Title
ON-LINE SPECTROSCOPY OF NEUTRON-DEFICIENT ACTINIUM ISOTOPES

Permalink
https://escholarship.org/uc/item/8nb5n8f3

Authors
Treytl, William J.
Hyde, Earl K.
Valli, Kalevi.

Publication Date
1967-05-01
ON-LINE SPECTROSCOPY
OF NEUTRON-DEFICIENT ACTINIUM ISOTOPES

William J. Treytl, Earl K. Hyde, and Kalevi Valli
May 1967
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
ON-LINE α SPECTROSCOPY OF NEUTRON-DEFICIENT ACTINIUM ISOTOPES

William J. Treytl, Earl K. Hyde, and Kalevi Valli

May 1967
ON-LINE α SPECTROSCOPY OF NEUTRON-DEFICIENT ACTINIUM ISOTOPES

William J. Treytl, Earl K. Hyde, and Kalevi Valli

Lawrence Radiation Laboratory
University of California
Berkeley, California

May 1967

ABSTRACT

Isotopes of actinium lighter than mass 216 were studied at the Berkeley Heavy
Ion Linear Accelerator by bombardment of 209Bi with 12C, enriched 205Tl
and 203Tl with 16O, and 197Au with 20Ne. Silicon (Au) surface-barrier
detectors were used in on-line measurements to determine α-decay characteristics.
Mass number assignments of 215Ac through 209Ac were made on the basis of
excitation functions, genetic relationships with radium isotopes, and systematic
trends in α-decay energies. Half-lives and α-particle energies were determined.
I. INTRODUCTION

In a series of previous investigations we have studied α-decay properties of neutron-deficient isotopes of polonium and astatine, radon, francium, and radium using on-line techniques at the Berkeley Heavy Ion Linear Accelerator (HILAC). In this paper we discuss the extension of the work to the light isotopes of actinium about which little is known. The only available experimental information is an unpublished study of Griffioen and Macfarlane in which α energies and half-lives were determined for 214Ac and 213Ac, and a recent study of 216Ac by Rotter, et al.

In the present study a number of new α groups were found among the products of gold, thallium, and bismuth targets bombarded with 20Ne, 16O, and 12C, respectively. These new activities were assigned to the actinium isotopes 209Ac through 215Ac, and half-lives and accurate α energies were determined for them.

The new information is interesting in its own right and is valuable in connection with the method of closed α-β decay cycles for improving and extending estimates of atomic masses, α- and β-decay energies, and neutron- and proton-binding energies. The present data are useful as a preparation for the study of isotopes of thorium and protactinium, because light actinium isotopes occur among the decay and byproducts in such studies. The information is also important in connection with experimental attempts to prepare new isotopes of elements beyond atomic number 100 by reactions induced by complex nuclear projectiles (heavy ions) because traces of lead or bismuth in the target material can cause the formation of α active isotopes of many elements.
in the group between lead and thorium.

II. EXPERIMENTAL

Our experimental technique was similar to the methods used by Ghiorso, and Macfarlane and Griffigen. Essentially, the reaction products recoiling from a thin target were slowed down to thermal energies in a helium atmosphere and swept through a small nozzle onto a catcher foil in an adjacent vacuum chamber. The products thus deposited were then positioned within about 0.1 sec in front of a Si(Au) surface-barrier detector. Small amounts of activity were collected on the catcher foil in less than 50 msec while the collection time for the major part was of the order of seconds. In a typical experiment recoil activity was alternatively collected for a fraction of a second and counted for the same period, with the cycle repeated over a period of 5 to 40 min.

The apparatus, electronics, and the special energy calibration method are described in a previous article. The energy standards used to calibrate the \(\alpha \) spectra are given in the heading of Table I.

After many sets of experiments had been completed with this apparatus, it became clear that more satisfactory results could be obtained with a redesigned apparatus with a shorter collection time. Hence we built the apparatus sketched in Fig. 1. The two essential changes consisted in a great reduction in the volume of the helium-filled chamber and the introduction of the helium at the top of the chamber through a double thickness of electromesh grid which removed some of the turbulence from the helium flow and served to
direct it in a more linear path toward the nozzle at the bottom. The conical beam entry arm of the chamber was made in several sizes and tested in a series of experiments to determine which size would give the highest yield for the activities with less than 0.5-sec half-life. Marked improvements in counting rate up to a factor of 10 or more were obtained. From the dimensions of the chamber and the helium-flow rate we compute that it requires 0.3 sec to replace the gas in the complete chamber volume.

We indicate in the figure captions and the text which data were taken with the old and which with the new apparatus.

The reactions used in the study were

\[^{197}\text{Au}(^{20}\text{Ne},\text{xn})^{217-}\text{Ac} \]
\[^{203}\text{Tl}(^{16}\text{O},\text{xn})^{219-}\text{Ac} \]
\[^{205}\text{Tl}(^{16}\text{O},\text{xn})^{221-}\text{Ac} \]
\[^{209}\text{Bi}(^{12}\text{C},\text{xn})^{221-}\text{Ac} \]

where \(x \) refers to the number of evaporated neutrons. The gold target was 2.5 mg/cm\(^2\) leaf. The thallium targets were separated \(^{203}\text{Tl}\) and \(^{205}\text{Tl}\) (88.2\% \(^{203}\text{Tl}\), 11.8\% \(^{205}\text{Tl}\) and 99.0\% \(^{205}\text{Tl}\), 1.0\% \(^{203}\text{Tl}\), respectively, according to the supplier, Oak Ridge National Laboratory) evaporated on 2.3 mg/cm\(^2\) nickel foil. The thickness of the \(^{203}\text{Tl}\) target was about 0.8 mg/cm\(^2\) and that of \(^{205}\text{Tl}\) about 1.0 mg/cm\(^2\). The bismuth target was 2.26 mg/cm\(^2\) natural bismuth evaporated on 1.92 mg/cm\(^2\) aluminum foil.

The maximum beam energy was 208 MeV for \(^{20}\text{Ne}\), 166 MeV for \(^{16}\text{O}\), and 125 MeV for \(^{12}\text{C}\). Lower energies were obtained by inserting stacks of 1.72 mg/cm\(^2\) aluminum absorber foils in front of the target.\(^1\) The range-energy relationships of Northcliffe\(^{11,12}\) were used to calculate the energy retardation in the absorbers.
The yield versus beam energy curves were measured starting at the Coulomb barrier and progressively increasing the beam energy until the maximum energy was reached, or vice versa, starting at full beam energy and ending at the barrier. The total integrated beam current was the same for all runs. The measuring time was typically 10 to 30 min and the interval between measurements 3 to 5 min.

In separate experiments half-lives of individual α peaks were determined with the techniques outlined in a previous article.¹

III. RESULTS
A. Experimental Data

The actinium isotopes studied in this work were far from β stability and had large decay energies for electron capture and α decay. Accordingly, the half-lives were short; of the same order of magnitude as the collection time of our apparatus, or shorter. Particularly in the experiments performed with our original chamber most of the actinium recoil nuclei decayed in flight before being detected, which made the daughter activities and other products of the nuclear reactions much more prominent than actinium in the spectra. Noncompound-nucleus reactions appeared to contribute more to the yields of the daughter activities than in our previous studies of elements below actinium. Hence our measurements on the actinium α peaks were useful for α-energy and half-life determinations and for assignment of the activities to isotopes but not for the estimation of cross sections or branching ratios for α decay and electron capture.
Figure 2 shows α spectra obtained from the $^{203}\text{Tl} + ^{16}\text{O}$ reactions at three beam energies. Figure 3 shows three spectra from the $^{209}\text{Bi} + ^{12}\text{C}$ reactions and Fig. 4 shows four spectra from the $^{197}\text{Au} + ^{20}\text{Ne}$ reactions. Besides these spectra additional ones were taken at many other beam energies and the data were used in the formulation of the excitation functions. The excitation functions of the actinium isotopes from the $^{203}\text{Tl} + ^{16}\text{O}$ reactions are given in Fig. 5; the yield curves of their radium and francium daughters are shown in Fig. 6. Excitation functions for the products of the $^{205}\text{Tl} + ^{16}\text{O}$ and $^{209}\text{Bi} + ^{12}\text{C}$ reactions are given in Figs. 7 and 8, respectively. The $^{197}\text{Au} + ^{20}\text{Ne}$ reactions required two figures: the yield curves of actinium, radium and radon are shown in Fig. 9, those of actinium, francium and astatine are presented in Fig. 10. The curves in Figs. 2, 5, 6, 9, and 10 were obtained with the fast apparatus, those in Figs. 3, 4, 7, and 8 with the original apparatus.

B. General Comments on the Data

In general the excitation functions of the activities we have assigned to actinium isotopes have the shape typical for compound nucleus reactions. In a given reaction each α activity has a beam energy at which its yield is a maximum and as the beam energy is raised above this another product rises in yield. We cannot rule out some distortion of our experimental curves resulting from unknown factors in the collection of such short lived activities. Since the mass number of the compound nucleus varies from 217 to 221 in the four target-projectile systems the maximum yield for a given product naturally occurs at different beam energies, but the order of excitation of the products stays the same. These considerations make it possible to make a preliminary association of mass numbers to the new activities or at the very least to arrange them in descending order of mass number.
The next step is to compare the curves for the actinium isotopes with the curves for the electron-capture daughter products (radium activities) and the α-decay daughter products (francium isotopes). Conclusions from the comparison of these curves must be made with some caution owing to a difficulty which is explained with the aid of Fig. 11. In this figure the α-disintegration energy is plotted versus neutron number for several elements in the mass number range in which our products lie. The topmost curve includes our new data on actinium isotopes with the assignments as given below. A striking feature of this figure is the step-effect. Neighboring isotopes have closely similar α energies (and often closely similar half-lives) so that it is difficult to distinguish the two within the α energy and time resolution of our methods. Hence several of the experimental spectra and excitation functions of the francium and radium daughter peaks are composite and it is not obvious which mass number to associate with the daughter and hence which mass number to attribute to the actinium parent. To complicate matters, the form of several of the yield curves for the francium isotopes is such as to suggest some direct production via reactions of the (heavy ion, αxn) and (heavy ion, pxn) types. Our comments on these matters are collected in Section IV.

However, we believe we can make definite mass assignments to the new actinium activities on the basis of the arguments outlined in the section which follows. A summary of our assignments is given in Table I where they are compared with the unpublished results of Griffioen and Macfarlane. The quoted errors are conservative limits covering the total spread of several individual measurements and are substantially greater than the statistical uncertainty.
C. Evidence for Specific Mass Assignment

Actinium-215. From the observed regularities in the α-decay properties of the known polonium, astatine, radon, francium, and radium isotopes (see Fig. 11) one expects the isotope $^{215}_{\text{Ac}}$, containing 126 neutrons, to emit an α particle of about 7.60 MeV. An α-particle group with 7.602-MeV energy and 0.17 ± 0.01 sec half-life was observed in the $^{203}_{\text{Tl}} + ^{16}_{\text{O}}$, $^{205}_{\text{Tl}} + ^{16}_{\text{O}}$, and $^{209}_{\text{Bi}} + ^{12}_{\text{C}}$ reactions (see Figs. 2, 3, 5, 7, and 8).

The shape of the excitation function for the 7.602-MeV α activity in the $^{203}_{\text{Tl}} + ^{16}_{\text{O}}$ case (Fig. 5) is particularly good evidence for the assignment to $^{215}_{\text{Ac}}$. The maximum yield occurs at 83-MeV bombarding energy, 9 MeV above the Coulomb barrier, and rapidly decreases at higher energies; the second maximum is caused by the 11.8% $^{205}_{\text{Tl}}$ in the target. At a bombarding energy of 83 MeV, the excitation energy of the $^{219}_{\text{Ac}}$ compound nucleus is 43 MeV, which is reasonable for the evaporation of 4 neutrons. Evaporation of only 3 neutrons would result in the formation of $^{216}_{\text{Ac}}$ which is known from the work of Rotter et al.7 to have an α energy of 9.14 MeV and a half-life of 0.39 msec.

If the 215 mass assignment is correct the 7.602-MeV α group should not appear in any spectrum from the $^{197}_{\text{Au}} + ^{20}_{\text{Ne}}$ reactions because the $^{217}_{\text{Ac}}$ compound nucleus has far too much excitation energy even at the barrier to emit only 2 neutrons; in keeping with this the 7.602-MeV group was not seen in these spectra. The new activity has its maximum yield in the $^{205}_{\text{Tl}} + ^{16}_{\text{O}}$ reaction (Fig. 7) for a beam energy of 111 MeV and in the $^{209}_{\text{Bi}} + ^{12}_{\text{C}}$ case (Fig. 8) for a beam energy of 99 MeV corresponding to excitation energies for the $^{221}_{\text{Ac}}$ compound nucleus of 67 and 66 MeV respectively, which is reasonable for the evaporation of 6 neutrons.
The α-decay daughter of ^{215}Ac is ^{211}Fr which emits α particles of 6.533-MeV energy and 3.06-min half-life. An α activity with these properties is prominent in the spectra but the observed activity is a composite of ^{211}Fr and ^{210}Fr activity, the latter having an α-particle energy of 6.542 MeV and 3.18-min half-life.

The electron-capture branching of ^{215}Ac to produce 1.6-msec ^{215}Ra ($E_\alpha = 8.7 \text{ MeV}$), is expected to be small. In a long run with the fast apparatus using the $^{203}\text{Tl} + ^{16}\text{O}$ reaction at a 80-MeV ion energy, we observed a weak α peak at 8.70±0.02 MeV. If we attribute this α group to ^{215}Ra, we obtain an electron-capture branch of 0.09±0.02% for ^{215}Ac.

Actinium-214. In an unpublished study of the products of bismuth bombarded with carbon ions, Griffioen and Macfarlane found evidence for α groups of ^{214}Ac with energies of 7.12, 7.18, and 7.24 MeV and a half-life of 12 sec. These probably correspond to the peaks at 7.080, 7.136, and 7.212 MeV visible in our spectra in Figs. 2-4. In addition we see a small peak at 7.000 MeV. From the shape of this peak we suspect that it is composed of two groups differing in energy by 10 to 20 keV.

The excitation functions of these four peaks are shown in Figs. 5 and 7-10. The similarity of the curves for the peaks at 7.212, 7.080, and 7.000 MeV makes us conclude that they are associated with a single isotope. The maximum yield occurs at bombarding energies which are reasonable for the ^{214}Ac assignment in the four reactions studied. For example in Fig. 5 the peak yield occurs for $^{94}\text{MeV} + ^{16}\text{O}$ corresponding to 52-MeV excitation of the ^{219}Ac compound nucleus, a reasonable excitation for the evaporation of 5 neutrons.

The peak at 7.136 MeV can be assigned to ^{214}Ra which is known from our previous work to have an α-particle energy of 7.136±0.005 MeV and a
half-life of 2.6 sec. This activity appears in our spectra partly because of its formation by the electron capture of 214Ac and partly by some direct process. At the peak of the excitation function for 214Ac in the 203Tl + 16O case (see Figs. 5 and 6) we have strong evidence that 214Ra is indeed formed by electron capture in the fact that the apparent half-life of the 7.136 MeV peak observed at a 90-MeV 16O beam energy is 8 sec; the same value obtained for the 214Ac peaks at 7.212, 7.080, and 7.000 MeV. Hence at this beam energy 214Ra is in equilibrium with its parent. On the other hand when we raise the beam energy to 115 MeV the 214Ra peak has a composite decay curve with 2.5- and 8-sec components.

The α-decay daughter of 214Ac is 210Fr which emits 6.542-MeV α particles. In fact, α particles of this energy are prominent in our spectra but the energy resolution of our detector was not sufficiently good to separate the contributions of 210Fr and 211Fr. Hence we cannot make a clear cut statement of the relationship of the 214Ac and 210Fr activity.

The relative intensities of the 214Ac peaks are: 7.212 MeV 52±2%, 7.080 MeV 44±2%, and 7.000 MeV 4±1%. This complex structure can be taken as additional evidence that our mass assignment is correct, if we note the fact that 214Ac, 213Ra, 212Fr, 211Em, and 210At, all nuclides with 125 neutrons, have a roughly similar pattern of complex structure whereas all the lighter nuclei of these elements have only one prominent α group.

An estimate of the EC/α ratio of 214Ac can be made from the ratio of 214Ac and 214Ra α activity in the 203Tl + 16O reaction at beam energies of 90 MeV or less. The value obtained corresponds to an upper limit of 11±3% for electron capture branching of 214Ac and to a lower limit of 89±3% for the α branch. These limits are probably not far from the true values.
Actinium-213 and Actinium-212. Extrapolation of the trends in α-decay energies observed for several near-by elements (see Fig. 11) to the isotopes of actinium leads to a prediction of nearly similar α energies for 213Ac and 212Ac at about 7.36 MeV.

There is a peak in the α spectra in Figs. 2-4 which we attribute to 213Ac with an energy of 7.362 MeV, to 212Ac with an energy of 7.377 MeV, or to a mixture of both depending on the reaction system and the beam energy.

The excitation function of the composite peak appears in Figs. 5 and 7-10. There are several reasons for believing that the excitation functions in Figs. 5, 9, and 10 comprise a mixture of 213Ac and 212Ac.

One argument for the presence of 213Ac in the 7.36-MeV peak is the fact that the activity begins to be produced as the energy of the beam is increased beyond that favored for the production of 214Ac. If 213Ac were the sole contributor to the observed peak the α energy and half-life should remain the same under all conditions. But there is a clear shift in the energy of the observed α peak as the beam energy is changed. In a series of runs in which the energy scale was carefully and repeatedly calibrated the energy of this actinium peak was determined to be 7.362 MeV when it was prepared with 99-MeV 20Ne ions on gold targets and 7.377 MeV when it was prepared with 132-MeV 20Ne ions. We assign these energies to 213Ac and 212Ac, respectively.

The half-life of 213Ac was determined by measurements of the decay of its α peak in samples prepared by the 205Tl + 16O reaction at a beam energy of 105 MeV while that for 212Ac was determined for samples prepared at a beam energy of 134 MeV; values of 0.80±0.05 and 0.93±0.05 sec, respectively, were obtained.
Furthermore the broad maximum in the $^{209,208}\text{Fr}$ peak centered at 118 MeV in the $^{197}\text{Au} + ^{20}\text{Ne}$ reactions (Fig. 10) is most probably a reflection of the formation of these isotopes from α decay of ^{213}Ac and ^{212}Ac. An argument can also be made from the behavior of the composite $^{212,211}\text{Ra}$ peak in Fig. 9. In samples made at a ^{20}Ne beam energy of 124 MeV an energy value of 6.896 MeV equal to our published value for ^{212}Ra, was obtained. However, we cannot rule out the possibility of substantial formation of ^{212}Ra via the ($^{20}\text{Ne},p\,4n$) reaction.

Actinium-211 and Actinium-210. The unknown α peak which appears in our spectra at about 7.48 MeV can be assigned to ^{211}Ac and ^{210}Ac. The systematic trends displayed in Fig. 11 show that it is reasonable to expect these isotopes to have nearly the same α-particle energy and the following pieces of evidence help to confirm this choice.

First, we can be sure that this activity has a mass number less than 212 because it is formed at higher excitation energy in the $^{203}\text{Tl} + ^{16}\text{O}$ and $^{197}\text{Au} + ^{20}\text{Ne}$ systems than required to produce the $^{213,212}\text{Ac}$ double peak (Figs. 5, 9, and 10). In keeping with this, the 7.48-MeV peak did not appear in any of our spectra for the $^{205}\text{Tl} + ^{16}\text{O}$ or $^{209}\text{Bi} + ^{12}\text{C}$ systems because in these cases there was not enough excitation energy, even at full beam energy, to make ^{211}Ac in appreciable yield. Next, we noted a definite shift in the energy of the peak and in its half-life as the beam energy was changed. In the $^{197}\text{Au} + ^{20}\text{Ne}$ system when we prepared the activity with 124-MeV ^{20}Ne ions, the α energy was 7.480 MeV. This energy we assign to ^{211}Ac. When we used 145-MeV ^{20}Ne ions the α energy of the unknown peak was 7.462 MeV which we assign to ^{210}Ac. We made duplicate measurements of the half-life for the 7.480-MeV activity produced at a beam energy of 124 MeV and obtained the value of 0.25±0.05 sec. At beam energies of 145 to 153 MeV we obtained the average value 0.35±0.05 sec.
The behavior of the radium isotopes provides additional support. We believe the major fraction of the mixed $^{212,211}\text{Ra}$ peak and the $^{210,209}\text{Ra}$ peaks in Fig. 9 are representative of production from the electron-capture decay of actinium parent activities, although we cannot rule out independent production from $(^{20}\text{Ne},\text{pxn})$ reactions. With careful energy calibration we can distinguish which radium isotope is predominant in each of these mixtures prepared at a given bombardment energy. At a ^{20}Ne energy of 132 MeV, ^{211}Ra is predominant in the $^{212,211}\text{Ra}$ mixture, which is consistent with the idea that ^{211}Ac is close to its peak production at that energy. The energy of the observed peak for the $^{210,209}\text{Ra}$ mixture undergoes a steady shift from 7.018 MeV (correct for ^{210}Ra) to 7.008 MeV (correct for ^{209}Ra) as the ^{20}Ne beam energy is varied from 130 to 165 MeV.

Actinium-209. In the $^{197}\text{Au} + ^{20}\text{Ne}$ series of experiments, we observed an α activity with 7.585-MeV energy and a 0.10±0.05 sec half-life which we assign to ^{209}Ac. A spectrum showing this α peak is presented in Fig. 12 and the excitation function is shown in Figs. 9 and 10. The maximum yield occurs at a higher beam energy than that required for production of the composite $^{211-210}\text{Ac}$ peak. This is reasonable but not conclusive proof for the assignment of the 7.585-MeV peak to ^{209}Ac. In addition, the behavior of the composite $^{209,210}\text{Ra}$ curve is consistent with this mass assignment. Finally, an energy of 7.585 MeV for ^{209}Ac fits well with the expected systematic mass-energy behavior as exhibited in Fig. 11.
IV. DISCUSSION OF FRANCIUM AND RADIUM EXCITATION FUNCTIONS

Francium isotopes can be produced in these reactions in at least two ways. While the major mechanism is the α decay of actinium parent nuclei, there is considerable evidence for formation by another mechanism. We call attention to particular features of our data which require this conclusion. For example in the $^{203}\text{Tl} + ^{16}\text{O}$ reaction (see Fig. 6), ^{213}Fr is produced in high yield at a bombarding energy of 80 MeV just above the barrier. This ^{213}Fr cannot be formed by α decay of ^{217}At because the compound nucleus ^{219}Ac, has about 38 MeV of excitation energy—far too much for the emission of only two neutrons. It is not clear whether prompt α emission from the compound nucleus resulting in the production of ^{213}Fr is a competitive form of deexcitation of the compound nucleus or whether the α particle is released in a direct surface reaction. In the case of ^{212}Fr it is possible that the shoulder on the curve at 75- to 80-MeV bombarding energy represents production from the α decay of ^{218}Ac, but the main yield at 95- to 100-MeV ^{16}O energy cannot come from this reaction.

Switching our attention now to the $^{211-210}\text{Fr}$ peak in Fig. 6, we note that the main yield occurs close to the barrier energy. This is quite in keeping with the fact that ^{215}Ac is made in high yield at this bombarding energy and produces ^{211}Fr by α decay. We also believe that in the beam energy range 90 to 110 MeV where ^{214}Ac has its maximum yield that ^{210}Fr is made in α decay of ^{214}Ac. However the $^{211-210}\text{Fr}$ yield drops off only slowly at beam energies above this range, probably because of direct production.

Another example of contributions to francium yield from two mechanisms occurs in the ^{212}Fr yield curve in the $^{205}\text{Tl} + ^{16}\text{O}$ reaction (Fig. 7).
This curve appears to have a principal maximum at a bombarding energy of 88 MeV as well as a second maximum at 118 MeV. The first is at the right energy to indicate formation by α decay from 216Ac, while the second clearly cannot be attributed to this.

These observations are in accord with the fact noted in our previous studies that the yield curves for the α decay daughter isotopes have a secondary maximum at a bombarding energy about 20 MeV higher than the main peak.

In the case of the radium yield curves, we can also point to some interesting features. In most cases it is likely that the radium isotopes are produced by electron capture decay of the corresponding actinium isotope. When the peaks of the yield curves for radium and actinium isotopes occur at the same bombarding energy, this is presumed to be true although it is also possible that one proton is evaporated in the deexcitation process leading to formation of radium without the electron capture decay link. This becomes most likely for reactions in which more than three or four neutrons are evaporated where the statistical chance of proton emission is increasing, the binding energy of the neutrons is increasing, and the binding energy of 18 protons decreasing to a very low value. The peak for a (HI,p+α)n reaction yield would occur rather close to that for a (HI,(x+1)n) reaction.

A striking radium yield curve is the one for 214Ra in the 209Bi + 12C case as displayed in Fig. 8. As explained in the 214Ac discussion (Sec. IIIIC), at a 12C energy below 105 MeV, the 214Ra yield is linked to 214Ac, but it clearly departs from it at higher beam energies.
In recent years theoretical discussions of the statistical model treatment of compound nucleus deexcitation have shown a growing awareness of the role of angular momentum upon the evaporation of protons and alpha particles in competition with neutrons and \(\gamma \) rays in the deexcitation of nuclei.\(^{14-18}\) The anomalies apparent in our francium and radium curves may be a reflection of these angular momentum effects. Since these results come as a by-product of the identification work on the new actinium isotopes and were not a main purpose of the research, we do not discuss them further here; but we hope to give them more attention in the future. As a supplement to any future work on this problem, it would be extremely useful to carry out direct measurements on the properties of protons and alpha particles emitted in these reactions.

ACKNOWLEDGMENTS

The authors wish to thank Albert Ghiorso and Matti Nurmia for encouragement and cooperation throughout this work, especially for suggestions concerning improvements in collection chamber design. The excellent assistance of the HILAC crew is also gratefully acknowledged.
FOOTNOTES AND REFERENCES

*This work was done under the auspices of the U. S. Atomic Energy Commission.
†Present address, U. S. Naval Radiological Defense Laboratory, San Francisco, California.

6. R. D. Griffioen and R. D. Macfarlane, unpublished results (cf. Ref. (5)).
Table I. Present results compared with previous reports. Following α-energy standards were used: 212Po 8.7854 MeV, 215Po 7.3841 MeV, 219Rn 6.8176 MeV, 211Bi 6.6222 MeV (Ref. 13).

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Alpha energy (MeV)</th>
<th>Half-life (sec)</th>
<th>%</th>
<th>Alpha energy (MeV)</th>
<th>Half-life (sec)</th>
<th>%</th>
</tr>
</thead>
<tbody>
<tr>
<td>216Ac</td>
<td>7.602 ± 0.005</td>
<td>0.17 ± 0.01</td>
<td></td>
<td>9.14 ± 0.03<sup>a)</sup></td>
<td>0.39 ± 0.03 msec<sup>a)</sup></td>
<td></td>
</tr>
</tbody>
</table>
| 215Ac | 7.212 ± 0.005 | 8.2 ± 0.2 | 0.17 ± 0.05 | 7.24 | 12 | 33
| 214Ac | 7.980 ± 0.005 | 8.2 ± 0.2 | 44 ± 2 | 7.12 | 12 | 33
| 214Ac | 7.000 ± 0.015^{b)} | 8.2 ± 0.5 | 4 ± 1 | | | |
| 213Ac | 7.362 ± 0.008 | 0.80 ± 0.05 | | 7.42 | | -1
| 212Ac | 7.377 ± 0.008 | 0.93 ± 0.05 | | | | |
| 211Ac | 7.480 ± 0.008 | 0.25 ± 0.05 | | | | |
| 210Ac | 7.462 ± 0.008 | 0.35 ± 0.05 | | | | |
| 209Ac | 7.585 ± 0.015 | 0.10 ± 0.05 | | | | |
| 215Ra | 8.70 ± 0.02 | | | 8.7 | 1.6 msec | |

^{a)}Values for 216Ac come from the work of Rotter, et al. (Ref. 7).

^{b)}This peak is probably complex.
FIGURE CAPTIONS

Fig. 1. Schematic diagram of improved apparatus for rapid collection of recoil activity. For $^{197}\text{Au} + ^{20}\text{Ne}$ reactions the following values were used: chamber depth from target to back window 3.6 cm, absolute helium pressure 1.7 atm, helium flow rate 90 cm3/sec. For other reactions the helium pressure was varied to obtain maximum yields.

Fig. 2. Three α spectra showing actinium, radium, and francium activities from the $^{203}\text{TI}(^{16}\text{O},\text{xn})^{219-}\text{Ac}$ reactions. At 91- and 112-MeV beam energies the beam current, 0.25 μA, was integrated over the measuring time, about 17 min, to the same total in both measurements. At 135-MeV beam energy the measuring time and the total integrated beam were doubled; the α energy scale was also different. Two catcher foils were flipped between alternate collection and measuring positions at the rate of twice per second. These spectra and others, all taken with the new fast apparatus, were used to construct the excitation functions shown in Fig. 5.

Fig. 3. Alpha spectra showing actinium, radium, and francium activities from the $^{209}\text{Bi}(^{12}\text{C},\text{xn})^{221-}\text{Ac}$ reactions at three beam energies. The beam current was integrated over the measuring time, 6 min, to the same total in each measurement. Two catcher foils were flipped between alternate collection and measuring positions at a rate of once per second. These spectra and others were used to construct the excitation functions shown in Fig. 8. The original apparatus was used.

Fig. 4. Alpha spectra showing actinium, radium, and francium activities from the $^{197}\text{Au}(^{20}\text{Ne},\text{xn})^{217-}\text{Ac}$ reactions at three beam energies. The beam current, 0.8 μA, was integrated over the measuring time, about 36 min, to the same total in each measurement. Two catcher foils were flipped between
Fig. 4 (cont'd)

alternate collection and measuring positions at the rate of twice per second. The original apparatus was used.

Fig. 5. Excitation functions for the actinium isotopes produced in the $^{203}\text{Tl}(^{16}\text{O},\text{xn})^{219}\text{-Ac}$ reactions. The measurements were run with the new fast apparatus from low to high beam energies in two different sets of experiments: one extended from the Coulomb barrier to 121 MeV, the other from 113 to 159 MeV. Each point corresponds to the same total integrated beam current, 0.25 μA during about 17 min, and the interval between successive measurements was 4 to 7 min. The second maxima came from the 11.8% ^{205}Tl present in the target. The nominal Coulomb barrier from a simple tangent spheres estimate is 74 MeV. See the caption of Fig. 2 for more details.

Fig. 6. Excitation functions of radium and francium activities produced in the $^{203}\text{Tl}(^{16}\text{O},\text{xn})^{219}\text{-Ac}$ reactions. See the captions of Figs. 2 and 5 for details.

Fig. 7. Excitation functions of actinium, radium, and francium activities produced in the $^{205}\text{Tl}(^{16}\text{O},\text{xn})^{221}\text{-Ac}$ reactions. The experiments were run from low to high beam energies with 3-to-4 min intervals between measurements. The beam current, 0.4 μA, was integrated over the measuring time, about 15 min, to the same total in each measurement. Two catcher foils were flipped between alternate collection and measuring positions at the rate of twice per second. The original apparatus was used.
Fig. 8. Excitation functions of actinium, radium, and francium activities produced in the $^{209}\text{Bi}(^{12}\text{C},\text{xn})^{221-\text{XAc}}$ reactions. The experiments were run with the original apparatus from high to low beam energies with 3-min intervals between the measurements. See the caption of Fig. 3 for more details. The nominal Coulomb barrier from a simple tangent spheres estimate is 58 MeV.

Fig. 9. Excitation functions of actinium, radium, and radon activities produced in the $^{197}\text{Au}(^{20}\text{Ne},\text{xn})^{217-\text{XAc}}$ reactions. The experiments were run from high to low beam energies with 5- to 7-min intervals between measurements. The beam current, 0.8 μA, was integrated over the measuring time, about 35 min, to the same total in each measurement. Two catcher foils were flipped between alternate collection and measuring positions at the rate of twice per second. The new fast apparatus was used. The Coulomb barrier from a simple tangent spheres estimate is 88 MeV.

Fig. 10. Excitation functions of actinium, francium, and astatine activities produced in the $^{197}\text{Au}(^{20}\text{Ne},\text{xn})^{217-\text{XAc}}$ reactions. See the caption of Fig. 9 for details.

Fig. 11. Alpha energy versus neutron number for isotopes of different elements below 126-neutron shell and above 82-proton shell. The solid circles indicate energies assigned to ground-state α decay. The crosses represent α energies assigned to isomeric states. The open circles are α transitions to excited levels at the daughter nuclei (α fine structure).

Fig. 12. Alpha spectrum showing the 7.585-MeV group of ^{209}Ac from the $^{197}\text{Au}(^{20}\text{Ne},8\text{n})^{209}\text{Ac}$ reaction. The spectrum was obtained by adding together two spectra recorded at 146- and 153-MeV beam energies,
Fig. 12 (cont'd). respectively. The spectra were two of those used in the construction of the excitation functions shown in Figs. 9 and 10.
Figure 1

- Nickel window (4.5mg/cm²)
- Fine mesh metal screen
- Vacuum
- Helium in
- Absorber foils
- Catcher foil
- Counting chamber
- Solenoid
- Surface-barrier detector
- Calibration source
- Collimator
- To high-volume pump
- Target chamber

XBL677-3552
Figure 2

- Alpha energy (MeV)
 - Beam energy 135 MeV (use left scale)
 - Beam energy 112 MeV (use right scale)
 - Beam energy 91 MeV (use left scale)

Counts / channel

UCRL-17405
Figure 3
Figure 4
Figure 5
Figure 6
Beam energy (MeV)

Counts

Absorber thickness (mg/cm² of aluminum)

Figure 7
Figure 8
Absorber thickness (mg/cm² of aluminum)

Figure 9

Counts

Beam energy (MeV)

197Au (20Ne, xn) 217-X Ac

10^5

7.362 213Ac
7.377 213Ac
6.896 212Rn
6.910 212Rn
7.018 210Rn
7.008 210Rn
7.140 206Fr
6.260 206Fr
6.917 206Fr
7.462 210Ac
7.480 210Ac
7.131 208Rn
6.416 208Rn
7.080
7.212 215Ac
7.585 209Ac
Absorber thickness (mg/cm² of aluminum)

Figure 10
Figure 11
Figure 12

$^{197}_{\text{Au}}(^{20}_{\text{Ne}},\text{xn})^{\text{217-X}_{\text{Ac}}}$

$^{208}_{\text{Ra}}$ Beam energies 146 and 153 MeV

Counts/channel

Alpha energy (MeV)

$^{210}_{\text{Ac}}$ 7.462

$^{213,212}_{\text{Ac}}$

$^{209}_{\text{Ac}}$ 7.585

XBL677-3553
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.