Title
A novel approach for surgical repair of dehiscent high jugular bulb

Permalink
https://escholarship.org/uc/item/8km2w6xn

Journal
Laryngoscope, 123(7)

ISSN
0023-852X

Authors
Shaikh, MF
Mahboubi, H
German, M
et al.

Publication Date
2013-07-01

DOI
10.1002/lary.23891

Peer reviewed
How I Do It

A Novel Approach for Surgical Repair of Dehiscent High Jugular Bulb

Mohammad F. Shaikh, MD; Hossein Mahboubi, MD, MPH; Michael German, MD; Hamid R. Djalilian, MD

Key Words: Dehiscent high jugular bulb, pulsatile tinnitus, aural fullness, conductive hearing loss. Laryngoscope, 123:1803–1805, 2013

INTRODUCTION

The jugular bulb is found at the junction of the horizontal segment of the sigmoid sinus and the superior end of the internal jugular vein. A high jugular bulb (HJB) may extend into the middle ear cavity lateral to the cochlea. The superior threshold of HJB varies according to various authors. The limits include the inferior bony annulus, the lower border of the round window, and the upper limit of the basal turn of the cochlea.1–5 A dehiscent high jugular bulb (DHJB) occurs when a high jugular bulb lacks a bony covering within the middle ear. The incidence of HJB and DHJB has been reported as 3.5% to 22.6% and 0.5% to 1.7% percent, respectively.4,5 DHJB may initially manifest with profuse hemorrhage during myringotomy or middle ear surgery.5 When a DHJB impinges on tympanic structures, such as the tympanic membrane (TM), ossicles, or round window, patients may experience conductive hearing loss (CHL), aural fullness, or pulsatile tinnitus.6 Sensorineural hearing loss has also been described as a consequence of DHJB and is thought to occur from protrusion of the jugular bulb through the round window.7 In general, conservative management has been favored over surgical intervention.8,9 The pathophysiology of symptoms and operative complications of DHJB have been attributed to its close proximity with the TM. Where surgical intervention has been tried, the focus has been on control or manipulation of the jugular bulb.10 We describe a novel technique whereby symptoms were relieved through lateralization of the inferior TM without repositioning of the jugular bulb.

MATERIALS AND METHODS

Case Report

An 18-year-old female presented with a history of mild to moderate right-sided conductive hearing loss with sensation of aural fullness and pulsatile tinnitus exacerbated with exercise. Otoscopy revealed a bluish hypotympanic mass abutting the inferior 25% of the TM surface (Fig. 1). High resolution temporal bone computed tomography confirmed a DHJB (Fig. 2). Observation and conservative management were recommended. Due to the severity of symptoms, the patient and her family strongly wished to proceed with surgery.

Surgical Procedure

After a postauricular approach, the tympanomeatal flap was raised and the TM was gently separated from the dehiscent jugular bulb using blunt instruments, including the duckbill elevator and drum elevator. We initially attempted to medialize the jugular bulb by compressing it with a cartilage graft, but were unable to safely separate the bulb medially from the surrounding bone. Rather than manipulating the jugular bulb itself, we lateralized the tympanomeatal flap to separate the TM from the jugular bulb. Ofloxacin-soaked Gelfoam (Pfizer, New York, NY) was moderately overpacked medial to the flap to maintain the separation between the jugular bulb and the TM. A small fascia graft was placed in an underlay fashion to bridge the gap between the tympanomeatal flap and the external auditory canal (Fig. 3). Several pieces of Gelfoam were placed along the tympanomeatal incision. No packing was placed lateral to the tympanomeatal flap to prevent medial compression of the TM. The wound was closed in the usual fashion (Fig. 4). At 3 months postoperatively, the patient was found to have normal hearing and resolution of aural fullness. These improvements have persisted at 3-year follow-up (Fig. 5).

DISCUSSION

Management of HDJB has been described in the literature by several authors. Buckwalter et al.11 and
others described ligation of the internal jugular vein in cases of debilitating pulsatile tinnitus. This invasive approach, although effective, involves significant risk to other vital neural and vascular structures in the neck. Endovascular embolization has also been used with success but carries the risk of venous thrombosis, infarct, and as with venous ligation, may lead to increased intracranial pressure (ICP).

In many cases, HDJB is encountered incidentally during middle ear surgery. In chronic middle ear disease, the TM may be opacified and landmarks may be obscured, concealing the classic otoscopic finding of bluish hue in the posteroinferior quadrant. Differential diagnosis for bluish discoloration of the tympanic membrane includes cholesterol granuloma, paraganglioma, aberrant internal carotid artery, blue-domed mucosal cyst, rhabdomyosarcoma, aural polyp, varices of the TM, hemangioma, diverticulum of the internal carotid artery, extramedullary hematopoiesis, and jugular bulb phlebectasia. It is not uncommon for massive bleeding to occur on entry of the middle ear if the jugular bulb is entered. For a small tear, bleeding may remit with application of Gelfoam backed by pressure with a cottonoid or a cotton ball soaked in saline. Pressure should be maintained for 2 to 3 minutes. The Gelfoam should be left on the bulb and the cotton(oid) should be removed gently. For severe bleeding, the ear canal must be packed with petrolatum-impregnated gauze strips. Air embolus should be...
CONCLUSION

Much of the reported literature on surgical management of the DHBJ places emphasis on altering, controlling, reinforcing, or otherwise manipulating the jugular bulb itself. In the technique presented here, lateral displacement of the tympanic membrane has achieved good long-term improvement in aural fullness and correction of CHL. Because of the rarity of symptomatic HDJB, it will be difficult to obtain a large series of patients. We surmise that this technique will only be useful in cases where the DHBJ does not reach the umbo, and the inferior TM can be lateralized. If the DHBJ reaches the umbo or the ossicular chain, then a combination of techniques may be used where cartilage is used to separate the DHBJ from the ossicles, and the superior half of the TM and inferior TM is lateralized using the described technique. Other techniques, such as separating the TM from the umbo and amputating the inferior malleus, can be utilized as well.

BIBLIOGRAPHY