Title
SYS 4: Designing High Integrity Embedded Networked Sensing Systems

Permalink
https://escholarship.org/uc/item/8kt128f6

Authors
Nithya Ramanathan
Laura Balazano
Saurabh Ganeriwal
et al.

Publication Date
2006
Designing High Integrity Embedded Networked Sensing Systems

Nithya Ramanathan, Laura Balazano, Saurabh Ganeriwal, Ram Kumar, Shane Markstrum, Roy Shea, Deborah Estrin, Eddie Kohler, Rupak Majumdar, Todd Millstein, Mani Srivastava

Introduction: Data integrity definition

Sensor Networks in the Presence of Failures
• Avoiding Failures
 Check for software faults before deployment and calibrate sensors appropriately
• Detecting Failures
 Equip the nodes with outlier and fault detection abilities
• Remediating Failures
 Help the user address potential failures or validate anomalous data in-field
• Malicious vs Non-Malicious Failures
 They share a set of similar failure modes
 This work focuses on non-malicious failures

Platform/System Integrity: Rapid fault identification, prevention, and isolation

Static Checking of Source Code
• Correct resource usage is difficult
 Memory mismanagement is a significant and serious source of errors on sensor nodes with no memory protection
• Develop simple and intuitive memory model
 1. Each block of memory is under the control of exactly one program at any time
 2. Controlling program is responsible for either tracking, freeing, or transferring ownership of the data
• Found significant memory management errors in both kernel and user SOS code using new analysis tool

Run-time Software Fault Checks
• Sensor networks use single memory space without hardware protection
 Memory space is shared by kernel, drivers and applications
 Buggy user application can easily corrupt kernel
• Create a single protection domain to protect the kernel
 Specifically designed for small memory systems
 Memory map maintains memory positions
 Runtime check after every memory write

Analysis is now integrated into build system of SOS

Measurement and Data Integrity: Inconsistent measurements, faults, and calibration errors

Sensor Calibration and Fault Remediation
• Sensor calibration should be done with the entire system to include bias introduced by hardware
• Sensor calibration should be done before and after the deployment.

Ammonium Before... and After Fault Filtering

• Faulty data confound the interesting phenomena.
• Based on data collected in Bangladesh, we designed a tool to detect calibration, orientation, bio-fouling, or sensor hardware faults in-field.
• This tool will suggest actions a user can take in the field to fix/validate problematic data.
This increases the quantity of good data as compared to a post-facto removal of bad data.

Platform/System Integrity: Rapid fault identification, prevention, and isolation

Static Checking of Source Code
• Correct resource usage is difficult
 Memory mismanagement is a significant and serious source of errors on sensor nodes with no memory protection
• Develop simple and intuitive memory model
 1. Each block of memory is under the control of exactly one program at any time
 2. Controlling program is responsible for either tracking, freeing, or transferring ownership of the data
• Found significant memory management errors in both kernel and user SOS code using new analysis tool

Run-time Software Fault Checks
• Sensor networks use single memory space without hardware protection
 Memory space is shared by kernel, drivers and applications
 Buggy user application can easily corrupt kernel
• Create a single protection domain to protect the kernel
 Specifically designed for small memory systems
 Memory map maintains memory positions
 Runtime check after every memory write

Analysis is now integrated into build system of SOS

Measurement and Data Integrity: Inconsistent measurements, faults, and calibration errors

Sensor Calibration and Fault Remediation
• Sensor calibration should be done with the entire system to include bias introduced by hardware
• Sensor calibration should be done before and after the deployment.

Ammonium Before... and After Fault Filtering

• Faulty data confound the interesting phenomena.
• Based on data collected in Bangladesh, we designed a tool to detect calibration, orientation, bio-fouling, or sensor hardware faults in-field.
• This tool will suggest actions a user can take in the field to fix/validate problematic data.
This increases the quantity of good data as compared to a post-facto removal of bad data.

Network Integrity: Sympathy as a sensor network debugger

• Sympathy aids the user in identifying and fixing network bugs in the field by:
• Collecting Metrics such as neighbor table and number of packets received
• Identifying Network Failures using decision tree (right) to find root cause
• Localize Failures to determine why data is missing

Data and Platform Integrity
• Platform Integrity
 Static checking of source code removes faults before system deployment
 Runtime fault detection provides continued support in deployed systems
• Data Integrity
 Reputation-based framework to provide resiliency against malicious or non-malicious manipulation of the sensors.
 Rule-based online fault detection provides actions for the users to take to fix both network and sensor faults or validate sensor data