2 diabetes; children as young as 1 through 10 years of age now manifest these same biochemical processes (10,11). Thus, although obesity may be a marker for the pathology, it is clearly not the cause because normal-weight people have type 2 diabetes too. So what is the cause, a cause that everyone is exposed to? And how is it that children experience this degree of metabolic dysfunction?

The Concept of Toxicity

The food industry argues that obesity obeys the first law of thermodynamics, that obesity is about energy balance—that obesity is a manifestation of 2 behaviours: increased intake (gluttony) and decreased expenditure (sloth)—and that blame is to be ascribed to the individual, because “a calorie is a calorie.” But obesity is not the issue. Type 2 diabetes is the issue, and a protein calorie is different from a fat calorie, which is different from a carbohydrate calorie; a calorie is not a calorie (12). Where those calories come from determine where in the body they go.

The concept that sugar might be the inciting factor in type 2 diabetes is not new; in fact, John Yudkin of the United Kingdom posited this idea more than 40 years ago (13). However, many people, including scientists, have negative visceral reactions to the concept that a food can be toxic. The *Merriam-Webster Dictionary* defines toxic as “the degree to which a substance can damage an organism.” Note that there is no distinction between acute and chronic toxicity. Sugar is made of 2 molecules, glucose and fructose. Glucose is the energy of life. Every cell on the planet can burn glucose for energy. Glucose is so important that if one does not consume it, the liver makes it (gluconeogenesis). Conversely, dietary fructose, while an energy source, is otherwise completely vestigial; there is no biochemical reaction in any vertebrate that requires it.

Just because something is an energy source does not make it a food. Can you name an energy source that is not nutrition, in which there is no biochemical reaction in the human body (or in any organism) that requires it, that causes disease when consumed at high dosages, yet we love it anyway, and it’s addictive? Answer: alcohol. It’s loaded with calories, but it’s not nutrition. There’s no biochemical reaction that requires it (40% of Americans don’t consume alcohol, and they’re not sick). At high dosages, alcohol causes fatty liver disease. Clearly, alcohol is not a food; it’s a toxin in high dosages. Alcohol is not dangerous because of its calories or its effects on weight. Alcohol is dangerous because it’s alcohol (14); the biochemistry of the molecule makes it toxic.

There are 2 molecular mechanisms that delineate the toxicity of fructose (Figure 1) (15).

1) Only the liver has the fructose-specific Glut5 transporter; thus, in the fed state, the overwhelming majority of fructose metabolism occurs in the liver. Fructose is rapidly metabolized to fructose–1-phosphate (F1P) via fructokinase, an
insulin-independent process which also bypasses the negative feedback regulation of phosphofructokinase in the glycolytic pathway. Thus, fructose metabolism generates lipogenic substrates (e.g. glyceraldehyde-3-phosphate and acetyl-CoA) in an unregulated fashion, and they are delivered straight to the mitochondria but also simultaneously drive hepatic “de novo” lipogenesis (DNL), which will either be exported as triglyceride or possibly overwhelm the liver’s lipid export capacity, leading to intrahepatic lipid deposition and hepatic steatosis. F1P also stimulates the sterol regulatory element binding transcription factor 1c (SREBP-1c) gene via peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1beta (16), independent of insulin, which activates the genes involved in DNL. Also, F1P activates dual-specificity mitogen-activated protein kinase 7 (MKK7), which subsequently stimulates c-jun N-terminal kinase-1 (JNK-1), serine phosphorylates IRS-1, inactivating it and leading to hepatic insulin resistance.

Dissociating Sugar from Its Calories and Its Effects on Weight

Many case-control studies (18,19) point to fructose as a primary cause of type 2 diabetes, but these studies are not controlled for calories. In order to prove that fructose (and, therefore, sugar) is specifically toxic, the molecule must be dissociated from its inherent calories and its effects on weight. Furthermore, standard cross-sectional or correlational studies without time-factor analysis components are not acceptable because they cannot distinguish reverse or intermediate causality; they are like the snapshot rather than the movie. Last, the food industry is quick to point out that most fructose studies are performed in rodents that are given large doses over short periods of time. In defense, a recent study in rats shows that sugar at normal levels of consumption can cause morbidity and mortality (20), and a primate study demonstrates similar detrimental effects (21). Nonetheless, in order to prove toxicity, I must limit my argument to human studies using doses routinely consumed.

Prospective Cohort Studies

Two recent studies, both controlled for calories and adiposity and with time analyses, support sugar as a specific and direct causative agent of type 2 diabetes. First, a prospective cohort analysis of the European Prospective Investigation into Cancer and Nutrition (EPIC-Interact) study found that sugar-sweetened beverage (SSB) consumption increased the risks for developing diabetes over a 10-year period. The multivariate modelling, which adjusted for both energy intake and adiposity (body mass index), demonstrated that each SSB consumed increased the hazard risk ratio by 1.29 (95% CI 1.02, 1.63) exclusive of energy intake or body mass index (22).
the U.S., people are currently consuming the equivalent of 2.5 servings of SSBs per day, so people’s hazard ratios may well approach 1.68.

A second group performed a meta-analysis of studies that isolated consumption of soda (n=17) and fruit juice (n=13), controlled for calories and adjusted for adiposity (23). This meta-analysis showed that both soda and fruit juice specifically increased the relative risk ratio for diabetes (1.27, 1.10, respectively) over time. Furthermore, this study specifically took into account the fact that food industry-sponsored studies commonly demonstrate publication and information bias and calibrated for these biases.

Econometric Analysis

Our group performed an econometric analysis to assess which foods were specifically implicated in causing diabetes (2). We melded 3 freely available databases: 1) the Food and Agriculture Organization statistics database (FAOSTAT, a branch of the World Health Organization), which lists food availability per person by country, for the years 2000 to 2010, and by line item (total calories, fruits [excluding wine], meats, oils, cereals, fibre-containing foods, and sugar/sweeteners); 2) The International Diabetes Federation (IDF) database, which lists diabetes prevalence per country for the years 2000 to 2010; and 3) the World Bank World Development Indicators Database for the years 2000 to 2010, in which gross domestic product is expressed in purchasing power parity in 2005 U.S. dollars for comparability among countries to control for poverty. It also controls for urbanization, aging, physical activity and obesity. We asked which foods’ availabilities predict change in diabetes prevalence, country by country, over the decade.

We performed this analysis using generalized estimating equations with a conservative fixed-effects approach (the Hausman test) and a hazard model to control for selection bias (the Heckman selection test); period effects controlled for secular trends that may have occurred as a result of changes in diabetes detection capacity or importation policies. Most important, we had longitudinal data between 2000 and 2010, which allowed us to determine which dietary changes preceded the changes in diabetes prevalence (the Granger causality test).

Food industry-backed scientists have attacked this study as being an example of an “ecological study,” which, by convention, is hierarchically considered to be of low quality. Rather, this is an “econometric analysis,” which is much more rigorous because it assesses internal and external motivating factors (adjusted over time), and discerns complex relationships between multiple points in time, providing the relationship test (the Granger causality test). In fact, econometric analyses are hierarchically of higher quality than all studies except randomized controlled trials (24). Other investigators have derided this analysis because the FAOSTAT database assesses food availability rather than consumption. Rather, we view this as a positive rather than a negative factor because availability is easily quantifiable and not subject to the vicissitudes of individual recall and food wastage.

We showed that changes in sugar availability predicted the prevalence of diabetes between 2000 and 2010, exclusive of total calories, other foodstuffs, aging, obesity, physical activity or income. For every 150 calories per day in excess, diabetes prevalence increased 0.1%, but if those 150 calories happened to be a can of soda, diabetes prevalence increased 11-fold, by 1.1% (2). These data meet the Bradford Hill criteria for “causal medical inference” because we demonstrated that dose (more sugar, more diabetes); duration (longer sugar exposure, more diabetes); directionality (the few countries where sugar availability went down experienced a reduction in diabetes); and, most important, for causation precedence (3 years between change in sugar availability and change in diabetes prevalence).

Interventional Starch-for-Sugar Exchange

Our recent article in the journal Obesity (25) documents the effects of isocaloric substitution of sugar with starch in 43 Latino and African American children with metabolic syndrome over a 10-day period. After recruitment, we performed food questionnaires and interviews using sophisticated software to assess their total caloric consumption, as well as specific macronutrient and fibre intake. On day 0, we assessed their metabolic health on the basis of their home diets by using baseline analyte levels, oral glucose tolerance testing and dual-energy x-ray absorptiometry (DEXA) scanning. And then, for the next 9 days, we catered their meals so as to provide the same caloric content, the same fat, protein and fibre content and the same amount of total carbohydrate, but we reduced the percentage of calories from dietary sugar from a mean of 28% to 10%. We took the chicken teriyaki out; we put the turkey hotdogs in. We took the sweetened yogurt out; we put the baked potato chips in. We took the donuts out; we put the bagels in. We gave them unhealthy processed food, but it was food that had no added sugar. They were allowed fruit but not fruit juice. We gave them a scale to take home and called them every day. If their weights were declining, we made them eat more. They were given extra snacks to prevent weight loss. Then we studied them again 10 days later.

In short, every aspect of their metabolic health improved, with essentially no changes in weight. Blood pressure reduced by 5 mm Hg, triglycerides by 33 mg/dL, low-density lipoprotein by 10 mg/dL, and lactate by 0.3 mg/dL. Baseline glucose levels reduced by 5 mg/dL, glucose area under the curve dropped by 8%, fasting insulin dropped by 10 μU/L, insulin area under the curve dropped 25%—all improved—on the same number of calories and without weight loss, just by removing the added sugar—and in just 10 days! This study alone does not prove that sugar causes metabolic syndrome, but when taken with other studies (2,26,27), Koch postulates for causation were fulfilled.

Other Foodstuffs Specifically Linked to Metabolic Syndrome

To be clear, there are at least 3 other consumable substances that promote metabolic syndrome unrelated to their calories.

1) Transfats cannot be completely metabolized by mitochondria due to the trans-double bond, and they generate increased ROS. Transfats have long been assumed to contribute to chronic metabolic disease, especially atherosclerosis.
2) The branched-chain amino acids (BCAAs) valine, leucine and isoleucine are essential amino acids that account for more than 20% of the amino acids in the typical Western diet. In the anabolic state, they build muscle. However, when provided in excess beyond anabolic requirements, these classic ketogenic amino acids must be deaminated in the liver to be diverted toward energy utilization. This supplies too much acetyl-CoA to liver mitochondria, leading to liver-fat formation, and BCAA serum concentrations correlate with metabolic syndrome (28).
3) Cross-sectional and prospective studies implicate a dose-dependent effect of alcohol in metabolic syndrome and suggest that chronic consumption of large amounts of ethanol worsen insulin sensitivity. Ethanol is converted by alcohol dehydrogenase-1B to form acetaldehyde, generating nicotinamide adenine dinucleotide hydrogen (NADH), which promotes ROS formation and must be quenched by hepatic antioxidants to prevent liver damage. Furthermore, alcohol is metabolized to acetyl-CoA, which preferentially undergoes DNL under the excess of the reducing power of alcohol, driving fatty liver disease. While clearly a concern in adults,
it is unlikely that alcohol contributes significantly to metabolic syndrome in children.

Transfats, BCAAs, alcohol and fructose share 4 biochemical properties: 1) they are metabolized for energy primarily within the liver; 2) they are not insulin regulated; 3) they do not have a "pop-off" mechanism to form glycogen for storage and 4) they overwhelm mitochondrial β-oxidative capacity, leading to ROS generation and excessive DNL, which drives hepatic insulin resistance, hepatic steatosis and the UPR, which results in metabolic syndrome (17).

The Fallacies of Systematic Reviews and Meta-Analyses

Dr. J.L. Sievenpiper, my opponent in this debate, proffers numerous systematic reviews and meta-analyses, hierarchically considered to be the highest quality evidence. They state that fructose does not contribute to obesity (29,30). But this debate is not about obesity; it is about chronic metabolic disease. He provides other meta-analyses stating that fructose contributes to metabolic comorbidities only when provided in excess (31–33). However, systematic reviews and meta-analyses in general have recently come under fire for several reasons (34):

1) Publication bias. The food industry publishes numerous negative studies to help their causes, while independent investigators are loathe to publish negative studies. Thus, the truth is diluted.
2) Between-study heterogeneity. Alterations in dosage, utilizing lean vs. obese and insulin-sensitive vs. insulin-resistant subjects make comparisons difficult.
3) Random-effects modelling giving greater weight to smaller studies. Dr. Sievenpiper frequently acknowledges that the data in his analyses are of poor quality (35).

Furthermore, Dr. Sievenpiper’s meta-analyses suffer specifically from the following 3 inadequacies.

a) Controlled-feeding studies are not physiologic. They neglect the neuroendocrine control of feeding. Fructose does not suppress ghrelin, so people may eat more. Because fructose does not acutely raise leptin, the hypothalamus may not sense that the person has eaten. Because fructose decreases dopamine-receptor density in the brain centre driving reward, ad lib studies may be more appropriate.

b) The paradigm of isocaloric fructose-for-glucose exchange. Fructose administered alone is incompletely absorbed, generating pain, bloating and diarrhea (36), similar to the feeling children experience on Halloween; this is why crystalline fructose is rarely used as a sweetener. Thus, the apparent dose and the received dose may be dichotomous. Furthermore, DNL is low when either glucose or fructose is administered alone, but they are synergistic when administered together (37). There is no fructose alone in nature; there is just sucrose (and now high-fructose corn syrup). Therefore, fructose-for-glucose exchange studies are completely artifactual.

c) Lack of subclassification of industry-sponsored vs. independent studies. Analysis of food industry-sponsored studies demonstrates an odds ratio of a conclusion favourable to the industry of 7.61 (38). Furthermore, a meta-analysis of meta-analyses showed that 5 of 6 food industry-sponsored studies showed that sugared beverages do not cause weight gain, whereas 10 of 12 independent studies showed that they did (39). In fact, the 1 meta-analysis that takes funding source into account finds that sugar consumption does predict diabetes (23), yet none of Dr. Sievenpiper’s analyses are stratified by funding source.

These 6 points, taken together, deflate the opposition’s argument.

Conclusions

Most people consider sugar (i.e. fructose-containing compounds) to be just “empty” calories. Rather, the studies mentioned herein demonstrate that the fructose moiety of sugar is toxic in chronically high dosage unrelated to its calories and is a significant contributor to metabolic syndrome. Sugar recapitulates all the chronic detrimental effects on long-term health, as does alcohol (15). This is why our children now get the diseases related to alcohol (type 2 diabetes, nonalcoholic fatty liver disease) without consuming alcohol. Sugar meets all the public health criteria for regulation (40). The Canadian documentary Sugar Coated (2015) (41) exposes the corporate fraud and tactics of the sugar industry in the 1970s to dismiss the science in order to obtain Generally Recognized as Safe (GRAS) status by the U.S. Food and Drug Administration. It is time to revisit this issue, to reclassify sugar from food to food additive and, just as we did with transfats, remove it from the GRAS list for the good of public health.

Disclosures

Dr. Lustig has never accepted money from the food industry and has no disclosures with respect to this article. However, Dr. Lustig has authored 3 popular books as a public health service: Fat Chance: Beating the odds against sugar, processed food, obesity, and disease; Sugar Has 56 Names: A Shopper’s guide; and The Fat Chance Cookbook. He is also the unpaid president of the nonprofit Institute for Responsible Nutrition.

References