Title
SEARCH FOR $o \rightarrow u^+ u^-$

Permalink
https://escholarship.org/uc/item/8md706fc

Authors
Barbaro-Galtieri, Angela
Tripp, Robert D.

Publication Date
1964-07-31
University of California

Ernest O. Lawrence
Radiation Laboratory

SEARCH FOR $\phi \rightarrow \mu^+\mu^-$

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California
AEC Contract No. W-7405-eng-48

SEARCH FOR $\phi \rightarrow \mu^+ \mu^-$

Angela Barbaro-Galtieri and Robert D. Tripp
July 31, 1964
SEARCH FOR $\Phi \to \mu^+\mu^-$

Angela Barbaro-Galtieri and Robert D. Tripp

(Presented by Ronald R. Ross)

Lawrence Radiation Laboratory
University of California
Berkeley, California

July 31, 1964

Recently Ne'eman suggested the existence of a fifth interaction, similar to electromagnetism but some ten times stronger, mediated by a vector field or particle χ, coupled to the strangeness current $S = Y-B$. In connection with SU$_3$ this interaction would provide symmetry-breaking effects in the correct direction to require all masses to obey the first-order mass formula. Furthermore, if the χ is a massive particle, it could also explain the muon's mass. A mass $m_\chi > m_{2\pi}$ seems consistent with most experimental results, and Ne'eman suggests that the $\Phi (1020, 1^-)$ is a good candidate to be the χ field. Its connection with the muon can be checked by measuring the $\Phi \to \mu^+\mu^-$ decay rate and comparing it with the $\Phi \to e^+e^-$ decay mode. Beder et al. find that if the Φ is the χ field and it is responsible for the muon mass, it should decay via a muon pair ten times more rapidly than via a KR pair. That is, $R [(\Phi \to \mu^+\mu)/(\Phi \to \text{KR})]$ would be approximately 10, the calculated width for $\Phi \to \mu^+\mu^-$ being 30 MeV, about ten times the experimental width $\Gamma_\Phi = 3.1 \pm 0.6$ MeV. We report in this paper an experiment performed to check the validity of this theory. In particular, we have investigated the decay modes $\Phi \to \mu^+\mu^-$ and $\Phi \to e^+e^-$. In an experiment performed with the Lawrence Radiation Laboratory 72-inch hydrogen bubble chamber while making a general study of K^-p interactions at 2.4-and 2.7-BeV/c incident K^- momentum, we have investigated the reactions
\[K^- p \rightarrow \Lambda \mu^+ \mu^- \]

and

\[K^- p \rightarrow \Lambda e^+ e^- \]

Approximately 18,000 events with the V 2-prong topology have been measured. In about 8000 events the V fitted a \(\Lambda \), 70 events fitted the reaction \(K^- p \rightarrow \Lambda \Phi \) with \(\Phi \rightarrow K^+ K^- \), and 1250 events passed the criteria for fitting \(K^- p \rightarrow \Lambda \pi^+ \pi^- \). A cutoff in the four-constraint fit to this reaction has been set at \(\chi^2 = 24 \). The \(\chi^2 \) distribution is reported in Fig. 1. Since the momentum distribution of muons and electrons is expected to be peaked above 200 MeV/c, we do not expect to separate muons and electrons from pions on the basis of ionization measurement. A sample of events has been selected with the following criteria: (a) events that did fit \(\Lambda \) for the \(V \), but did not fit any of the usual reactions involving a \(\Lambda \): (b) events that had a fit for \(\Lambda \pi^+ \pi^- \) but for which the \(\chi^2 \) was larger than 5. In our sample 435 events are of type a and 487 of type b.

These selected 922 events have been fitted again, with the assumption that the two tracks at the production vertex are muons or electrons.

Table I summarizes the results of these fits.

<table>
<thead>
<tr>
<th>Events</th>
<th>Fitted reaction</th>
<th>Good fit</th>
<th>(CL > CL_{2\pi}) (^{(a)})</th>
<th>(CL > 5CL_{2\pi})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type a, 435</td>
<td>(\Lambda \mu^+ \mu^-)</td>
<td>13</td>
<td>13</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\Lambda e^+ e^-)</td>
<td>9</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>Type b, 487</td>
<td>(\Lambda \mu^+ \mu^-)</td>
<td>326</td>
<td>63</td>
<td>19</td>
</tr>
<tr>
<td></td>
<td>(\Lambda e^+ e^-)</td>
<td>128</td>
<td>24</td>
<td>8</td>
</tr>
</tbody>
</table>

\(^{(a)}\) \(CL \) = confidence level for the fit
Few events of type a have a good fit, because badly measured events fall in this category. The last two columns report the number of events whose fit is better for the μ and e hypothesis than for the π hypothesis. We consider as candidates for Reactions (1) and (2) only events for which

$$\text{CL} > 5 \text{ CL}_{2\pi}.$$

In Fig. 1, we plot χ^2 for $\Lambda 2\pi$ fit versus χ^2 for $\Lambda 2\mu$ fit. The solid curves represent different ratios of confidence level (CL). Figure 2 represents a similar scatter diagram for the e^+e^- hypothesis. On each axis the histogram represents the χ^2 distribution for that hypothesis; the shaded area refers to events that did not fit the other hypothesis for the particle masses. Some of the events fit $\mu^+\mu^-$ as well as e^+e^-; in this case the hypothesis with the higher CL has been chosen. We are left with 22 candidates for $\mu^+\mu^-$ and 11 for e^+e^-.

In Fig. 3a we plot the invariant mass $M(\mu^+\mu^-)$ of the system $\mu^+\mu^-$ of Reaction (1), and in Fig. 3b, $M(e^+e^-)$. Neither distribution shows any peaking at any particular mass, but they are similar to a $\pi\pi$ mass spectrum for the reaction $K^-p \rightarrow \Lambda \pi^+\pi^-$. Of the known resonances, only the ω shows two possible candidates in the $\mu^+\mu^-$ system. In Fig. 3c we plot the p distribution of the secondary tracks of the 33 candidates. The total length of these tracks is $L=24$ m. We observe three interactions along the tracks, while we expect none for muons or electrons. Were these tracks all π^+, or π^-, from the known cross sections at their momenta ($\sigma_{av} \approx 30$ mb) we would expect 2.7 interactions in this path length, which is consistent with what we observe.

In conclusion, in the examined sample there are two possible candidates for $\omega \rightarrow \mu^+\mu^-; \text{however, all events are consistent with being } \pi\pi \text{ productions.}$ At this stage of the experiment, we can calculate only upper limits for
lepton-pair decays of the ω and φ mesons, which we produce in other channels. Table II summarizes the results.

Table II. Branching ratios for lepton-pair decays of ω and φ.

<table>
<thead>
<tr>
<th></th>
<th>(\mu^+\mu^-)</th>
<th>(e^+e^-)</th>
<th>Total(a)</th>
<th>2/3×Total(b)</th>
<th>Branching ratios</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\omega)</td>
<td>2?</td>
<td>0</td>
<td>540</td>
<td>360</td>
<td>(\frac{\omega \rightarrow \mu^+\mu^-}{\text{total } \omega} < 0.005) (\frac{\omega \rightarrow e^+e^-}{\text{total } \omega} < 0.003)</td>
</tr>
<tr>
<td>(\phi)</td>
<td>0</td>
<td>0</td>
<td>111</td>
<td>74</td>
<td>(\frac{\phi \rightarrow \mu^+\mu^-}{\phi (KK)} < 0.013) (\frac{\phi \rightarrow e^+e^-}{\phi (KK)} < 0.013)</td>
</tr>
</tbody>
</table>

(a) Total number of \(\omega \) and \(\phi \) found in the same K path length examined here, corrected for neutral decays.

(b) This factor 2/3 takes into account the fact that we examine only events for which \(CL_{2\mu} \) (or \(CL_{2e} \) > 5 \(CL_{2\pi} \).)

The upper limit for \(\omega \rightarrow e^+e^- \) decay is not in disagreement with the previously published result of Murray et al. (\(R < 0.01 \)) and of Barmin et al. (\(R < 0.0039 \)).

The upper limit for \(R [(\phi \rightarrow \mu^+\mu^-)/(\phi \rightarrow KK)] \) turns out to be 0.013 which is three orders of magnitude lower than the value \(R = 10 \) calculated by Beder et al. This result rules out the suggestive speculation that the \(\phi \) meson interacts with the muon and produces its mass, leading to the conclusion that even if the \(\phi \) meson is the vector field \(\chi \) of Ne'eman's fifth interaction, it cannot be responsible for the mass of the muon.

We wish to acknowledge the support and cooperation of the Bevatron and bubble chamber crews and of the scanning and measuring staff, as well as of the many other physicists involved in this K experiment. We especially thank Professor Luis W. Alvarez for his stimulation and encouragement throughout the experiment. This work was done under the auspices of the Atomic Energy Commission.
FOOTNOTES AND REFERENCES

3. D. Beder, R. Dashen, and S. Frautschi, California Institute of Technology, private communications, July 1964. We are indebted to Dr. S. Frautschi for communicating to us this result prior to publication.

7. It should be pointed out that this experiment cannot prove whether the \(\Phi \) is or is not the postulated vector field, \(\chi \), of the fifth interaction.
Figure Captions

Fig. 1. χ^2 for $\Lambda 2\pi$ fit ($\chi^2_{2\pi}$) versus χ^2 for $\Lambda 2\mu$ fit ($\chi^2_{2\mu}$). On the right is the χ^2 distribution for $\Lambda 2\pi$. On the X axes is reported the χ^2 distribution for only those events satisfying $CL_{2\mu} > 5 CL_{2\pi}$. The solid lines represent different ratios of confidence level for $\Lambda 2\mu/\Lambda 2\pi$ hypotheses.

Fig. 2. χ^2 for $\Lambda 2e$ fit (χ^2_{2e}) versus χ^2 for $\Lambda 2\pi$ fit ($\chi^2_{2\mu}$). On the right is the χ^2 distribution for $\Lambda \pi^+\pi^-$. On the X axis is reported the χ^2 distribution for only those events satisfying $CL_{2\mu} > 5 CL_{2\pi}$. The solid lines represent different ratios of confidence levels for $\Lambda 2e/\Lambda 2\pi$ hypothesis.

Fig. 3(a). Invariant mass distribution of the ($\mu^+\mu^-$) system for 22 events satisfying the criteria (see text) for fitting $K^-p \rightarrow \Lambda\mu^+\mu^-$. (b) Invariant mass distribution of the (e^+e^-) system for 11 events fitting $K^-p \rightarrow \Lambda e^+e^-$. (c) Momentum distribution of μ or e tracks of the above 33 events.
Fig. 4.

\[\chi^2_{2\mu} > 5 \chi^2_{2\pi} \] (19)

- Open squares: Not fitted to \(\Lambda 2\mu \) (731)
- Solid line: Good fit \(\Lambda 2\mu \) (326)
- Shaded area: Bad fit for \(\Lambda 2\mu \) (161)
Fig. 3 (a), (b), and (c).
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.