Title
Design, construction, and operation of a laboratory scale reactor for the production of high-purity, isotopically enriched bulk silicon

Permalink
https://escholarship.org/uc/item/8jm1h1fw

Authors
Ager III, J.W.
Beeman, J.W.
Hansen, W.L.
et al.

Publication Date
2004-12-20
Design, construction, and operation of a laboratory scale reactor for the production of high-purity, isotopically enriched bulk silicon

December 20, 2004

J. W. Ager III, J. W. Beeman, and W. L. Hansen
Electronic Materials Program, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720

E. E. Haller
Electronic Materials Program, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 and Materials Science and Engineering Dept., University of California at Berkeley, Berkeley, CA 94720

This work was supported by the Initiatives for Proliferation Prevention Program of the Office of Nonproliferation Research and Engineering (NN-20) of the U. S. Department of Energy under contract DE-AC03-76SF00098.
Acknowledgments

We acknowledge technical assistance with reactor operation from C. Liao and Andreana and valuable discussions regarding reactor design with S. Burden (Isonics), H. Dawson (Advanced Silicon Materials), R. Reis (Advanced Silicon Materials), J. Maurits, T. Cizsek (NREL), M. Chandra (GT Equipment Technologies), P. Hannah (Hemlock Semiconductor), A. Arvidson (Hemlock Semiconductor), J. Reimer (UC Berkeley), and S. M. Lord (Lord Associates). We especially thank M. Kowase for providing detailed schematics of the Kyoto University reactor.

A number of individuals aided in characterizing isotopically enriched Si made at LBNL. We thank H. Riemann of the Institut für Kristallzüchtung, Berlin, Germany for growing the float zone crystals. C. Liao and I. Sharp of MSD performed the variable temperature Hall effect measurements. The groups of M. L. W. Thewalt and A. K. Ramdas provided the PL and FTIR characterization.
1 Abstract

The design and operation of a recirculating flow reactor designed to convert isotopically enriched silane to polycrystalline Si with high efficiency and chemical purity is described. The starting material is SiF₄, which is enriched in the desired isotope by a centrifuge method and subsequently converted to silane. In the reactor, the silane is decomposed to silicon on the surface of a graphite starter rod (3 mm diameter) heated to 700 – 750 ºC. Flow and gas composition (0.3 – 0.5% silane in hydrogen) are chosen to minimize the generation of particles by homogeneous nucleation of silane and to attain uniform deposition along the length of the rod. Growth rates are 5 µm/min, and the conversion efficiency is greater than 95%. A typical run produces 35 gm of polycrystalline Si deposited along a 150 mm length of the rod. After removal of the starter rod, dislocation-free single crystals are formed by the floating zone method. Crystals enriched in all 3 stable isotopes of Si have been made: ²⁸Si (99.92%), ²⁹Si (91.37%), and ³⁰Si (88.25%). Concentrations of electrically active impurities (P and B) are as low as mid-10¹³ cm⁻³. Concentrations of C and O lie below 10¹⁶ and 10¹⁵ cm⁻³, respectively.

2 Introduction

There is increasing interest in the properties of materials enriched in the stable isotopes of Si (natural abundance = 92.2% ²⁸Si, 4.7% ²⁹Si, and 3.1% ³⁰Si). For example, some measurements of the thermal conductivity κ of highly enriched ²⁸Si in both thin film [1,2] and bulk [3] form reported increases exceeding 50% at room temperature. This is of interest to manufacturers of high-performance integrated circuits; the higher thermal conductivity of Si could be utilized to transport heat more effectively in a densely packed device, allowing higher operating clock rates. However, the consensus of more recent measurements is that the room temperature enhancement is actually in the range of 10-15% [4,5]. It has also been found that photoluminescence (PL) and impurity absorption lines in isotopically enriched ²⁸Si are extraordinarily sharp [6,7,8]. Finally, a number of proposed quantum computing schemes involve the use of stable Si isotopes either as a spin free matrix of highly enriched ²⁸Si [9,10], or directly as the qubits using the ²⁹Si nuclear spin (I = 1/2) [11]. In this context, it has been reported recently that decoherence times of electrons bound to ³¹P in enriched ²⁸Si can be greater than 10 ms at low temperature [12] and that there is an unexpectedly long persistence of ²⁹Si spin echoes in natural Si [13].

Full exploration of the effects of isotopic composition on the properties of Si will require material enriched in all three stable isotopes with higher chemical purity than in the past. For example, the PL line widths measured in refs. 6 and 8 are still 10x larger than the lifetime limit. It is also clear that practical demonstrations of Si-based quantum computing are likely to require highly enriched ²⁸Si and/or ²⁹Si sources. We are aware of a number of previous reports of isotopically enriched ²⁸Si [14,15,16] and ²⁹Si and ³⁰Si crystal growth [17]. While enrichments >99% have been achieved for each isotope and some crystals have low concentrations of electrically active impurities (e.g. <10¹⁵ cm⁻³), the combination of high chemical purity and dislocation-free crystal growth has not been achieved in every case. A production methodology that can achieve this and that is
compatible with the relatively small quantities of enriched precursors is clearly needed. We describe here a laboratory-scale reactor designed to convert isotopically enriched silane to poly-Si with high conversion efficiency and chemical and isotopic purity. Single crystals produced from the poly-Si by the floating zone process have excellent electronic characteristics. Such material will be valuable in performing definitive thermal conductivity studies and in exploring the scientific and technical applications of the stable isotopes of Si.

3 Experimental Design

3.1 Silicon precursors

Enriched Si in the form of SiF₄ was obtained from the Electrochemical Plant (ECP), Zelenogorsk, Russia. The stated isotope enrichments are summarized in Table 1. All three precursor gases had 50-100 ppm of CF₄, C₂F₆, CO₂, O₂, HF, and H₂O. SiF₄ was converted to SiH₄ by Voltaix, Inc (North Branch, NJ). Gas chromatography/mass spectrometry (GC/MS) was used to measure major impurity species. CH₄ was the major measurable contaminant and ranged from 7 ppm in the ⁲⁸SiH₄ to 70 and 100 ppm in the ³⁰SiH₄ and ²⁹SiH₄, respectively. The concentrations CF₄, CO₂, Si₂H₆, and siloxanes were less than the 5 ppm detection limit.

<table>
<thead>
<tr>
<th>isotope</th>
<th>nat. Si</th>
<th>²⁸Si enriched SiF₄</th>
<th>²⁹Si enriched SiF₄</th>
<th>³⁰Si enriched SiF₄</th>
</tr>
</thead>
<tbody>
<tr>
<td>²⁸Si</td>
<td>92.23</td>
<td>99.93</td>
<td>4.26</td>
<td>2.00</td>
</tr>
<tr>
<td>²⁹Si</td>
<td>4.67</td>
<td>0.065</td>
<td>91.37</td>
<td>7.35</td>
</tr>
<tr>
<td>³⁰Si</td>
<td>3.10</td>
<td>0.005</td>
<td>4.37</td>
<td>90.65</td>
</tr>
</tbody>
</table>

3.2 Poly-Si deposition considerations

The established industrial method for synthesizing the highest purity natural Si is deposition of polycrystalline Si (poly-Si) by the decomposition of silane in the so-called “Komatsu process” or by decomposition of trichlorosilane (“Siemens process”) followed by growth of single crystals by the floating zone technique [18,19,20]. Crystals of up to 200 mm in diameter with a room temperature resistivities in excess of 30,000 Ω-cm are made by this process [21,22]. Both of these industrial processes are operated in a batch mode and a typical deposition run involves several hundred kilograms of poly-Si; this currently exceeds the present manufacturing capability for isotopically enriched precursors.

A number of different deposition schemes were considered here for converting the isotopically enriched SiF₄ to high purity Si single crystals. A crucial constraint was the total amount of enriched precursors available; in the case of the minority ²⁹Si and ³⁰Si isotopes, the amount that could be obtained did not exceed 500 gm. Given the scale of the industrial processes discussed above, it was by no means clear that they could be adapted to function with high efficiency with relatively small amounts of the Si precursor. For example, the fluidized bed method [23,24,25,26] now used commercially by MEMC was considered. However, the granular poly-Si produced by this method is not suitable for subsequent float-zone (FZ) growth of single crystal Si (it was desirable here to use FZ as opposed to Czochralski growth to reduce oxygen incorporation in the
crystal and to eliminate any possibility of isotope exchange with the silica crucible).
Ultimately, a silane process (SiH₄ → Si + 2H₂) was chosen over a trichlorosilane process
based on its lower operating temperature (700 – 900 °C vs. 1100 °C), higher potential
conversion efficiency, and non-corrosive nature of the precursor [20]. As discussed
below, the reactor was designed with full consideration of the disadvantages of the silane
process, which are primarily homogeneous nucleation and particle generation and the
pyrophoric nature of silane.

3.3 Reactor overview

The reactor design was based on a one-pass flow reactor that had been used
previously to measure the growth rate of poly-Si from silane [27]. In that study, the
decomposition of silane along a 300 mm long rod in the center of a 15 mm diameter flow
tube was studied under various flow conditions at rod temperatures between 700 and 900
°C; the amount of Si deposited in a typical run was less than 1 mm. Constructing a flow
reactor for bulk poly-Si production requires the addition of process gas recirculation to
increase the overall conversion efficiency and careful design of the flow and reactor
conditions to attain uniform deposition and minimum particle generation. Additional
design considerations for the processing of isotopically enriched gases are the prevention
of any sort of isotope exchange with the reactor materials and the avoidance of possible
sources of chemical contamination.

An overview of the process loop and a detailed drawing of the double tube reactor
are shown in Figs. 1 and 2. Silane cylinders were installed in a vented gas cabinet
equipped with a 7-valve gas purge panel (Scott Omnigas 58PA200SVA) which allows
gas cylinders to be changed without cross contamination. Some initial deposition runs
were done with natural UHP silane from Voltaix (99.999%). Nitrogen (>99.995%) was
used as the gas panel purge gas. The initial carrier gas was UHP hydrogen (>99.9999%).
An oil-free diaphragm pump (Senior Flexonics MB-302) was used to recirculate the

Fig. 1. Polysilicon reactor: overview of process loop.
As discussed below, a dilute mixture of silane in H₂ at slightly above atmospheric pressure was used as the process gas. The inner tube in the reactor was a 25 mm diameter fused silica and was surrounded by a 2” OD Lexan tube. The reaction zone was defined by the distance (150 mm) between two water cooled high-current electrodes (Insulated Seal Inc.) in the reactor. Cooling water was supplied to the electrodes and to the space between the Lexan and fused silica tube by a closed cycle chiller (Neslabs CFT-75).

Poly-Si growth was initiated on 3 mm diameter graphite rods (>99.997%, Goodfellow) which were cut to the appropriate length. The rod was resistively heated by two high current power supplies wired in parallel (EMI SCR 120-40 and EMI TCR 40S70). The upper electrode contact was designed to have some axial freedom of movement to compensate for thermal expansion of the rod. A Ga-Sn eutectic solution was used to form a sliding contact with low electrical resistance. The rod temperature was measured before silicon deposition with an optical pyrometer (Pyro-Werk “Optix”). The temperature was measured subsequently imaging light from the rod through a bandpass filter (880 nm, 70 nm BW) onto a Si photodiode. It was necessary to continuously increase the power to the rod as its diameter increased due to increased rates of radiative and convective cooling; typical power settings were 440 W at the beginning of a run and 1.4 kW at the end of a run with a 12 mm diameter rod. The recirculation flow rate was controlled by a high capacity mass flow controller (MFC, Unit 2000 series). The pressure was measured upstream and downstream of the recirculation with 1000 torr capacitance manometers (MKS 722A); a typical pressure drop across the pump during operation at 15 slpm was 70 torr.

All tubing used was 1/4” diameter stainless with welded VCR fittings. All valves were pneumatically actuated (Nupro B Series) and computer controlled. The silane flow into the process loop was controlled with a 100 sccm MFC (Unit 1200). In order to maintain a constant process loop pressure, the loop had to be exhausted at rate approximately equal to twice the silane feed. Exhaust vacuum was provided by an oil-free diaphragm pump (Edwards D-Lab 20-100) and controlled with an 500 sccm MFC.
(Unit 1200). It was necessary to place a 1 liter ballast volume in front of the exhaust MFC to achieve a stable exhaust flow.

3.4 Particle filtration

Based on reported data from industrial users of the Komatsu process, particle generation on the order of 1 wt. % of the deposited poly-Si might be expected. Therefore, efficient particle filtration downstream of the reactor and upstream of the process loop MFC and pump was required. It was also important to select a filtration method with relatively high gas conductance. The anticipated particle generation integrated over several process runs greatly exceeds the capacity of most standard in-line filters sold for semiconductor manufacturing applications. A suitable filter was fabricated from a porous 316 SS “filter/sparger” (Mott 6400 series, 0.5 µm pore size, 1” diameter x 12” long) which was mounted inside a welded 316 SS tube with VCR fittings. This filter contributed a less than 10 torr pressure drop to the process loop. No evidence of particles downstream of the filter was observed.

3.5 Silane concentration measurement

The silane concentration in the process loop was monitored by sampling the process gas at 6 minute intervals by a gas chromatograph (HP 5790A) equipped with a thermal conductivity detector operated at 225 °C. A 1/8” x 6’ Porapak N column was used at 30 °C. The carrier gas was UHP He at a flow rate of 30 cc/min. The steps in the sampling sequence were evacuation of the 10 cc sample loop with an oil-free pump (Alcatel Drytel 31), opening of a pneumatically actuated valve to introduce the process gas to the evacuated volume, and then of switching a two-way valve (Valco A4SD6MWE) to direct the gas to the GC. As shown in Fig. 3, under these conditions a negative H₂ peak was observed at 1.3 minutes and a positive silane peak was observed at 3.7 minutes. Calibration runs were performed frequently with a 1% silane in hydrogen standard. The estimated minimum detectable silane concentration was 0.02%.

3.6 Gas flow selection

The kinetics of the decomposition of silane to poly-Si on a heated surface are well studied. In nearly all industrial processes, hydrogen is used as the carrier gas due in part to its high thermal conductivity. The reaction has an activation energy of 1.4 eV above 650 °C and 2.2 eV below 650 °C; the increased activation energy at lower temperatures is attributed to hydrogen termination of the growth surface [28]. Growth of crystalline Si is observed above 600 °C [29]. At a given concentration of silane, there is a temperature above which the reaction is mass-transport-limited; atmospheric pressure reactors for
depositing thin poly-Si films are often operated in this regime (ca. 1000 °C) in order to reduce the sensitivity of the growth rate to surface temperature [30]. An overview of observed Si deposition rates as a function of temperature is shown in Fig. 4.

In a flow tube reactor, if the effective deposition rate is too high, the silane concentration will decrease as the process gas transits the reactor and the resultant poly-Si rod will not be uniform in thickness (this effect was observed by Hashimoto et al. [27] for many of the flow conditions used in a one-pass tube reactor). The effective deposition rate can be reduced by reducing the rod temperature and/or increasing flow rate. In a one-pass reactor, this would decrease the overall conversion efficiency. However, the addition of gas recirculation in the present reactor allows the gas velocity to be increased while maintaining high conversion efficiency (see Appendix).

It was desirable to operate the reactor in such a way as to minimize the generation of particles (also known as “snow” or “soot”) that form as a result of the homogeneous nucleation of silane which occurs when gas temperature exceeds 400 °C. A number of studies [31,32,33,34] have investigated the critical silane concentration for homogeneous nucleation as a function of gas temperature and silane concentration. Data from these studies are graphed in Fig. 5. For example, at 800°C, it appears that particle formation can be observed for silane concentrations (in hydrogen) exceeding 0.2%. It thus desirable to decrease the volume of the reactor in which the temperature is >400 °C; this can also be accomplished by increasing the process gas flow to prevent heated inner rod from completely heating the process gas as it flows through the reactor. In the present
case, a practical upper limit was set by the maximum flow rate (ca. 20 slpm) that the recirculation pump could achieve in the process loop.

3.7 Reactor operation

The reactor modeling approach developed by Hashimoto et al. [27] was used to select the process conditions for the reactor (see Appendix). In order to maximize the poly-silicon growth rate (which is proportional to the silane concentration), the industrial process operates at ca. 800°C with silane concentrations in H₂ in the range of 1.5 – 5% [35,36]. Here, it was advantageous to operate at a somewhat lower temperature (730 °C) and silane concentration range (0.3 – 0.5%) to decrease particulate formation. Photographs of reactor operation are shown in Fig. 6. As the poly-Si rod increased in

![Fig. 6. Reactor operation: (left), reactor with graphite starter rod visible; (center), during operation at 730°C with a process gas flow of 15 slpm; (right) at the end of a run. Some particulate formation is observed.](image)

![Fig. 7. Polycrystalline rod enriched in ²⁸Si grown with the LBNL reactor. The right hand side of the rod was at the top of the reactor during growth.](image)
size, the silane feed was increased from 0.8 gm/hour (Si equivalent) to 4 gm/hour at the end of the run when the rod had grown to rod diameter of 12 mm. Particulate formation was observed on the walls of the reactor near the outlet after a few hours of operation but did not seem to affect the quality of the poly-Si or the observed yield (>95%). The typical deposition time was 16 hours to grow a rod of mass 33 – 36 gm. A typical poly-Si rod is shown in Fig. 7. Larger crystallites are observed at the top of the rod; this is attributed to a slightly higher temperature generated there by the convective action of the flowing H₂ (this can also be seen in Fig. 6). The average deposition rate was 5 µm/min which is comparable to that of industrial reactors. As shown in Fig. 8, the growth rate was uniform along the length of the rod.

3.8 Floating zone crystal growth

In order to perform detailed tests of impurity content, isotopically enriched poly-Si rods were converted to single crystals using the floating zone method. The graphite starter rod was removed from the poly-Si by a combination of drilling and lapping. Thorough etching with HF and HNO₃ was used to removal mechanical damage and residual graphite or SiC grains. Sections of the poly rods were converted to dislocation-free single crystal Si in a floating zone (FZ) crystal puller. In the case of ²⁸Si and ²⁹Si isotopically enriched seeds were used. A natural seed was used for ³⁰Si. Photographs of enriched Si crystals are shown in Fig. 9.

Fig. 8. Diameter of poly-Si rod as a function of distance in the reactor. Growth rate is uniform throughout the reaction zone.

Fig. 9. Dislocation-free single crystals of isotopically enriched Si.

4 Results and Discussion

Initial tests of the full synthesis process were performed with natural silane with a stated purity of 99.999%. Typical room temperature resistivities of the natural FZ crystals were in the 3-10 kΩ range (p-type), corresponding to a room temperature carrier
concentration of less than 10^{13} cm$^{-3}$. This demonstrates that the process is capable of making Si whose purity is only limited by that of the precursor silane.

Table 2. Summary of isotopic composition measurement in the precursor gas and in the enriched single crystals. The gas measurements were performed by GC-MS and the crystal measurements were performed with SIMS. Due to the use of an natural Si seed, the 30Si enriched crystal has an isotopic gradient.

<table>
<thead>
<tr>
<th>isotope</th>
<th>nat. Si</th>
<th>28Si enriched</th>
<th>29Si enriched</th>
<th>30Si enriched</th>
</tr>
</thead>
<tbody>
<tr>
<td>at. %</td>
<td>SiF$_4$</td>
<td>crystal</td>
<td>SiF$_4$</td>
<td>crystal</td>
</tr>
<tr>
<td>28Si</td>
<td>92.23</td>
<td>99.93</td>
<td>99.92</td>
<td>4.26</td>
</tr>
<tr>
<td>29Si</td>
<td>4.67</td>
<td>0.065</td>
<td>0.075</td>
<td>91.37</td>
</tr>
<tr>
<td>30Si</td>
<td>3.10</td>
<td>0.005</td>
<td>0.005</td>
<td>4.37</td>
</tr>
</tbody>
</table>

SIMS measurements of the isotopic composition are summarized in Table 2. With the exception of the 30Si crystal, which has an enrichment gradient from the seed to the tail due to partial melting of the natural seed isotopic enrichments of the crystals are the same as those of the precursor gas. Temperature dependent Hall effect data is shown in Fig. 10. All enriched crystals were n-type. In the 28Si crystal, the net-carrier concentration was 3×10^{14} cm$^{-3}$ at the seed end and 5×10^{15} cm$^{-3}$ at the tail; this effect is attributed to the expected segregation of the P to the tail region during FZ growth. For the 29Si and 30Si enriched crystals, the net carrier concentration was in the mid 10^{13} cm$^{-3}$ range. Room temperature mobilities for n-type material were between 1220 and 1360 cm2 V$^{-1}$ s$^{-1}$ and increased monotonically down with $T^{-3/2}$ to 20 K. This shows that the crystals have a very low acceptor compensation resulting in negligible ionized impurity scattering.

![Fig. 10. Variable temperature Hall effect data for isotopically enriched Si crystals: 99.92% 28Si, 91.37% 29Si, and 86.7% 30Si. All crystals are n-type. The net carrier concentration is higher in the tail end of the 28Si crystal compared to the seed end due to P segregation during the float zone growth. A dashed line indicates the $T^{-3/2}$ dependence for the mobility data. Data courtesy I. Sharp and C. Liao, LBNL.](image-url)

- 28Si seed end
- 28Si tail
- 29Si
- 30Si

Page 11 of 22
Low temperature PL was performed using techniques described in detail elsewhere [37]. Analysis of the TO-assisted transitions showed that P was the majority donor in all cases and that the concentration of B was typically 10x lower, consistent with the Hall data. Spectra showing the no-phonon phosphorus-bound exciton (P\text{NP}) transition are shown in Fig. 11. The effect of the isotopic composition in renormalizing the

![Fig. 11. Photoluminescence spectra obtained at 4 K of the P\text{NP} transition in enriched Si single crystals. Positions and linewidths are: 28Si: 9274.18 cm\(^{-1}\), 0.022 cm\(^{-1}\); 29Si: 9282.9, 0.013 cm\(^{-1}\) (line is split due to substitutional carbon incorporation, see inset and text); 30Si with two different enrichments due to natural Si incorporation during FZ growth: 9289.15 and 9290.18 cm\(^{-1}\), 0.064 cm\(^{-1}\), respectively. The location of the transition in natural Si is indicated with an arrow. Data courtesy M. Thewalt, Simon Fraser University.](image)

![Fig. 12. Evaluation of oxygen content using the O local vibration mode absorption. Data courtesy A. Ramdas, Purdue University.](image)
The bandgap is seen clearly. It is interesting to compare the spectra to prior measurements of enriched Si crystals. For the 28Si crystals, the observed FWHM is near-instrument-limited at 0.022 cm$^{-1}$. More detailed analysis by PLE [38] showed that the linewidth is just slightly wider than the narrowest reported in 28Si to date [6]. For 29Si, the line was slightly split (inset of Fig. 11). Assigning the splitting to strains caused by the presence of substitutional carbon, a concentration of 2×10^{17} cm$^{-3}$ was estimated [39]. This is reasonable agreement with subsequent SIMS and FTIR measurements which found a carbon concentration of 6×10^{16} cm$^{-3}$ and 1×10^{17} cm$^{-3}$, respectively. It should be noted that this crystal was grown from silane that had the highest level of methane contamination. Based on the absence of splitting of the PNP PL line carbon concentrations were below 10^{16} cm$^{-3}$ (200 ppb) in both the 28Si and 30Si enriched crystals. This is notable given the ppm levels of CH$_4$ in the silane used for their growth. In the case of 29Si and 30Si, the PL linewidths were much narrower than previously reported for crystals enriched in these two isotopes [37]. The oxygen content was evaluated by FTIR, as shown in Fig. 12. With the exception of the 29Si-enriched crystal, the samples had equivalent or lower oxygen contents compared to commercial FZ material (i.e. $< 4 \times 10^{14}$ cm$^{-3}$). The characterization results are summarized in Table 3.

<table>
<thead>
<tr>
<th>Crystal</th>
<th>Enrichment %</th>
<th>ρ Ω-cm</th>
<th>μ carriers cm$^{-3}$</th>
<th>μ cm$^{-3}$ V$^{-1}$ s$^{-1}$</th>
<th>Electrically Active impurities from FTIR and PL</th>
<th>Other impurities</th>
</tr>
</thead>
<tbody>
<tr>
<td>28Si seed</td>
<td>99.92</td>
<td>14</td>
<td>3.2×10^{14}</td>
<td>1350</td>
<td>2×10^{14} $\sim 3 \times 10^{14}$</td>
<td>1.6×10^{14} $< 10^{16}$</td>
</tr>
<tr>
<td>28Si tail</td>
<td>0.9</td>
<td>5.6$\times 10^{15}$</td>
<td></td>
<td>1270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>29Si seed</td>
<td>91.37</td>
<td>210</td>
<td>2.3×10^{13}</td>
<td>1250</td>
<td>2×10^{13} high 10^{13}</td>
<td>3×10^{12} 5×10^{15} 2×10^{17}</td>
</tr>
<tr>
<td>29Si tail</td>
<td>275</td>
<td>2$\times 10^{13}$</td>
<td></td>
<td>1220</td>
<td>2×10^{13} high 10^{13}</td>
<td></td>
</tr>
<tr>
<td>30Si seed</td>
<td>86.7</td>
<td>110</td>
<td>4.3×10^{13}</td>
<td>1360</td>
<td>2×10^{13} 6×10^{13}</td>
<td>2×10^{12} 4×10^{14} $< 10^{16}$</td>
</tr>
<tr>
<td>30Si tail</td>
<td>89.8</td>
<td>180</td>
<td>2.4×10^{13}</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

5 Conclusions

A process consisting of high-yield production of isotopically enriched bulk polycrystalline Si in a laboratory scale reactor followed by float zone crystallization has been demonstrated to produce dislocation-free single crystals enriched in all three stable isotopes of Si (28Si, 29Si, and 30Si). The 99.9+$\%$ 28Si, 91+$\%$ 29Si, and 88+$\%$ 30Si crystals described in this report are among the highest quality isotopically enriched Si made to date with electrically active impurities at 10^{15} cm$^{-3}$ and below, low oxygen and carbon concentrations, and minimal amounts of inhomogeneous lattice strain. These crystal will be used for high resolution optical spectroscopy and, potentially, for measurements of the coherence lifetime limits of the 31P ESR spin and the 29Si nuclear spin. Isotopically enriched crystals of still higher purity can be grown when high purity precursor gases become available.
6 Appendix. Reactor modeling

As discussed in Section 3.6 above, it desirable to operate the reactor in such a way as to (1) reduce the volume of the reactor above 400°C, the homogeneous nucleation threshold for silane, (2) maintain a constant Si deposition rate along the length of the rod, and (3) deposit Si at a sufficiently fast rate (> 1 µm/minute). A quantitative modeling procedure was developed by Hashimoto et al. [27] in the context of measuring the reaction kinetics of poly-Si formation from silane in a one-pass tube reactor similar in design to the one used here. The Navier-Stokes equations for reacting gas flow in the positive z direction (neglecting buoyancy) in a symmetric annulus with inner diameter 2ri and outer diameter 2ro are

\[
\frac{1}{r} \frac{\partial}{\partial r} (r \rho v_r) + \frac{\partial}{\partial z} (\rho v_z) = 0 \tag{A1}
\]

\[
\rho \left(v_r \frac{\partial v_r}{\partial r} + v_z \frac{\partial v_z}{\partial z} \right) = \frac{1}{r} \frac{\partial}{\partial r} \left(\rho \mu \frac{\partial v_z}{\partial r} \right) - \frac{\partial P}{\partial z} \tag{A2}
\]

\[
\rho C_p \left(v_r \frac{\partial T}{\partial r} + v_z \frac{\partial T}{\partial z} \right) = \frac{1}{r} \frac{\partial}{\partial r} \left(\rho \lambda \frac{\partial T}{\partial r} \right) \tag{A3}
\]

\[
\rho \left(v_r \frac{\partial w_A}{\partial r} + v_z \frac{\partial w_A}{\partial z} \right) = \frac{1}{r} \frac{\partial}{\partial r} \left(\rho D_A \frac{\partial w_A}{\partial r} \right) \tag{A4}
\]

where the independent variables are \(v_r \) and \(v_z \), the radial and axial velocities, \(w_A \), the mass fraction of the reacting species A, and T, the gas temperature. Equation (A1) is a continuity equation for momentum. The gas properties which are, in general, temperature dependent are \(C_p \) (heat capacity), \(\rho \) (density), and \(\lambda \) (thermal conductivity) and \(P \) (pressure). \(D_A \) is the diffusion coefficient of A in the carrier gas. For the present reactor the temperature is fixed at the inner and outer walls at \(T_i \) and \(T_o \), respectively. The mass fraction of A is related to the molar concentration C by

\[
C_A = \rho w_A / M_A \tag{A5}
\]

where \(M_A \) is the molecular weight of A (32 amu for silane).

It is convenient to introduce a number of reduced variables and other terms:

\[
r^* = r_i / r_o \text{, reduced radius} \tag{A6}
\]

\[
r_m = \left(\frac{r_o^2 - r_i^2}{2 \ln(r_o / r_i)} \right)^{1/2} \text{, mean radius} \tag{A7}
\]

\[
D_h = 2(r_o - r_i) \text{, hydraulic diameter} \tag{A8}
\]

Fig. A1. Reactor geometry and coordinate system: 3 mm diameter starter rod heated to 730°C, 25 mm diameter flow tube with its walls maintained at 20°C, 150 mm reaction zone.
\[
\text{Re} = \frac{\nu \rho D_h}{\mu}, \text{ Reynolds number} \tag{A9}
\]
\[
\text{Pr} = \frac{C_p \mu}{\lambda}, \text{ Prandtl number} \tag{A10}
\]
\[
\bar{z} = \frac{z}{D_h \text{RePr}}, \text{ unitless axial distance} \tag{A11}
\]
Appropriate boundary conditions at \(z = 0\) (entrance to the reaction zone) are
\[
v_z = \frac{Q_0}{\pi (r_o^2 - r_i^2)} \tag{A12}
\]
\[
T = T_o \tag{A13}
\]
\[
w_A = w_{A0} \tag{A14}
\]
and represent a cool entrance gas flow with a flat radial velocity profile determined by the volume flow rate \(Q_0\) with an initial mass fraction of silane \(w_{A0}\). As the gas flows down the tube, it will be heated at the inner wall \((T_i > T_o)\) and silane will react and deposit at \(r = r_i\). Boundary conditions at the inner and outer walls are
\[
v_z = 0, \quad T = T_i, \quad \partial W_A / \partial r = k_i w_A / D_A \text{ at } r = r_i \tag{A15}
\]
\[
v_z = 0, \quad T = T_o, \quad \partial W_A / \partial r = 0 \text{ at } r = r_o \tag{A16}
\]
where
\[
r_i = k_i C_A(r=r_i) \tag{A17}
\]
and the surface reaction rate \(r_s\) has units of moles \(m^{-2} s^{-1}\).

Before addressing the full, coupled, non-linear set of partial differential equations (A1)-(A4), some simpler limiting cases are discussed [40]. Neglecting reaction for the moment, at sufficiently large \(z\), “fully developed” profiles are attained. For a given average velocity \(\bar{v}\) the fully developed velocity profile is
\[
v(r) = 2 \bar{v} \left(\frac{r_o^2 - r^2}{r_o^2 - r_i^2} \frac{\ln(r_i / r)}{\ln(r_o / r)} \right), \tag{A18}
\]
where \(\bar{v}\) is obtained from the gas flow by
\[
\bar{v} = \frac{Q_0}{\pi (r_o^2 - r_i^2)}. \tag{A19}
\]
The fully developed temperature profile is obtained by setting \(\frac{\partial T}{\partial z} = 0\) and \(\frac{\partial v}{\partial r} = 0\) and reducing (A3) to
\[
\frac{1}{r} \frac{dT}{dr} \left(r \lambda \frac{dT}{dr} \right) = 0 \tag{A20}
\]
which, for constant thermal conductivity \(\lambda\), can be expressed as
\[
\frac{d^2 T}{dr^2} + \frac{1}{r} \frac{dT}{dr} = 0. \tag{A21}
\]
There is an exact solution for (A21):
\[
T_{FD}(r) = \left(\frac{\ln(r/r_i)}{\ln(r_o/r_i)} (T_i - T_o) \right) + T_o \tag{A22}
\]
Neglecting reaction for the moment, the problem reduces to calculating \(\bar{v}\) and \(T\) in the “entrance length” of the reactor (that is, for the volume before the fully developed profiles are attained). Hashimoto et al. [27] made some additional assumptions, which also use here, to aid in the solution of coupled Eqs. (A1) – (A4): \(v_r = 0\), neglect radial velocity; assume gas transport properties independent of \(w_A\). With these simplifications,
it is possible to convert (A1)-(A4) to finite difference (FD) equations and solve them numerically. We used the implicit method with a tridiagonal solver [41]. It should be noted that the neglect of radial velocity in (A1) would lead to momentum non-conservation in the solution. A related issue is the treatment of dP/dz, the pressure gradient in Eq. (A2). In the present approach, dP/dz was determined by Newton’s method at each z step in order to maintain constant mass flow (in general, the pressure drop falls as the fully developed T and v profiles evolve). This was more exact than the methodology used by Hashimoto et al. [42].

A number of tests were performed to validate the present numerical approach. The evolution of the temperature profile in annular flow for constant fluid properties and fully developed velocity flow at z = 0 (thermal entrance length) was solved exactly for a number of values of r* by Lundberg et al. [43]. In the nomenclature of that work, the present geometry is a problem of the “first kind with a temperature step at the inner wall.” Solutions are expressed in terms of the bulk temperature

$$T_{bulk} = \frac{\int_{r_i}^{r_o} T(r)v(R)2\pi rdr}{\int_{r_i}^{r_o} v(R)2\pi rdr} \quad (A23)$$

and the reduced mean temperature

$$\vartheta_m = \frac{T_{bulk} - T_o}{T_i - T_o} \quad (A24)$$

The equation to be solved is (A3) with v_r = 0 and v_z given by (A19). T_i was set to 730°C and T_o to 20°C. 500 evenly spaced radial points were used and 2000 variable z steps (shorter near z = 0). A geometry close to that of the actual reactor (r_i = 2 mm, r_o = 8 mm) was used to compare to an exact solution at r* = 0.25. As shown in Fig. A2, agreement of the numerical solver with the exact solution was excellent.

The analogous problem of the development of the velocity profile (hydrodynamic entrance length) in an annulus T_i = T_o and a flat velocity profile at z = 0 was considered by Heaton et al. [44] and by Shan and Farnia [45]. Solutions are described in terms of the evolution of the normalized critical velocity v_{max}/\bar{v} and normalized critical radius (r at which $v = v_{max}$ divided by r_o). Comparison of the present solver to these two more exact solutions for r* = 0.1 is shown in Fig. A3. The agreement is not as good as that obtained for the evolution of the temperature profile; the finite difference solution evolves somewhat
more slowly to the fully developed solution. This is attributed to the neglect of the radial velocity.

The coupled problem of the simultaneous development of T and v in an annulus was considered by Shumway and McEligot [46] for a number of reactor geometries and values of Pr. It is interesting to note that for $Pr \ll 1$ (low pressure gases), the thermal entrance length will be less than the hydrodynamic entry length while for $Pr \gg 1$ (fluids like water, oil, etc.), the thermal entrance length is greater than the hydrodynamic entry length. Here, the outer wall temperature was adjusted to obtain a value of Pr that corresponded to one of the published solutions. There are some additional reduced variables associated with this solution:

$$z^+ = \frac{z}{D_h \Re \Pr}, \text{ unitless axial distance with Re and Pr evaluated at } z = 0, \quad (A25)$$

$$P^+ = \frac{p - p_e}{\rho \overline{v}}, \text{ “pressure defect,” where } p_e \text{ and } \overline{v} \text{ are evaluated at } z = 0. \quad (A26)$$

Heat fluxes at the inner and outer walls are computed from the temperature gradient. A comparison of the present solver to Shumway and McEligot is shown in Fig. 4. As with the previous two validations, agreement is better for the thermal (left and right) than for the hydrodynamic (center) aspects of the solution. This was expected given the neglect of v_r discussed above. Nevertheless, it is concluded that the present approach is sufficiently accurate for modeling the present reactor and that the pressure drop down the reactor is being treated realistically.

The reactor was modeled given the geometry shown in Fig. A1 for three different carrier gas flows (5, 15, and 25 slpm). Temperature contours as a function of z are shown in Fig. A5. It is seen that for the slowest flow, the fully developed T profile is reached at $z = 50$ mm while for the faster flows the fully developed profile is not reached within the reactor. Figure A6 shows the fraction of the reactor volume above 400°C, the homogeneous nucleation threshold for silane, as a function of carrier gas flow. For the fully developed T profile (that is, for very slow flow rates), 9% of the reactor is above 400°C. Faster flow rates reduce this value. At a flow of 15 slpm, the volume of the reactor above 400°C is only 6%, which is a 50% reduction compared to slower flows. Figure A7 shows the evolution of the evolution of the pressure drop (left) and
temperature and velocity profiles (expressed in terms of T_{bulk} and v_{critical}) for a flow of 15 slpm. As expected for a value of the Prandtl number $Pr < 1$, the thermal profile evolves more quickly than the velocity profile.

Finally, the simultaneous evolution of T, v, and the mass fraction of silane was modeled. Following Hashimoto et al. [27], it was assumed that the reaction at the surface is first-order in silane with a rate equation

$$r_s = k_s C_{AS}, \text{ units of } \text{mol m}^{-2} \text{ s}^{-1},$$

(A27)
where r_s is the surface reaction rate, k_s the rate constant, and C_{AS} the molar concentration.

Fig. A7. Calculated pressure gradient (left) and temperature and velocity profiles (right) as a function of distance in the reactor for a carrier gas flow of 15 slpm. The mean velocity for these conditions is 55 cm/s and the Prandtl number is 0.71.

Fig. A8. Calculated radial silane concentration profiles as selected values of z for different carrier gas flows.

Fig. A9. Calculated silane deposition length as a function of axial distance z in the reactor for different carrier gas flows.
of silane at the surface [see Eq. (A5) for the relationship between concentration and mass fraction]. The deposition rate in units of distance per unit time is

\[
\frac{dR_s}{dt} = \frac{M_{\text{Si}} r_s}{\rho_{\text{Si}}}
\]

(A28)

where \(M_{\text{Si}}\) is the atomic weight of Si and \(\rho_{\text{Si}}\) is its density (2.35 g cm\(^{-3}\)). The rate constant obtained by Hashimoto et al. was used:

\[
k_s = 3.88 \times 106 \exp(-162,000 / RT) \text{ (units of m/s)}.
\]

(A30)

Radial concentration profiles for an initial silane concentration of 1% molar are shown in Fig. A8 and the predicted deposition rate as a function of \(z\) is shown in Fig. A9. At the slower flow (5 slpm), the silane radial concentration profile changes significantly as a function of \(z\); this is reflected in a deposition rate, which falls to 65% of its initial value by the end of the tube. This difference is less at higher carrier gas flows. The one pass efficiency also declines with increasing gas flow, as shown in the legend of Fig. A9.

Ultimately, a carrier gas flow of 15 slpm was selected for reaction operation. As shown in Figs. 7 and 8 this lead to very uniform deposition along the rod with an average deposition rate of about 5 \(\mu\)m/min. This is in satisfactory agreement with the calculations, particularly given the uncertainties in the kinetic data used. It is possible that convective cooling of the rod leads to lower temperatures at small values of \(z\) (this effect can be seen in Fig. 6), leading to lower growth rates there and offsetting the trend predicted in Fig. A9.

Finally, it is appropriate to comment on the limiting efficiency of a recirculating reactor. The recirculation factor \(n\) is the process gas flow divided by the exhaust flow. For a process gas flow of 15 slpm and an exhaust gas flow of twice the silane feed, the recirculation factor varied from 750 at the beginning of a run with 10 sccm silane feed to 150 at the end of a run with 50 sccm feed. The overall predicted efficiency is

\[
1 - (1 - \eta)^n
\]

(A31)

where \(\eta\) is the one pass efficiency (predicted to be 2.3% for 15 slpm flow). Equation (A31) predicts an efficiency of close to 100% at the beginning of a run and to 97% at the end of a run. This is consistent with the observed efficiency of >95%.
References

M. L. W. Thewalt, private communication.

M. Kawase, private communication.

