Title
ACTIMYCIN A STIMULATION OF RATE-LIMITING STEPS OF PHOTOSYNTHESIS IN ISOLATED SPINACH CHLOROPLASTS

Permalink
https://escholarship.org/uc/item/8m7358frj

Authors
Schaeter, Bernice.
Bassham, James A.

Publication Date
1971-09-01
ACTIMYCIN A STIMULATION OF RATE-LIMITING STEPS OF PHOTOSYNTHESIS IN ISOLATED SPINACH CHLOROPLASTS

Bernice Schacter and James A. Bassham

September 1971

AEC Contract No. W-7405-eng-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ACTIMYCIN A STIMULATION OF RATE-LIMITING STEPS OF PHOTOSYNTHESIS IN ISOLATED SPINACH CHLOROPLASTS

BERNICE SCHACTER2,3 AND JAMES A. BASSHAM

Laboratory of Chemical Biodynamics, Lawrence Berkeley Laboratory,
University of California, Berkeley, California 94720
ABSTRACT

Changes in levels of metabolites in isolated spinach chloroplasts seen upon addition of Antimycin A during photosynthesis suggest that Antimycin A stimulates the rate-limiting reactions mediated by RuDPCase, hexose diphosphatase and ADPGlucose pyrophosphorylase by enhancing the general activation which operates normally during photosynthesis. The data do not support the conclusion that Antimycin A stimulates CO₂ transport into the chloroplasts. No evidence for inhibition of ATP synthesis by added Antimycin A was seen, but the level of ATP dropped about 25%, due perhaps to increased utilization without a fully compensating increase in rate of ATP synthesis. This decreased ATP level plus the increased rate of carboxylation reaction, and movement of PGA into the medium, can account for the increased levels of PGA formed.
INTRODUCTION

Antimycin A has been reported to stimulate the rate of photosynthesis of isolated spinach chloroplasts, as measured by the rate of CO_2 fixation, O_2 evolution, and P_i esterification in the presence of bicarbonate (1-4). Identification of the site of action of this stimulation and determination of the mechanism of stimulation could aid in the general understanding of the control of the photosynthetic metabolism.

The action of Antimycin A as an inhibitor and uncoupler of photoelectron transport and phosphorylation in chloroplast fragments has been previously reported (5-11). Several observations have led to proposals that Antimycin A stimulates the rate of CO_2 fixation in intact chloroplasts by stimulating the transport or activation of CO_2 or bicarbonate for the carboxylation step (3, 4).

The effects of Antimycin A addition on the levels of labeled metabolites formed during photosynthesis by isolated, whole spinach chloroplasts are examined in this report. Also, the effects of Antimycin A on the transport of metabolites from the chloroplasts are followed to determine if any changes in transport could be related to the stimulatory effects of antimycin A.
The results of these experiments suggest that Antimycin A affects three metabolic sites: namely, the conversion of fructose-1,6-diphosphate and sedoheptulose-1,7-diphosphate to their respective monophosphates, and the carboxylation of ribulose-1,5-diphosphate to give 3-phosphoglycerate. The increase in the rate of photosynthesis appears to be due to stimulation of RuDP carboxylase and not to either increased CO₂ level or RuDP level within the chloroplasts.

The results of these studies suggest that the presence of added Antimycin A does not increase the level of CO₂ in the chloroplasts, nor does it stimulate CO₂ fixation by increasing the level of the carboxylation substrate, ribulose-1,5-diphosphate (RuDP). Rather, it appears that Antimycin A may increase CO₂ fixation rate by stimulating the enzyme, ribulose-1,5-diphosphate carboxylase (RuDPCase, E.C.4.1.1.39) which mediates the carboxylation of RuDP to give 3-phosphoglycerate (PGA). Another rate-limiting enzyme of the reductive pentose phosphate cycle, hexose diphosphatase (E.C. 3.1.3.11), seems also to be stimulated. The ratio of ATP/ADP under conditions of photosynthesis was only moderately decreased in the presence of Antimycin A, perhaps accounting in part for an observed increase in accumulation of PGA as compared with dihydroxyacetone phosphate (DHAP).

MATERIALS AND METHODS

Chloroplasts were isolated from spinach leaves, and the rate of ¹⁴CO₂ fixation was determined as previously described, with the exception that unless noted, isoascorbate was omitted from all solutions (12). Analysis of the ¹⁴C and ³²P-labeled products of photosynthesis by two-dimensional chromatography and radioautography was carried out as
described earlier (13). Estimation of the distribution of metabolites between the chloroplasts and the surrounding medium was also carried out as previously described (14).

Chlorophyll was determined by the method of Arnon (15).

Antimycin A was obtained from Sigma Chemical Co. and dissolved in absolute ethanol. The total concentration of ethanol was kept at 1% or less, and, unless indicated, all controls contained 1% ethanol.

RESULTS

In the earlier reports of the Antimycin A stimulation of CO₂ fixation with chloroplasts, the control rates were generally low--10 to 35 μmoles CO₂ fixed/mg Chl/hr (2-4). An early observation in the present study was that chloroplasts with CO₂ fixation rates of 130 μmoles/mg Chl/hr were stimulated by 0.5 μM Antimycin A to CO₂ fixation rates of 180 μmoles/mg Chl/hr. While the control rates and the magnitude of the Antimycin A stimulation varied with the spinach used, the presence of Antimycin A (0.5-5.0 μM) in the incubation mixture from the start of the experiment dependably gave stimulations of from 50 to 150% of the control rate. A typical result is given in Figure 1. This experiment was performed with no preincubation and an argon gas phase. Addition of Antimycin A to chloroplasts after the usual light, air, preincubation and 2 to 5 min photosynthesis in the presence of bicarbonate generally gave little or no stimulation. Moreover, the inclusion of 10 mM isoascorbate, usually a standard component of the incubation mixture for chloroplasts (13), also prevented the stimulatory response to Antimycin A, even if the antibiotic were initially present. Unless noted, therefore, isoascorbate was routinely omitted from the reaction mixture.
The effects of the addition during photosynthesis of Antimycin A on the incorporation of 14C into several intermediates of the Calvin Cycle are shown in Figures 2 to 8. The increase in 3-phosphoglycerate (PGA) and ribulose-1,5-diphosphate (RuDP), and the drop in sedoheptulose-1,7-diphosphate (SDP) and in fructose-1,6-diphosphate (FDP), occurred consistently upon the addition of Antimycin A, but the increase in starch and decrease in fructose-6-phosphate (F6P) occurred only if the addition caused an increase in the rate of fixation.

If Antimycin A were simply increasing the effective concentration of the carbon dioxide substrate of the RuDP carboxylase, the level of RuDP would drop upon stimulation. This did not occur (Fig. 4). In order to test whether or not a higher level of CO$_2$ inside the chloroplasts could produce effects similar to those caused by Antimycin A addition, the incorporation of 14C into the Calvin Cycle intermediates accompanying a switch from low to high bicarbonate concentrations were studied. The change in RuDP and SDP levels resulting from such increased bicarbonate (Figs. 9 and 10) are completely different from the changes due to Antimycin A addition (Figs. 4 and 5). The increase in SDP with increased bicarbonate concentration was typical of the changes in all intermediates examined (starch, PGA, DHAP, FDP, F6P, etc.) except for RuDP, which clearly, and as predicted, dropped upon increasing the bicarbonate concentration.

As previously reported (3, 4), Antimycin A stimulated the rate of CO$_2$ fixation at both limiting and saturating bicarbonate concentrations. The metabolic consequences of added Antimycin A were also similar at both bicarbonate concentrations, as shown by the levels of SDP and RuDP in Figures 11 and 12.
Since it had been demonstrated that regulatory factors (PP\textsubscript{i}, Mg++, and a factor associated with spinach alkaline FDPase) can have marked effects on the transport or release of metabolites from the chloroplasts into the surrounding medium (16), it was of interest to determine if Antimycin A might be exerting its stimulatory effect by changing the pattern of transport of metabolites from the chloroplasts. The results of an examination of the distribution between chloroplasts and the surrounding medium of the Calvin Cycle intermediates labeled during photosynthesis and the response to the addition of Antimycin A are shown in Table I. There appear to be no significant changes in movement of metabolites into the medium in response to Antimycin A.

Because Antimycin A has frequently been demonstrated to uncouple both cyclic and non-cyclic photophosphorylation in chloroplast fragments (11), we examined the effect of Antimycin A on the levels of ATP in intact chloroplasts before and during photosynthesis by following the incorporation of 32P\textsubscript{i} into ATP both in the presence and absence of bicarbonate. The data presented in Figure 13 were obtained by incubating chloroplasts in the presence and absence of 0.5 \textmu M Antimycin A, first during an air, light preincubation, and then after the addition of bicarbonate. There was no significant change in the accumulation of 32P\textsubscript{i} into ATP in the absence of bicarbonate. Upon addition of bicarbonate, a greater decrease in the labeled pool of ATP was seen in the chloroplasts incubated with Antimycin A. Since the rate of CO\textsubscript{2} fixation was increased in this instance by Antimycin A from 74 to 141 moles fixed/mg Chl/hr, the actual rate of synthesis of ATP must be correspondingly greater in the chloroplasts incubated with Antimycin A than
in the control chloroplasts. Thus the decreased level of ATP can be due only to the increased demand for ATP compared to its rate of synthesis. This may also account for the drop in ATP observed upon the addition of Antimycin A to photosynthesizing chloroplasts (Fig. 14).

It was also found that the stimulation of CO₂ fixation by Antimycin A is highly sensitive to the concentration of added Mg⁺⁺ (Fig. 15), but unlike the inhibitory fraction obtained from spinach juice (16), Antimycin A is not synergistically inhibitory with Mg⁺⁺.

DISCUSSION

That Antimycin A might increase the chloroplasts' efficiency for utilization of bicarbonate had been suggested primarily by the following observations: (a) the increase in both the absolute and relative amount of synthesis of PGA in the presence of Antimycin A (2, 3); (b) the decrease in the Km(HCO₃⁻) of the chloroplasts in the presence of Antimycin A (3, 4); (c) the apparent insensitivity of the RuDP carboxylase to Antimycin A when assayed in osmotically lysed chloroplasts (3); and (d) the fact that the Km(HCO₃⁻) of the carboxylase is higher than the Km(HCO₃⁻) of the chloroplasts (3). These facts, plus the demonstration by Lane that CO₂, not HCO₃⁻ was the substrate for the carboxylase (17) led to the hypothesis that such a transport or activation step for bicarbonate existed in the intact chloroplasts and was the step primarily stimulated by Antimycin A (3).

The present study shows the level of RuDP does not drop, but in fact rises upon the addition of Antimycin A to photosynthesizing chloroplasts (Fig. 4), whereas RuDP level does drop upon addition of more bicarbonate (Fig. 9). Thus, it is clear that the mechanism of stimulation
of CO₂ fixation rate by Antimycin A is not by increasing CO₂ level inside the chloroplast. Even though the level of CO₂ inside the chloroplast may not exactly reflect the bicarbonate concentration in the medium, the dramatic drop in RuDP level accompanying the increase in HCO₃⁻ in the medium shows that CO₂ level inside has increased and that such an increase immediately affects RuDP level.

It might be argued that the somewhat increased level of RuDP seen in the presence of Antimycin A is responsible for the increased rate of CO₂ fixation. However, many studies in this laboratory (e.g., Ref. 16) have provided evidence that CO₂ fixation rate is quite insensitive to RuDP levels in the range usually observed. Often, a higher level of RuDP in photosynthesizing chloroplasts is indicative of slower CO₂ fixation rate. The level of RuDP under limiting bicarbonate is clearly sufficient to support a higher rate of carboxylation (Fig. 9), as evidenced by the increase in the rate of CO₂ fixation from 19 to 65 μmoles ¹⁴CO₂ fixed/mg Chl/hr upon the addition of increased bicarbonate. Since Antimycin A will increase the rate of carboxylation even under limiting bicarbonate, it would appear that the level of RuDP is not a rate-limiting factor responsible for the response to Antimycin A. The carboxylation reaction has been identified as a primary site of metabolic regulation in the reductive pentose phosphate cycle (13, 18-21), and studies of the properties of the isolated enzyme, RuDPCase, show regulatory properties (22-24). The steady-state free energy change for the in vivo carboxylation reaction in Chlorella pyrenoidosa has been calculated as about -10 Kcal (25). Therefore it is not surprising that the reaction rate is insensitive to RuDP concentration.

If Antimycin A stimulation of fixation occurs neither by increased CO₂ level or RuDP level in the chloroplasts, stimulation of the enzymic
activity of RuDPCase remains the only other possibility.

The large drop in levels of SDP upon Antimycin A addition (Figs. 5 and 12) strongly suggests an activation of the enzyme, hexose diphosphatase, which catalyzes the hydrolysis of SDP and of FDP to the respective monophosphates. This is also suggested by the drop in level of FDP, even though the relative effect appears smaller. The reason that the drop in FDP is smaller is that most of the FDP present is in the medium outside the chloroplasts (16, and Table I of this report) where FDP can be formed from triose phosphates in the medium. Because of this, the total pool of FDP is much larger than that of SDP. The actual difference in μmoles of 14C incorporated, 5 min after addition of Antimycin A, is greater for FDP than for SDP.

We conclude, therefore, that the reactions mediated by hexose diphosphatase and by RuDPCase can be stimulated by the presence of Antimycin A. The stimulation of RuDPCase, leading to an increased rate of CO₂ fixation, appears only under certain conditions. These reactions are the rate-limiting steps in CO₂ fixation *in vivo* (13, 18-21) and are the steps inactivated in the dark and metabolically controlled in the light.

It has been proposed that pH in the chloroplast stroma region, together with Mg⁺⁺ ion levels, may affect the activities of these enzymes (18, 26). Other general regulatory mechanisms associated with photoelectron transport in the chloroplast thylakoids are also possible. Such regulatory mechanisms might be influenced by the action of Antimycin A on properties of the photochemical apparatus, such as photoinduced ion flux in the chloroplast membranes. Thus, Antimycin A could be stimulating some light-induced process which activates the regulated
enzymes of the reductive pentose phosphate cycle. It could be acting in a direction opposite from that of octanoate which reversibly abolished this light-activating process (19).

The stimulation of starch synthesis by Antimycin A also suggests enhancement of a general light-activated stimulation. The properties of the enzyme, ADPglucose pyrophosphorylase strongly suggested that the reaction of glucose-1-phosphate with ATP to give ADPglucose may be a site of metabolic control (27, 28). Kinetic studies of in vivo metabolism in Chlorella pyrenoidosa gave results that suggest that the activity of ADPglucose pyrophosphorylase, like that of hexose diphosphatase and RuDPCase, must greatly decrease within a minute after the light is off (29, 30). The present study suggests that Antimycin A stimulates all three enzymes.

The stimulation of starch synthesis by this mechanism could account for the drop in level of F6P even when hexose diphosphatase has been stimulated.

The results in this study do not provide any convincing evidence of an effect of Antimycin A on the rate of ATP synthesis. The total incorporation of 32P into organic phosphates is actually increased with Antimycin A (3), but the increase is less than the increase in CO$_2$ fixation, since some 14C is incorporated into starch and other non-phosphorylated products. The level of ATP during CO$_2$ fixation is about 25% lower with Antimycin A than without. This could be due only to the increased requirement for ATP occasioned by the stimulation of CO$_2$ fixation if the stimulation of ATP synthesis is less than the stimulatory effects on the regulated enzymes.

The lower level of ATP in the presence of Antimycin A, whatever its reason, could be partly responsible for the accumulation of PGA.
The two-step phosphorylation and reduction of PGA to triose phosphate is fairly reversible in vivo (25) ($\Delta G^S = -1.6$ Kcal), so that a 25% decrease in ATP level, and a corresponding increase in ADP, could shift the steady-state ratios of forward and back reactions. Since some of the PGA comes out of the chloroplasts into the medium (14), a small increased imbalance between rate of PGA formation and utilization could lead to a build up of PGA in the chloroplasts and a significantly increased rate of movement of PGA into the medium where it would accumulate. In the experiment which gave the data shown in Figures 1 and 2, the level of PGA 5 min after Antimycin A addition was increased by 3.2 μmoles of 14C relative to the control, whereas the total 14CO$_2$ fixation increased by 5 μmoles in the chloroplasts with Antimycin A as compared with the control. About 0.5 μmoles of the extra 14C has appeared at the origin, mostly as starch (Fig. 8). The remaining extra 1.3 μmoles of 14C accumulated during 5 min after Antimycin A addition was distributed around a variety of weakly labeled compounds, including various oligosaccharides.

The abolition of some of the stimulation of CO$_2$ fixation by Antimycin A by higher levels of Mg$^{++}$ ions in the medium could be due to a variety of reasons including effects of Mg$^{++}$ on movement of metabolites from the chloroplasts to the medium (16) and the known effects of Mg$^{++}$ ion on the activity of RuDP carboxylase (22, 23).
LITERATURE CITED

FOOTNOTES

1. This work was supported, in part, by the U. S. Atomic Energy Commission.
3. Present address: Department of Pharmacology, University of Miami, Miami, Florida 33136.
Table I. Effect of Antimycin A on the Release of 14C-labeled Photosynthesis Products from the Chloroplasts in the Medium

Rate of photosynthesis for the control was 45; with Antimycin A, 54 moles CO$_2$ fixed/mg Chl/hr. Antimycin A concentration was 0.5 M, both flasks contained 1% ethanol. Samples for analysis were taken after 11 min of photosynthesis, and 5.5 min after the addition of Antimycin A to flask B. Samples were centrifuged for 15 sec on the microfuge and then the pellet and supernatant solution were separately denatured with 80% methanol (14).

<table>
<thead>
<tr>
<th>Compound</th>
<th>Total moles 14C/mg Chl</th>
<th>% in medium</th>
<th>Total moles 14C/mg Chl</th>
<th>% in medium</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGA</td>
<td>1.81</td>
<td>74.7</td>
<td>2.05</td>
<td>78.9</td>
</tr>
<tr>
<td>DHAP</td>
<td>.96</td>
<td>93.0</td>
<td>.77</td>
<td>96.6</td>
</tr>
<tr>
<td>F6P</td>
<td>.14</td>
<td>26.9</td>
<td>.14</td>
<td>21.1</td>
</tr>
<tr>
<td>HMP</td>
<td>.78</td>
<td>11.9</td>
<td>.73</td>
<td>12.2</td>
</tr>
<tr>
<td>PMP</td>
<td>.15</td>
<td>82.5</td>
<td>.15</td>
<td>87.9</td>
</tr>
<tr>
<td>SDP</td>
<td>.026</td>
<td>34.9</td>
<td>.018</td>
<td>43.2</td>
</tr>
<tr>
<td>FDP</td>
<td>.31</td>
<td>86.4</td>
<td>.29</td>
<td>91.1</td>
</tr>
<tr>
<td>RuDP</td>
<td>.017</td>
<td>20.5</td>
<td>.017</td>
<td>19.6</td>
</tr>
<tr>
<td>Total DIP</td>
<td>.45</td>
<td>80.0</td>
<td>.39</td>
<td>82.9</td>
</tr>
</tbody>
</table>
FIGURE LEGENDS

Fig. 1. Rates of CO₂ fixation by isolated spinach chloroplasts with added Antimycin A.

- Control with 10 µl of ethanol added. – Control with 10 µl of ethanol added at 5 min. – Δ-Antimycin A added at the beginning of experiment. – A-Antimycin added at 5 min.

Figs. 2 thru 8. Effects on ¹⁴C-labeled metabolites of addition of Antimycin A to photosynthesizing isolated spinach chloroplasts.

Antimycin A was added after 5 min. of photosynthesis, as described in text.

Fig. 2. 3-Phosphoglyceric acid
Fig. 3. Dihydroxyacetone phosphate
Fig. 4. Ribulose-1,5-diphosphate
Fig. 5. Sedoheptulose-1,7-diphosphate
Fig. 6. Fructose-1,6-diphosphate
Fig. 7. Fructose-6-phosphate
Fig. 8. Origin (starch)

Figs. 9 and 10. Effects of increasing H¹⁴CO₃⁻ concentrations on levels of labeled metabolites in photosynthesizing isolated spinach chloroplasts.

After 5 min photosynthesis with 0.75 mM H¹⁴CO₃ the concentration was increased to 7.5 mM H¹⁴CO₃.

Fig. 9. Ribulose-1,5-diphosphate
Fig. 10. Sedoheptulose-1,7-diphosphate
FIGURE CAPTIONS (Cont.)

Figs. 11 and 12. Effects of high and low concentrations of \(\text{H}^{14}\text{CO}_3^- \) on levels of labeled metabolites in photosynthesizing isolated spinach chloroplasts in the presence and absence of added antimycin A.

Fig. 11. Ribulose-1,5-diphosphate

Fig. 12. Sedoheptulose-1,7-diphosphate

Fig. 13. Levels of \(^{32}\text{P} \)-labeled ATP in isolated spinach chloroplasts with added Antimycin A.

Isolated spinach chloroplasts were illuminated without added \(\text{H}^{14}\text{CO}_3^- \) in the presence of \(^{32}\text{P} \)-labeled inorganic phosphate. After 5 min, \(\text{H}^{14}\text{CO}_3^- \) was added to the control flask and to the flask containing Antimycin A.

Fig. 14. Effect of added Antimycin A on the level of labeled ATP in photosynthesizing isolated spinach chloroplasts.

Fig. 15. Effect of \(\text{Mg}^{++} \) ion concentrations on Antimycin A stimulated photosynthesis by isolated spinach chloroplasts.
Fig. 2
Fig. 3

μmoles 14C/mg Chl

MIN.

DHAP

Antimycin A

XBL 718-5302
Fig. 5
Fig. 7

μmoles [14C] / mg Chl

MIN.

Antimycin A

F6P

XBL 718-530E
Fig. 8
Fig. 9

RuDP

7.5 mM HCO₃⁻

μmoles ^14C / mg Chl

MIN.

0 4 8 12

XBL 718-5308
Fig. 10

μmoles ^{14}C / mg Chl

0 4 8 12

MIN.

7.5 mM HCO_3^-

SDP
Fig. 11

μmoles \(^{14} \text{C} \)/mg Chl

MIN.

0 4 8 12

RuDP

mM HCO_3^-

Antimycin A

0.75 7.5

0.75 7.5
Fig. 12
Fig. 13

![Graph showing the effect of \(H_4 CO_3^- \) and ATP on \(\mu C 32P / mg Chl \) over time. The graph includes a line for \(32P_i \) and a line for Antimycin A added at time 0.]
Figure 15

Relative Rates of CO$_2$ Fixation

- Antimycin A
 - 5.0 µM
 - 0.5 µM

Control (EtOH)

Mg$^+$ (mM)

0 1 2 3 4

XBL718-5297
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.