Lawrence Berkeley National Laboratory
Recent Work

Title
EFFECT OF THE it-it RESONANCE IN THE REACTION it + n -V 2it = n

Permalink
https://escholarship.org/uc/item/8n39f701

Author
Kim, Yongduk.

Publication Date
1960-02-05
EFFECT OF THE $\pi - \pi$ RESONANCE IN THE REACTION

$\pi + n \rightarrow 2\pi + n$
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
EFFECT OF THE $\pi-\pi$ RESONANCE IN THE REACTION
$\pi + N \rightarrow 2\pi + N$

Yongduk Kim

February 5, 1960
EFFECT OF THE $\pi-\pi$ RESONANCE IN THE REACTION

$\pi + N \rightarrow 2\pi + N$

Yongduk Kim

Lawrence Radiation Laboratory
University of California
Berkeley, California

February 5, 1960

Experiments are now being contemplated to measure $\pi-\pi$ cross sections by the method of Chew and Low.\(^1\) In particular, the two reactions

\[\pi^+ + p \rightarrow \pi^+ + \pi^+ + n \quad (1) \]

and

\[\pi^- + p \rightarrow \pi^+ + \pi^- + n \quad (2) \]

are suitable for studying the $\pi^+ - \pi^+$ and $\pi^+ - \pi^-$ cross sections, respectively. Also under consideration are the processes

\[\pi^- + p \rightarrow \pi^- + \pi^0 + p, \quad (3) \]

\[\pi^+ + p \rightarrow \pi^+ + \pi^0 + p, \quad (4) \]

which involve the $\pi^- - \pi^0$ and $\pi^+ - \pi^0$ cross sections.

The method is based on the conjecture that there exists a pole in the scattering amplitude at $(p_2 - p_1)^2 = -\mu^2$ where p_2 and p_1 are the four momenta of final and initial nucleons, respectively, and μ is the pion mass. The formula for the "pole part" of the cross section in Processes (1) and (2) above is
\[
\frac{d^2 \sigma_p}{dp^2 d\omega^2} = \frac{r^2(p^2/\mu^2)\omega}{m_{1L}^2 (p^2 + \mu^2)^2} \left(\frac{\omega^2}{4} - \mu^2 \right)^{1/2} \sigma_{\pi\pi}^\omega(\omega),
\]

where \(p^2_{2m}\) is the recoil kinetic energy of the neutron (in the laboratory system), \(q_{1L}\) the incident momentum of the pion, and \(\omega\) the total energy of the two outgoing pions (in their center-of-mass system); \(\sigma_{\pi\pi}\) refers to \(\sigma_{\pi^+\pi^-}\) for the Process (2) and to \(\sigma_{\pi^0\pi^0}\) for Process (1).

This formula represents the complete cross section only in the unphysical immediate neighborhood of the pole, but if \(\sigma_{\pi\pi}\) is sufficiently large the pole may be expected to dominate that part of the physical region where \(p^2 \sim \mu^2\). The formulas for Processes (3) and (4) are similar, except that the right-hand side is multiplied by 1/2 because the virtual target particle is now a neutral pion.

The purpose of this letter is

A. To estimate the above cross sections by use of the theoretical resonance prediction for \(\sigma_{\pi\pi}\) in the \(I = 1\) state made by Frazer and Fulco.\(^2\)

B. To consider the same processes according to the statistical model.

C. By comparing the two results, to find suitable regions in the phase space for the experiments to be performed.

So far there is no clear-cut theoretical prediction concerning the \(I = 0\) and \(I = 2\) states of the \(\pi\pi\) system except that no resonance is expected. On the assumption that the \(I = 1\) resonance is dominant we shall set the \(\pi\pi\) cross sections in these states equal to zero; the
cross sections appearing in the residues of the poles for Processes (1) to (4) then stand in the ratio: 0:1:1:1.

We begin by calculating the pole part of the cross section for Process (2) according to two possibilities for $\sigma^{\pi^+\pi^-}$ which are obtained by Frazer and Fulco, corresponding to positions of the resonance at $\sqrt{q_r^2} \left(\frac{\omega}{\mu} \right)^2 = 1 = 1.5$ and 2 (Fig. 1). For each of the two $\sqrt{q_r}$'s the calculation was carried out for three values of momentum for the incoming pion:

$q_{1L} = 1.75$ Bev/c, 1.4 Bev/c, and 1.14 Bev/c.

At these energies the phase space available for single pion production is shown in Fig. 2 in terms of the two dimensionless variables $\left(\frac{p}{\mu} \right)^2$ and $t \equiv \left(\frac{q}{\mu} \right)^2$. The resulting differential cross section (5) is plotted in Fig. 3a and b at fixed $\left(\frac{p}{\mu} \right)^2$. These curves clearly show the effect of the resonance. Then the differential cross section is integrated in $\left(\frac{p}{\mu} \right)^2$ from its minimum to 5, which is a plausible guess for the range in which the pole term may be dominant. (The next nearest singularity in p^2 is a branch point at $p^2 = -9\mu^2$ corresponding to the three-pion component of the nucleon cloud.) The results are shown in Figs. 4a and b. The total cross section for this part of the phase space is then obtained by integrating over t and is shown in Fig. 5 for various upper limits on t. The corresponding cross section for Processes (1), (3) and (4) are obtained by multiplying the
result by 0, 1/2, and 1/2, respectively.

For the statistical model calculation we need the phase-space integral for two pions and one neutron of a given total energy, which can be shown to be

\[
\mathcal{J} = \int \delta(q_3^2 + \mu^2) \delta(q_4^2 + \mu^2) \delta(p_2^2 + m^2) \\
\delta(q_3 + q_4 + p_2 - p_1 - q_1) \, dp_2 \, dq_3 \, dq_4
\]

\[
= \frac{\pi^2}{m q_{1L}} \int \frac{\omega^{2/4} - \mu^2}{\omega} \, d\omega \, d\omega \, dp^2.
\]

Thus the differential cross section for single pion production in the statistical model is

\[
\frac{d^2 \sigma_s}{dt \, d(p/\mu)^2} = \frac{a}{4} \sqrt{\frac{1}{4} - \frac{1}{t}}
\]

where \(a\) is a constant to be determined by normalizing to the experimental total cross section at a given initial energy for the reaction in question.

The experimental data\(^3\) for the cross section for Process (2) show a plateau at about 7 ± 2 mb in the range of \(q_{1L}\) between 1 and 1.5 Bev/c. Using the value 7 mb, we obtain for \(a\) the values 0.030 mb at \(q_{1L} = 1.75\) Bev/c, 0.054 mb at \(q_{1L} = 1.4\) Bev/c, and 0.019 mb at \(q_{1L} = 1.14\) Bev/c. The total cross sections for Processes (1), (3), and (4) are not reliably known at these energies but are presumed to be somewhat smaller.

Based on the above values for \(a\), the results for the statistical model are shown in Figs. 3(a,b), 4(a,b) and 5, where they may be compared with the pole part of the cross section. The corresponding comparisons
for Processes (3) and (4) will be similar. It may be noted from the
curve of Fig. 5 that the integrated pole cross section σ_p, is
1.5 mb at $q_L = 1.75$ Bev/c for $t_{\text{max}} = 26$ and $(\frac{p}{q})^2_{\text{max}} = 5$;
this is a factor of five greater than $\sigma_s = 0.28$ mb from the statistical
model. The enhancement is of course manifested most strongly for t
near the resonance energy, where the ratio of $\frac{d\sigma_p}{dt}$ to $\frac{d\sigma_s}{dt}$ is
nearly 10, as seen in Fig. 4. Finally, Fig. 3 shows the expected
effect that the smaller the value of p^2/μ^2 the more the pole is favored.
Experiments with incident pions between 1 and 2 Bev should therefore
establish the existence of the resonance without much difficulty even
without extrapolating to $p^2 = -\mu^2$, if the position and width are
roughly as predicted by Frazer and Fulco.

As q_L decreases to less than 1 Bev/c, the available phase
space for $(\frac{p}{q})^2 \leq 5$ dwindles rapidly (going to zero at $q_L \sim 0.7$ Bev/c),
while the total phase space becomes very large compared with the inter-
esting region for $q_L > 2$ Bev/c. Both these effects may be seen in
Fig. 1.

Recently Bonsignori and Selleri4 have considered the same problem
at 0.960 Bev/c incident pion kinetic energy. They, however, made no
attempt to exploit the strong t dependence of the cross section when
a resonance occurs in the $\pi-\pi$ cross section.

I wish to thank Professor G. F. Chew for his suggestion of this
problem and his guidance.

This work was done under the auspices of the U.S. Atomic Energy
Commission.
REFERENCES

FIGURE CAPTIONS

Fig. 1. The resonance part of the $\pi^+\pi^-$ cross section according to Frazier and Fulco, with two possible positions for the resonance. The corresponding resonance contribution to the cross sections for $\pi^+\pi^0$ and $\pi^-\pi^0$ scattering is the same.

Fig. 2. Phase space for the reaction $\pi^+n \rightarrow \pi^+\pi^+ + n$ for three values of laboratory momentum. The region for small t and small (p_t^2) is also shown in a larger scale.

Fig. 3a. The differential cross section, Eq. (5), as a function of t with fixed (p_t^2) for $\sqrt{s} = 2.0$. The same differential cross section calculated from statistical model is also shown.

Fig. 3b. The differential cross section, Eq. (5), as a function of t with fixed (p_t^2) for $\sqrt{s} = 1.5$. The same differential cross section calculated from statistical model is also shown.

Fig. 4a. The differential cross sections, Eq. (5) and (6), integrated over (p_t^2) from the minimum to 5 for $\sqrt{s} = 1.5$.

Fig. 4b. The differential cross sections, Eq. (5) and (6), integrated over (p_t^2) from the minimum to 5 for $\sqrt{s} = 2.0$.

Fig. 5. The "pole part" of the total cross section σ_p for $\pi^- + p \rightarrow \pi^+ + \pi^- + n$, compared with the statistical-model prediction σ_s for various values of t_{max} and q_{\perp}. The interval in (p_t^2) is the same as in Fig. 4 (a,b).
Fig. 1
Fig. 2
Fig. 3a

$q_{IL} = 1.75 \text{ Bev/c} \\
(\eta_f = 1.5)$

\[\frac{d^2 \sigma_p}{d\left(\frac{L^2}{L}\right)} \text{ (mb)} \]

\[\begin{array}{c}
\left(\frac{p}{L}\right)^2 \\
1 \\
2 \\
3 \\
4 \\
5
\end{array} \]

Statistical

\[t \]
Fig. 3b

\[q_{ll} = 1.75 \text{ Bev/c} \]

\((v_f = 2.0) \)
Fig. 4a
Fig. 4b
Fig. 5
This report was prepared as an account of Government-sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.