Title
Sampling Artifacts from Conductive Silicone Tubing

Permalink
https://escholarship.org/uc/item/8m08p627

Author
Timko, Michael T.

Publication Date
2009-09-04
Abstract. We report evidence that carbon impregnated conductive silicone tubing used in aerosol sampling systems can introduce two types of experimental artifacts: 1) silicon tubing dynamically absorbs carbon dioxide gas, requiring greater than 5 minutes to reach equilibrium and 2) silicone tubing emits organic contaminants containing siloxane that adsorb onto particles traveling through it and onto downstream quartz fiber filters. The consequence can be substantial for engine exhaust measurements as both artifacts directly impact calculations of particulate mass-based emission indices. The emission of contaminants from the silicone tubing can result in overestimation of organic particle
mass concentrations based on real-time aerosol mass spectrometry and the off-line thermal analysis of quartz filters. The adsorption of siloxane contaminants can affect the surface properties of aerosol particles; we observed a marked reduction in the water-affinity of soot particles passed through conductive silicone tubing. These combined observations suggest that the silicone tubing artifacts may have wide consequence for the aerosol community and should, therefore, be used with caution. Gentle heating, physical and chemical properties of the particle carriers, exposure to solvents, and tubing age may influence siloxane uptake. The amount of contamination is expected to increase as the tubing surface area increases and as the particle surface area increases. The effect is observed at ambient temperature and enhanced by mild heating (<100 °C). Further evaluation is warranted.

1. Introduction. Typical aerosol characterization experiments require tubing to convey particle-laden gas streams from the source to the particle characterization instruments. Aircraft gas turbine engine exhaust gas – which must be cooled and diluted prior to reaching the instruments – is a specific particle source which nearly always requires use of sample extraction and sample tubing (Lobo et al., 2007). Even most studies of ambient particles require a short length (< 3m) of tubing to convey and distribute sample to particle instruments. To avoid experimental bias, sample tubing must meet the following two requirements: 1) high particle transmission efficiency (as close to 100% as possible) for particles of all important sizes; 2) zero particle contamination (including condensation and/or nucleation).
Several monographs describe the guidelines for minimizing particle losses in sample probes and sample lines (Brockman, 1993; Hinds, 1999). Kumar et al. (2008) recently reported results and comparison with theory for a line-loss study directed at quantifying the particle loss effects encountered in street canyon experiments. The most prevalent mechanisms for particle loss include diffusional loss, inertial loss, and electrostatic loss. For particles relevant to engine exhaust studies (3-300 nm diameter), diffusional and inertial losses are minimized by maintaining turbulent flow, employing sample tubes with large volume/surface area ratio, maintaining short residence times, and avoiding sharp bends. Electrostatic losses are eliminated by use of conductive tubing which prevents localized build-up of charge on the tube walls. Metals (copper, aluminum, stainless steel) are the preferred materials for particle sampling tubing. In some applications, flexible tubing may be desired – especially in cases where rapid setup is required, for translating sample probe systems, or if the sampling system requires connections be made in tight spaces.

Recent use of carbon impregnated conductive silicone tubing as a flexible alternative to metal tubing has become prevalent. Several vendors supply silicone tubing and we have found no substantive variation in the performance of their products. Compared to metal tubing, conductive silicone tubing can be assembled rapidly and made to conform to unusual space requirements. Based on particle transmission alone, conductive silicone tubing is an acceptable substitute to metal. Figure 1 shows that particle transmission through conductive silicone tubing is nearly equal to that for stainless steel tubes, all other variables held nearly constant (50 m of tubing flowing particle laden gas at 50 SLPM, 297.4 K, 1 bar, 1.75 cm i.d. for silicone tubing, 1.17 cm
For the conductive silicone and stainless steel tubing, penetration is greater than 90% for particles between about 50 and 200 nm and drops rapidly for particles smaller than 50 nm. The predicted penetration agrees exceptionally well with that observed for all particle sizes considered, provided that the tubing is conductive. The much lower particle penetration shown in Figure 1 for polyvinyl chloride (PVC) tubing is likely due to electrostatic losses. Typical application of conductive silicone tubing for particle counting instrumentation (e.g. condensation...
2. Sampling Artifacts. Despite being appropriate for certain applications, we recommend that silicone tubing be used judiciously. We have identified two sampling artifacts that conductive silicone tubing introduces: 1) biases in sampled carbon dioxide concentrations, and 2) emission of siloxane compounds that contaminate air and particles transported through the tubing. We share laboratory and field data which provide evidence of both types of artifacts. The carbon dioxide artifact can cause miscalculation of sample dilution and pollutant emission indices (mass pollutant emitted per mass of fuel consumed) for engine exhaust studies. The siloxane artifact alters particle composition, inflates particle mass (especially mass of semi-volatile particles), changes particle surface properties, and introduces positive mass biases into filter-based sampling methods for particulate carbon. Table 1 summarizes our findings and respective conditions. Our observations complement and expand a previous report describing particle contamination from conductive silicone tubing. Based on the mounting evidence, we recommend that caution be exercised when using silicone tubing for aerosol sampling and characterization experiments since standard testing procedures may not reveal the contamination.

Artifact 1: Carbon Dioxide Uptake. For engine exhaust measurements, above ambient levels of CO₂ are taken as tracers for fuel combustion. Uptake of CO₂ into silicone tubing will introduce errors in the calculation of the dilution ratio used to quantify mass pollutant release per unit fuel burned (emission indices). To quantify the uptake effect, the concentration of CO₂ was measured before and after passing through test sections of flexible conductive silicone (1.75 cm i.d. x 15.2 m) and rigid 306 stainless steel tubing.
Sampling Artifacts from Conductive Silicone Tubing

(1.17 cm i.d. x 15.2 m). The sample lengths used here are typical for engine exhaust experiments which require a substantial standoff distance between the engine and the test equipment, as is the case for testing of gas turbine engine exhaust. Flow rates of 5 and 50 SLPM were used giving residence times of ~40 and 4 seconds. Three CO\(_2\) concentrations characteristic of engine exhaust were tested (5.00%, 1.69% and 0.80%). In a typical experiment, the test section of tubing was conditioned by flowing CO\(_2\)-free nitrogen gas over it for roughly 10 min. Then, CO\(_2\) was introduced into the stream at the desired mixing ratio and fed directly to the CO\(_2\) detector, bypassing the test section. The CO\(_2\) gas was then re-directed to the test section of tubing and the CO\(_2\) concentration monitored. Figure 2 shows representative CO\(_2\) data collected after passing through the stainless steel and silicone test sections. Data are normalized using the CO\(_2\) concentration measured in bypass mode. Compared to stainless steel, the CO\(_2\) concentration was reduced by ~5% (from 50,000 ppm to 47,500 ppm) after passing through the silicone tubing. Similar decreases in CO\(_2\) concentrations were observed at the lower CO\(_2\) concentrations tested. The CO\(_2\) concentrations appeared to slowly recover with time; however, they did not fully recover after 5 min of stable operation. For many experiments (e.g., transient exhaust plume sampling or when engine test time is limited), the transient uptake of CO\(_2\) may introduce systematic errors on the order of 5% in CO\(_2\) concentration and emission index calculations - or require careful planning of test conditions and substantial (> 5 min) equilibration times. Tubing lengths shorter than 15.2 m had smaller CO\(_2\) uptake which recovered more rapidly.

CO\(_2\) uptake might conceivably introduce uncertainty into aerosol mass spectrometry data, as CO\(_2\) contributes to the m/z 44 signal. To avoid this error in systems
where silicone tubing cannot be removed, we recommend using particle size data to subtract the gaseous m/z 44 from particle m/z 44. The subtraction procedure should be performed any time that the CO\textsubscript{2} concentration deviates by more than about 10% from ambient values (approximately 380 ppm), especially when the particles contain carboxylic acid functionality.

\textbf{Figure 2.} CO\textsubscript{2} concentrations in air dilution gas (initially 50,000 ppm CO\textsubscript{2}) directly from the flow manifold and after transport through 15.2 m of stainless steel or 15.2 m of conductive silicone tubing. The CO\textsubscript{2} concentration is about 5% lower after transport through silicone tubing as compared to its concentration direct from the manifold or after transport through stainless steel tubing. The CO\textsubscript{2} concentration after transmission through silicone tubing appears to slowly recover, but the dynamic response time is greater than 5 min.
Artifact 2: Emission of Siloxanes. We have seen evidence of contamination emitted from the silicone tubing used for several different research applications and have identified siloxanes as the key constituent of the contamination using independent analytical techniques.

We previously observed siloxane compounds during several campaigns to characterize aircraft engine exhaust particles (APEX-1, Lobo et al., 2007, Onasch et al., 2008; JETS-APEX2/APEX3, Timko et al., 2009). With repeated observation, we grew suspicious that the source of the siloxanes may not be aircraft related. We have now accumulated data from three separate sources that confirm that silicone tubing is the source of the siloxane contamination: 1) 70 eV electron impact (EI) ionization aerosol mass spectrometry of gas turbine engine soot particles and laboratory jet fuel diffusion flame soot, 2) VUV-ionization high-resolution aerosol mass spectrometry of organic particles, and 3) Fourier transform infrared (FTIR) spectroscopy of diffusion flame soot particles collected on quartz filters.

Although we had detected trace siloxane during previous aviation experiments, these events provided too little signal (<5% of the total organic PM) to perform a rigorous chemical analysis. A more recent engine test (Timko et al., 2009) provided sufficient data to make a positive identification. During that test, the majority (20 m) of tubing was stainless steel or copper, with two important exceptions: 1) several short sections (1m total length) of silicone tubing were used in a valve box designed to distribute gases to various experimental groups and 2) two short pieces (1m total length) of 0.51 cm i.d. conductive siloxane tubing were used to make several tight connections 2 m before the sample gas reached the particle characterization instruments. Due to its
proximity to the engine, the tubing in the valve box may have been exposed to elevated temperatures (T > 50 °C) during the test, though the exact temperature at that location was never measured. Figure 3a shows a characteristic mass spectrum (m/z 40-300) of the engine exhaust particles obtained by an aerosol mass spectrometer (Jayne et al., 2000; Canagaratna et al., 2007).

Figure 3. Characteristic EI ionization mass spectra obtained for a) engine exhaust particles and b) aerosolized polydimethylsiloxane (PDMS). The m/z features distinctive of PDMS, (m/z = 73, 147, 207, 221, 281) are readily apparent as a contaminant in the engine exhaust particles.

The spectrum in Figure 3a was measured for particles sampled 1 m from the exit nozzle of a commercial gas turbine engine operating at 85% of its full rated thrust.

Electron impact (EI), a technique associated with significant molecular fragmentation,
was the ionization method for the spectra in Figure 3, and the resolution was unit mass
(m/Δm ≈ 800 at m/z 184). In addition to features consistent with fragmentation of a
hydrocarbon backbone (m/z = 41, 43, 55, 57, etc.), a series of lines with m/z = 73, 147, 207, 221, and 281 is clearly evident in the mass spectrum. The distinctive m/z pattern allows identification of an organosilicon compound in the particles. Dong et al. (1998) recorded the mass spectra of several organosilicon polymers using gas chromatography tandem mass spectrometry. Of the silicon-bearing polymers tested by Dong et al. (1998), polydimethylsiloxane (PDMS) provided the best match to the field spectrum shown in Figure 3a. Figure 3b shows the mass spectrum of a PDMS sample obtained by aerosolizing the polymer directly into the same aerosol mass spectrometer used during the field test. The match between the primary feature present in Figure 3a and Figure 3b is excellent. PDMS samples with different molecular weights (700, 1,500, and 2,500) are qualitatively similar; the only difference being that the ratio of m/z = 73 to the other peaks decreases with molecular weight. Dong et al. (1998) identified the m/z = 73 peak as the ionized monomer unit – SiO(CH\(_3\))(CH\(_2\))\(^+\) – while the larger peaks (m/z = 147, 221) are the dimer and trimer, respectively. For EI ionization, the molecular ion series is therefore of the form SiO(CH\(_3\))(CH\(_2\))(SiO(CH\(_3\))(CH\(_3\)))\(_n\)\(^+\) and the mass of a given fragment follows the series 73 + 74(n). Several secondary peaks are present in the electron impact spectrum (e.g., m/z 221 and 281) which result from loss of CH\(_2\)– groups from the SiO(CH\(_3\))(CH\(_2\))(SiO(CH\(_3\))(CH\(_3\)))\(_n\)\(^+\) series.

Data from the engine test experiments identified the PDMS contaminant, but could not verify the source of PDMS as the fuel tank and fuel line seals, fuel additive, exhaust gas probes, and sample transfer lines may have plausibly introduced PDMS into
the particles. We dismissed the fuel-related options as we deemed it unlikely that PDMS would survive the combustion process. Several different exhaust gas probes were used throughout the experiment and they yielded similar PDMS signatures and quantities, leaving the common sample transfer lines – and the silicone tubing used in them - as the most likely source of the PDMS contaminant.

Three subsequent tests unequivocally identified the silicone tubing as the source of the PDMS contaminant and demonstrated that the artifact is not limited to engine exhaust studies.

In one experiment, the size-resolved composition of particles emitted from a diffusion flame of kerosene fuel was characterized using on-line aerosol mass spectrometry. The combustion-generated particles were passed through either a 30.5 cm test section of as-received carbon impregnated conductive silicone tubing (0.953 cm o.d., 0.635 cm i.d.) or stainless steel tubing (0.635 cm o.d., 0.476 cm i.d.). Representative size-resolved composition data are plotted in Figure 4 when the section of silicone tubing served as the conduit for organic aerosol particles. Substantial PDMS pick up is evident on the 30-100 nm vacuum aerodynamic diameter soot particles (roughly 10% by mass), and the PDMS is present as an internally mixed aerosol together with soot particles (Timko et al., 2008; Onasch et al., 2008). During tests to characterize the geometric diameters of various forms of soot, Schneider et al. (2006) found evidence of a siloxane coating consistent with our results.
Figure 4. Particle size distribution of organic material and PDMS coated on soot particles generated by combustion of kerosene in a diffusion flame. Data were collected over the course of an hour by an aerosol mass spectrometer. The mass loading of PDMS is about 10% of the total organic material in the 30-100 size range. The size distribution of PDMS and organic material indicates well-mixed particle population for soot sized particles (30-100 nm). Ambient organic aerosol present in the laboratory during the testing period (diameter > 200 nm) has measurable but lower capacity for PDMS compared to the soot particles. The ratio of the organic scale to the PDMS scale is 12:1.

Figure 4 also shows that organic aerosol particles present in the air in our laboratory and used to dilute the primary exhaust sample (i.e., the size mode greater than about 500 nm) picked up about 5 wt % of the PDMS contaminant. In contrast, this siloxane artifact was never observed when stainless steel tubing was used in place of the silicone tubing.

In a second experiment, designed to study heterogeneous chemistry (Smith et al., 2009), we obtained independent evidence supporting our PDMS assignment using a high resolution (m/Δm ~ 3,000 at m/z 184) mass spectrometer coupled with a soft-ionization technique (10.5 eV VUV radiation). In this experiment, organic aerosol particles
(squalane, C_{30}H_{62}) were generated in a nucleation oven and later sampled into the aerosol mass spectrometer through a short (1 m) section of silicone tubing. During post-processing, evidence of PDMS compounds was observed in the mass spectra; the contamination was strongest after the silicone tubing was inadvertently exposed to methanol. The high resolution, soft-ionization instrument permitted us to obtain mass defect spectrometry data for high m/z (m/z > 500) PDMS ions. Figure 5 presents characteristic high resolution mass spectra data for the large PDMS fragment ions. The distinct m/z series containing 503, 577, 651, 725, 799, 873, and 947 is clearly evident in Figure 5. High resolution (\(\Delta m/m \sim 3,000\)) mass spectrum for the PDMS contaminant obtained after soft-ionization using VUV radiation. Adjacent peaks are separated by 74.02 ± 0.03 mass units, which corresponds to SiO(CH_3)_2 (m/z 74.02). The inset compares the experimental spectrum to the predicted isotopic fragmentation pattern for (SiO(CH_3)_2)_8SiOCH_3^+.

\[\Delta m = 74.02 \pm 0.03 \\
\text{Loss of SiO(CH}_3)_2\text{ unit} \]
the data. In slight contrast to the EI ionization data presented in Figure 3, the difference between consecutive peaks resulting from soft ionization is always 74 mass units. In fact, for the high resolution spectra the exact difference is 74.02 ± 0.03 mass units, matching the weight of the SiO(CH$_3$)$_2^+$ fragment ion within instrumental mass calibration precision. The soft ionization series follows the distinct m/z pattern of 59 + 74(n), indicating the molecular ion carrier is either of the series SiO(CH$_3$)(SiO(CH$_3$)$_2$)$_n^+$ or SiH(CH$_3$)$_2$(SiO(CH$_3$)$_2$)$_n^+$. Based partially on the (SiO(CH$_3$)$_2$)$_n^+$ molecular ion carrier observed with EI ionization, we suspect that the soft ionization carrier is of the SiO(CH$_3$)(SiO(CH$_3$)$_2$)$_n^+$ series. As further support of the SiO(CH$_3$) m/z 59 assignment, the strongest cluster of peaks occurs at m/z 651.11(6) which more closely matches the mass of (SiO(CH$_3$)$_2$)$_8$SiOCH$_3^+$ m/z 651.14(5) than (SiO(CH$_3$)$_2$)$_8$SiH(CH$_3$)$_2^+$ m/z 651.18(2). The inset to Figure 5 shows a close-up of the m/z 651 mass spectra region side-by-side with the calculated isotopic pattern for (SiO(CH$_3$)$_2$)$_8$SiOCH$_3^+$. The isotopic match is excellent, confirming our assignment of the SiO(CH$_3$)$_2$ monomer to the observed spectrum.

In a third experiment, FTIR spectroscopy provided complementary identification of siloxane condensed on soot particles collected on filters. The soot was produced with a diffusion flame of methane and air (Kirchstetter and Novakov, 2007) and was collected with three PTFE membrane filters (Pall Life Sciences, 2.0 μm pore size) in stainless steel holders immediately downstream of two sections of silicone conductive tubing (for 1.27 cm hose barb) and one section of 1.27 cm stainless steel tubing, each 75 cm long. Heating tape was applied to the upstream end of one of the pieces of silicone tubing. The air temperature four centimeters into the upstream ends of the heated and unheated
The sampling airflow rate through each line and duration were 12 SLPM and 80 min, respectively.

The soot was removed from the filter and pelletized with KBr. FTIR spectra recorded in the transmission mode (Magna Nicolet 760) are shown in Figure 6. Peaks corresponding to siloxane functional groups were observed in the soot collected through the silicone tubing, but were not evident in the soot collected through the stainless steel tubing. We assigned the following bands to siloxane functional groups: Si-CH$_3$ bending

![Figure 6. FTIR spectra of soot passed through equal lengths of stainless steel and silicone conductive tubing at room temperature (unheated), and heated silicone conductive tubing. Peaks in the spectra of the soot collected via silicone tubing correspond to siloxane functional groups and are not evident in the spectra of soot collected via stainless steel tubing. The distance between each tick mark on the vertical axis is 0.01 absorbance units.](image-url)
(1259 cm\(^{-1}\)), asymmetric Si-O-Si vibration (1020-1111 cm\(^{-1}\)), and Si-(CH\(_{3}\))\(_2\) rocking vibrations (805 cm\(^{-1}\)) (Wachholz et al., 1995). The asymmetric Si-O-Si vibration peaks were more resolved and the Si-CH\(_{3}\) bending peak was more pronounced for the soot collected through the heated silicone tubing than the silicone tubing at room temperature.

3. Consequences of Contamination from Conductive Silicone Tubing. The emission of organic contaminants from silicone tubing can have undesirable consequences. We have identified three circumstances when using this type of tubing can lead to erroneous conclusions about the mass concentrations and physical behavior of aerosol particles. Our analysis has not been exhaustive (i.e. our results cannot be used quantitatively to assess the potential contamination in experimental circumstances not described here); however, our results do illustrate significant artifacts when sampling carbonaceous aerosol particles and, to a lesser degree, CO\(_2\) concentration measurements through carbon impregnated silicone tubing. Therefore, we recommend caution be exercised when silicone tubing is used for particle characterization experiments.

Consequence 1: Addition of Particle Mass. Having positively identified the siloxane contaminant in the engine exhaust particles discussed above, we set out to quantify its concentration. The SiO(CH\(_{3}\))\(_2\) monomer unit in PDMS has a distinct mass spectrum from other hydrocarbon-like organic material (e.g. partially oxidized fuel in aircraft engine exhaust and lubricating oils), which provides an opportunity to quantify the fraction of particle material which is PDMS. Overlap between PDMS and hydrocarbon organic compounds occurs at m/z 55, 57, etc; these peaks constitute less than 5% of the total PDMS spectrum and were assumed to be entirely organic. Based on the limited overlap between PDMS and other interfering species, we estimate
our PDMS detection limit to be 50 ng m\(^{-3}\) in the presence of engine exhaust (for a 10 sec sampling period); in the absence of any interference, our detection limit based on three times the measurement noise is 3 ng m\(^{-3}\) (for a 10 sec sampling period). The major characteristic PDMS peaks at m/z = 73, 147, 207, etc. were assumed to be entirely due to PDMS. With these assumptions, we calculate that PDMS constitutes about 30\% of the entire particle mass defined as “organic” in the spectrum pictured in Figure 3a. Similarly, roughly 10\% of the organic mass present on the laboratory soot (Figure 4) was PDMS.

Instruments designed to measure total particle mass loadings would have overestimated semi-volatile organic PM (that is, particle mass which exists in the gas phase at temperatures greater than 100 °C) by up to 30\% for these two specific cases, and without corresponding chemical composition information the data could not have been corrected during post-processing.

Consequence 2: Positive mass bias in filter-based techniques. On-line aerosol mass spectrometry is a powerful technique, but it is not as commonly practiced as filter collection of particle samples and off-line analysis. We performed simple tests which indicate that silicone tubing may introduce a positive mass bias for filter-based techniques used to measure concentrations of carbonaceous particulate matter. In these tests, quartz fiber filters (Pallflex 2500 QAT-UP) were used to sample air that had passed through parallel sections of tubing: heated silicone, unheated silicone, and unheated stainless steel (the same as used in the experiments that produced Figure 6). The sampling flow rate and duration were 10 SLPM for 55 min in each case. The air was initially particle free and scrubbed of organic gases using an activated carbon denuder.
The air temperature at four centimeters into the upstream ends of the heated and unheated silicone tubing lines in this experiment was 45 and 22 °C, respectively.

The carbon content of each filter was quantified using the thermal analysis technique of Kirchstetter and Novakov (2007). The carbon evolved from each filter as it was heated is shown in Figure 7a. The filters downstream of both the heated and unheated silicone tubing collected significant amounts of carbon; the former collected
Figure 7. Evolution of carbon as a function of temperature for (a) quartz filters that were used to sample particle free air through heated and unheated silicone conductive tubing and unheated stainless steel tubing and (b) a front and a backup quartz filter collected downstream of heated silicone conductive tubing.
about 50% more mass than the latter. In contrast, the filter downstream of the stainless
steel tubing was comparatively free of carbon, proving that carbon on filters downstream
of the silicone tubing was emitted by the silicone tubing. The features of the carbon
thermograms – both the relative heights and temperatures of the primary peak and
secondary peaks are consistent with those of sorbed organic vapors on quartz filters
(Kirchstetter et al., 2001). Figure 7b shows thermograms of two quartz filters
downstream of the same section of heated silicone tubing in similar experiment in which
one quartz filter was preceded by a PTFE membrane filter. The particle removal
efficiency of the PTFE membrane is essentially 100%, so the presence of carbon on the
backup quartz filter proves that this carbonaceous material was gaseous rather than
particulate when it was collected, demonstrating that particles are not required to carry
the vapors emitted from the silicone tubing. We infer that the vapor is likely the siloxane
compound identified above. Our observations are consistent with the diffusion of low
molecular weight siloxanes from the bulk to the surface of the silicone tubing wall as
described by Hunt et al (2002) and Oláh et al. (2005), followed by their release into the
vapor phase.

While the collection of particulate matter with quartz fiber filters and the
subsequent thermal analysis of the filters is a widely used method for quantifying
concentrations of carbonaceous particulate matter, the technique is prone to a major
sampling artifact: the adsorption of organic vapors to the quartz filters. The adsorbed
vapors on the filter, in addition to the collected particulate matter, evolve during thermal
analysis. Particulate carbon concentrations derived from this analysis will, therefore, be
overestimated if the adsorbed carbon is not discounted. This artifact is known as the positive sampling artifact for particulate carbon.

The experiments described above illustrated that the use of silicone conductive tubing results in the adsorption of organic vapors to quartz filters. If this carbon is mistaken as particulate, the apparent particulate carbon concentrations for the “heated” and “unheated” quartz filter samples collected through silicone tubing shown in Figure 7a are 64 and 39 µgC m\(^{-3}\) for the experimental configuration and tubing lengths used here. While heating the tubing enhanced the artifact, the positive bias still large (compared to typical atmospheric carbon particulate matter concentrations, for example) in the case when the tubing was not heated.

A sampling method recommended to quantify the magnitude of the positive artifact – and to correct for it – involves sampling with a backup quartz filter, either placed behind the primary quartz filter or behind a PTFE membrane filter (Turpin et al., 1994). This method works well if the backup and front quartz filters adsorb comparable amounts of organic vapors, in which case the amount of carbon on the back quartz filter can be subtracted from the amount of carbon on the front quartz filter. As shown for the experiment depicted in Figure 7b, the quartz filter behind the PTFE membrane filter provided a good measure of the artifact. In most published instances, however, this correction is not applied to particulate carbon concentrations (Novakov et al., 2005).

Consequence 3: Alteration of Particle Surface Properties. In addition to the quantitative biases observed for aerosol mass spectrometry and filter collection and analysis, we observed that the silicone tubing can alter the surface of sampled particles. Specifically during the production of suspensions of soot in water for various research applications,
we observed that passing of soot through silicone conductive tubing altered its water affinity. Our production of soot suspensions involved 1) collecting soot generated with a diffusion flame of methane and air through stainless steel tubing onto a stretched PTFE membrane filter, 2) exposing the soot-laden filter to ozone via PTFE tubing, and 3) rinsing the soot from the filter with water and collecting it in a beaker. At that point, a simple swishing of the water formed a stable soot suspension (Figure 8a). The ozonation step leads to the formation of polar surface groups, such as carboxylates (Smith and Chughtai, 1997), which apparently transforms the soot from a hydrophobic to a hydrophilic state. If the ozonation step was skipped, the soot remained hydrophobic and would not wet, clustering at the water surface.

The influence of the silicone tubing was noted when the first step of our method was altered to include a 75 cm length of silicone conductive tubing in lieu of stainless steel tubing. In this case, the soot particles remained hydrophobic even after the ozonation step (Figure 8b). Thus, including the silicone tubing prevented the transformation of the soot from a hydrophobic to hydrophilic state.
Figure 8. (a) Soot from a diffusion flame made hydrophilic by reaction with ozone. Shown is the soot as it is mixing with water. (b) Soot from a diffusion flame that does not mix with water despite ozone exposure. The soot in (b) was collected through silicone conductive tubing as opposed to the soot in (a), which was collected through stainless steel tubing.

We considered the mechanism preventing the soot’s transformation to a hydrophilic state, though it still remains an open question. Adsorbed siloxanes may inhibit (i.e., poison) the surface oxidation reaction necessary for making the soot hydrophilic. FTIR measurements, however, indicated the formation of hydrophilic (Chughtai et al., 1991) carboxyl groups upon ozonation in samples of soot regardless of whether they had passed through the heated silicone or unheated stainless steel tubing. Another possibility is that the adsorbed vapor was hydrophobic and rendered the soot hydrophobic despite its surface oxidation. We observed in the experiments described above that the adsorption of the vapor emitted by the silicone tubing onto quartz filters increased their hydrophobicity, supporting this hypothesis. A drop of water placed on the “heated silicone tubing” filter (referenced in Figure 7a) remained on its surface whereas a water drop placed on the “unheated stainless steel tubing” filter was immediately soaked.
into the filter, demonstrating the hydrophobic nature of the vapor emitted by the silicone tubing. FTIR measurements indicated the continued presence of the siloxane during ozonation, and while these data do not give a complete description of the soot surface, they suggest that the persistence of the siloxanes may render the soot hydrophobic even though some oxidation of the soot may occur.

4. Mechanisms of Siloxane Uptake by Particles. Experimental observations suggest that the PDMS entrainment mechanism primarily involves gas-to-particle transfer of short-chain PDMS oligomers. Transfer of PDMS polymers into the sample stream via direct entrainment of loose particles is another plausible mechanism, but experimental particle size data suggest that particle shedding is a minor contamination source. As suggested in Figure 4, PDMS was typically present as an internally mixed aerosol, together with an organic fraction. PDMS particles shed directly from the tubing wall would likely be present as an externally mixed aerosol population. Only the gas-to-particle mechanism would lead to the internally mixed aerosol populations observed experimentally. (Reviewer #1, comment #4) We cannot rule out particle shedding in all instances; freshly received silicone tubing produced a PDMS response when particle free air was passed through it. The magnitude of the PDMS response was less than 50 ng m$^{-3}$, occurred sporadically with a frequency of about 0.02 Hz, and persisted less than 25 sec (the time response of the instrument during this test was 25 sec). From these observations, we conclude that particle shedding can occur under some circumstances, but that the overall contribution to the observed contamination effects is likely to be negligible compared to gas-to-particle uptake.
The quartz filter experiments discussed above provide the best evidence that gas-to-particle transfer must occur. In these experiments, a quartz filter placed downstream of a PTFE membrane collected organic carbon while sampling purified air that had contacted the silicone tubing. The collection of carbon could only have occurred due to adsorption of gaseous materials – i.e., siloxane – that had evaporated from the silicone tubing. In the presence of a particle carrier, the siloxane materials would also condense on the particles. Therefore, we conclude that gas-to-particle conversion must be an important mechanism whereby siloxane is introduced to the particles.

Gentle heating (<100 °C), particle carriers, and exposure to organic solvents enhance siloxane uptake. Particle composition and surface area also may be important. We have studied PDMS uptake behavior for a range of particles: soot particles (generated in a high pressure gas turbine engine and in a atmospheric pressure diffusion flame burners, 50 nm < D_{VA} < 120 nm), lubrication oil droplets (generated by a gas turbine engine or atomization, 100 nm < D_{VA} < 400 nm), organic aerosol (squalane generated from atomizing a methanol solution and ambient particles present in both outdoor and laboratory air), and ambient sulfate particles (D_{VA} > 100 nm). PDMS uptake ranged from below detection limits (50 ng m^{-3} in the presence of organic interference such as from engine exhaust, 3 ng m^{-3} in filtered air) to 1000 ng m^{-3}. Table 1 summarizes our observations of PDMS uptake. Depending on the exact source and sampling configuration, uptake onto soot particles accounted for 20-30% of the total organic particle mass (absolute quantity ≈ 200 to 1000 ng m^{-3}). Lubrication oil droplets picked up much less PDMS than soot – on the order of 1-2% by weight or absolute quantities of about 10-50 ng m^{-3}. Insufficient PDMS was present on the lube oil to confirm coincident
size distributions. PDMS content in poorly characterized organic particles present in laboratory air was about 5% by mass (as shown in Figure 4). PDMS pickup by ambient sulfate particles was below the instrument detection limits as PDMS constituted less than 0.1% of the sulfate particle mass (corresponding to a gas concentration of between 3-10 ng m^{-3}).

5. Conclusions and Recommendations. Conductive silicone tubing use is associated with two sampling artifacts: 1) erroneous CO_2 concentration measurements due to dynamic uptake of CO_2 and 2) contamination by polydimethylsiloxane (PDMS) vapors. Contamination by PDMS inflates particle mass measurements made by aerosol mass spectrometry and filter deposition methods. Moreover, PDMS pickup may alter particle surface properties, specifically the hydrophobic/hydrophilic balance. We recommend further tests be performed to evaluate the influence of silicone tubing on the water-uptake of soot in in-situ aerosol hygroscopic growth experiments. Gentle heating, presence of particle carriers, and exposure to solvents may enhance the contamination effect. The amount of contamination is expected to increase as the tubing surface area increases. The effect is observed at ambient temperature and enhanced by mild heating (<100 °C). Increased tubing exposure surface area and particle surface area is expected to increase PDMS uptake. Despite its convenient flexibility and charge dissipation, we recommend that conductive silicone tubing be used with care for aerosol test experiments.

In some instances, the advantages of silicone tubing may outweigh its disadvantages. In these cases, we recommend that special precautions be made to manage potential errors. Specifically, when sampling particulate matter onto a quartz
filter through silicone tubing to quantify particulate carbon concentration by thermal
analysis, we recommend the simultaneous use of a backup quartz filter to correct for the
adsorption of organic vapors to the quartz filter.

Acknowledgments. The Aerodyne Research Inc. team thanks NASA (NRA
#NNC07CB57C) for supporting this work. We thank Bruce Anderson (NASA, Langley
Research Center) for his continued support of gas turbine engine particle emissions
characterization and useful discussion during the drafting of this manuscript. Brent
Williams (Aerodyne Research, Inc. and University of Minnesota) shared results from his
GC/MS analysis of siloxanes. Kathleen Tacina, Dan Bulzan, and Nan-Suey Liu (NASA
Glenn Research Center); Andreas Beyersdorf (NASA Langley Research Center); and
Anuj Bhargava (Pratt & Whitney) provided helpful discussion and comments which
improved the manuscript. Measurements at the Chemical Dynamics Beamline at the
Advanced Light Source are supported by the Director, Office of Energy Research, Office
of Basic Energy Sciences, Chemical Sciences Division of the U.S. Department of Energy
under Contract No. DE AC02-05CH11231. J.D.S is also supported by the Camille and
Henry Dreyfus foundation postdoctoral program in environmental chemistry.

References.

Canagaratna, M. R., Jayne, J. T., Jimenez, J. L., Allan, J. D., Alfarra, M. R., Zhang, Q.,
Onasch, T. B., Drewnick, F., Coe, H., Middlebrook, A., Delia, A., Williams, L. R.,
Trimborn, A. M., Northway, M. J., DeCarlo, P. F., Kolb, C. E., Davidovits P., and

Figure Captions

Figure 1. Fractional penetration (transmission) of size selected soot particles through test sections of stainless steel, conductive silicone, and polyvinyl chloride tubing. Fractional penetration is nearly identical for stainless steel, and conductive silicone tubing. Electrostatic losses in the non-conducting polyvinyl chloride tubing greatly reduce particle transmission. The penetration calculated for conductive tubing is shown for reference. Calculated penetration includes losses due to diffusion and inertia (settling), but not electrostatic losses. Conditions: 50 SLPM flow rate, 1.27 cm i.d. tubing, 50m tubing length, 25°C, 1 bar pressure.

Figure 2. CO\textsubscript{2} concentrations in air dilution gas (initially 50,000 ppm CO\textsubscript{2}) directly from the flow manifold and after transport through 15.2 m of stainless steel or 15.2 m of conductive silicone tubing. The CO\textsubscript{2} concentration is about 5% lower after transport through silicone tubing as compared to its concentration direct from the manifold or after transport through stainless steel tubing. The CO\textsubscript{2} concentration after transmission through silicone tubing appears to slowly recover, but the dynamic response time is greater than 5 min.

Figure 3. Characteristic EI ionization mass spectra obtained for a) engine exhaust particles and b) aerosolized polydimethylsiloxane (PDMS). The m/z features distinctive of PDMS, (m/z = 73, 147, 207, 221, 281) are readily apparent as a contaminant in the engine exhaust particles.

Figure 4. Particle size distribution of organic material and PDMS coated on soot particles generated by combustion of kerosene in a diffusion flame. Data were collected over the course of an hour by an aerosol mass spectrometer. The mass loading of PDMS is about 10% of the total organic material in the 30-100 size range. The size distribution of PDMS and organic material indicates well-mixed particle population for soot sized particles (30-100 nm). Ambient organic aerosol present in the laboratory during the testing period (diameter > 200 nm) has measurable but lower capacity for PDMS compared to the soot particles. The ratio of the organic scale to the PDMS scale is 12:1.

Figure 5. High resolution (\(\Delta m/m \sim 3,000\)) mass spectrum for the PDMS contaminant obtained after soft-ionization using VUV radiation. Adjacent peaks are separated by 74.02 ± 0.03 mass units, which corresponds to SiO(CH\textsubscript{3})\textsubscript{2} (m/z 74.02). The inset compares the experimental spectrum to the predicted isotopic fragmentation pattern for (SiO(CH\textsubscript{3})\textsubscript{2})\textsubscript{8}SiOCH\textsubscript{3}+.

Figure 6. FTIR spectra of soot passed through equal lengths of stainless steel and silicone conductive tubing at room temperature (unheated), and heated silicone conductive tubing. Peaks in the spectra of the soot collected via silicone tubing correspond to siloxane functional groups and are not evident in the spectra of soot collected via stainless steel tubing. The distance between each tick mark on the vertical axis is 0.01 absorbance units.

Figure 7. Evolution of carbon as a function of temperature for (a) quartz filters that were used to sample particle free air through heated and unheated silicone conductive tubing and unheated stainless steel tubing and (b) a front and a backup quartz filter collected downstream of heated silicone conductive tubing.
Figure 8. (a) Soot from a diffusion flame made hydrophilic by reaction with ozone. Shown is the soot as it is mixing with water. (b) Soot from a diffusion flame that does not mix with water despite ozone exposure. The soot in (b) was collected through silicone conductive tubing as opposed to the soot in (a), which was collected through stainless steel tubing.