Title
SPACE-TIME INTERACTION OF OPPOSED TRANSVERSE WAVES IN A PLASMA

Permalink
https://escholarship.org/uc/item/8nb6q2q7

Author
Cohen, Bruce I.

Publication Date
1973-07-06
SPACE-TIME INTERACTION OF OPPOSED TRANSVERSE WAVES IN A PLASMA

Bruce I. Cohen

July 6, 1973

Prepared for the U. S. Atomic Energy Commission under Contract W-7405-ENG-48
The spatial and temporal interaction of two opposed, intense electromagnetic waves, whose difference frequency approximately equals the local plasma frequency, is studied. The interaction results in plasma heating. In a uniform plasma, the leading edge of the lower frequency wave steepens. For a nonuniform plasma, such pulse modification and concomitant heating occur only in a limited resonance zone.

The nonlinear interaction of coherent electromagnetic waves (lasers) in an underdense plasma \((\omega_p < \omega)\) is of interest because of the potential for heating when the difference frequency of the two waves is near the local plasma frequency.\(^{1-6}\) When this is the case, energy is partially transferred from one transverse wave to the other and is partially deposited in the plasma in the form of electrostatic plasma oscillations. In the present note we extend the work of Kaufman and Cohen\(^6\) by including the temporal evolution of the interaction.

We examine the transfer of energy between two transverse waves of frequencies \(\omega_0, \omega_1\), with \(\omega_0 > \omega_1\). The transfer is driven at the beat frequency \(\Omega = \omega_0 - \omega_1\) and at the beat wave number \(K = k_0 + k_1\) (for opposed wave vectors). The plasma is considered to be infinite in extent. We assume that the dissipation rate \(\nu\) of the plasma wave and the mismatch \(\Delta \omega(z) = \Omega - \omega_p(z)\) are small, so the interaction is nearly resonant.

The analysis follows that of Ref. 6, employing the longitudinal dielectric function and using the same notation. Both the temporal and the spatial evolution of the intensities of the electromagnetic waves are studied. The electrostatic potential in response to a vector potential \(A(z,t)\) is \(\varphi(z,t) \propto [\epsilon^{-1} - 1] A^2(z,t) + \text{noise}\). The behavior of the transverse waves will be analyzed over time scales long compared to \(\nu^{-1}\); thus any potential \(\varphi(z,t)\) present at either the initiation or termination of the laser pulses can be ignored as a transient whose decay occurs in a time of the order of \(\nu^{-1}\). The generalization of Kaufman and Cohen's\(^6\) nonlinear coupled mode equation for the action fluxes in natural units is

\[
(\partial_z + c^{-1} \partial_t) J_0 = (\partial_z - c^{-1} \partial_t) J_1 = -2\Gamma J_0 J_1, \tag{1}
\]

where \(\Gamma = -4\pi \text{Im} \epsilon^{-1}(\Omega,K)\) and \(J_\pm = k_\pm |A_\pm|^2 e^2/(\epsilon_\infty \omega_\pm^2 c^4)\). The group velocities of the two electromagnetic waves have been set equal to \(c\), since we assume \(\omega \gg \omega_p\). Because \(\Gamma > 0\) the higher frequency wave loses action flux \(J_0\) as it propagates to the right (increasing \(z\)). The action flux \(J_1\) of the lower frequency wave increases as it propagates to the left. The conservation law for action flux, from (1), is \(\partial_t (J_0 + J_1) + \partial_z (c J_0 - c J_1) = 0\).
For a uniform plasma the solution of (1), subject to conditions that the ω_0-wave is incident from the left and the ω_1-wave from the right with step function profiles $\theta(ct - z)$ and $\theta(ct + z)$ respectively, is straightforward. The mismatch $\Delta\omega$ and damping ν are constant. One transforms to new variables $ct - z$ and $ct + z$, the characteristics of the operators of (1). The equations are then solved using the method of Maier, Kaiser, and Giordmaine. In terms of the input action fluxes, J_0^{in} and J_1^{in}, let $\rho = J_1^{in}/J_0^{in}$, $\gamma = (ct - z)J_0^{in}$ and $\xi = (ct + z)J_0^{in}$. The solutions for the relative action fluxes are

$$J_0(t,z) = J_0(t,z)/J_0^{in} = e^{-\eta}[e^{-\eta} + e^{\xi} - 1]^{-1},$$

$$J_1(t,z) = J_1(t,z)/J_0^{in} = \rho e^{\xi}[e^{-\eta} + e^{\xi} - 1]^{-1},$$

valid for $\eta, \xi \geq 0$. For a cold plasma, $\epsilon = 1 - \omega_p^2/(\alpha^2 + i\nu_{ei})$, so that $\Gamma = 4\pi(v_{ei}/\omega)\left[(v_{ei}/\omega)^2 + (2\Delta\omega/\omega_p)^2\right]^{-1}$. The energy density deposited in the longitudinal wave, $\delta n(mc^2/e)J_0^{in}J_1^{in}e^{-\gamma}(\eta, \xi) - 1|$, is ultimately available for plasma heating.

We consider the example of CO_2 lasers ($\omega_0 \sim 2 \times 10^{14}$ sec$^{-1}$) with $\omega_p/\omega_0 = 0.1$, $v_{ei}/\omega_p = 2v/\omega_p = 0.01$, pulse lengths $\sim 60\nu_{ei}^{-1}$ and $\omega = v_{ei}$. Significant transfer of action occurs when the dimensionless space and time variables are of order unity: $t' = J_0^{in} ct$ and $z' = J_0^{in} z$ are employed. The pulse shape of the ω_1-wave peaks and sharpens as the ω_0-photons are turned around and converted to ω_1-photons. The ω_1-photons "pile up" as the ω_1-wave propagates through the ω_0-wave.

Energy transferred to the plasma then grows as the ω_1-wave front progresses to the left. Since the interaction rate depends upon the product of the actions, we have chosen $\rho = 1$ to maximize the action transfer. The energy density $\delta n(mc^2/e)J_0^{in}J_1^{in}e^{-\gamma}(\eta, \xi) - 1|$, is ultimately available for plasma heating.

We next examine the case of a linear density inhomogeneity. We define the density scale length $L = |d \ln n/dz|^{-1}$. The frequency mismatch now depends upon position: $\Delta\omega(z) = \omega_p(z) - \omega_{ei}(z)$. It follows that $\Gamma(z) = 4\pi[v_{ei}n(v_{ei}^2 + (\omega L)^2)]^{-1}$. For a nonuniform plasma, $\Gamma(z)$ is large (coupling is appreciable) only in a narrow zone around $z = 0$ [n = $\omega_p(0)$]. The width of this resonance zone has been defined as $h = 2\pi L v_{ei}/\eta$ by Mostrom et al. We assume that $k_p h \gg 1$ to permit a WKB analysis.
Again we follow the evolution of step-function and linear initial pulse profiles. Since $\Gamma \propto v^{-1}$ at the exact resonance position $z = 0$, while the resonance width $h \propto v$, the total action transfer is only a weak function of the damping v. In absolute units the action transfer is linear in both the scale length of the plasma and the laser intensity (for $\rho = 1$). Again $\rho = 1$ gives the maximum transfer efficiency. Figure 1(c) and Fig. 1(d) display the numerical solution of (1) for $\nu / n = 0.01$. Figure 1(c) is the case $h = 0.0055 \left(\frac{4\pi n_0}{\omega_0}\right)^{-1}$, while $h = 0.005 \left(\frac{4\pi n_0}{\omega_0}\right)^{-2}$ in Fig. 1(d).

Nearly all pulse profile modification occurs within the resonance zone. For the step-function profiles a steady state for the conversion of the ω_0-wave to the ω_1-wave is achieved at times greater than $6h/c$ for the dimensionless parameter $h' = h \left(\frac{4\pi n_0}{\omega_0}\right)^{1/n}$ chosen. There is no such steady state in the case of linear pulse profiles, because the unperturbed wave intensities are linearly increasing functions of time.

These solutions to the coupled mode equations (1) are valid as long as the transverse waves overlap within the plasma. For a finite length plasma the interaction can be very different; for example, the possibility of relaxation oscillation arises. However, for a non-uniform plasma, the interaction is appreciable only in the resonance zone. In this case the solutions remain valid as long as the region over which the transverse waves overlap contains the resonance region, regardless of the finite extent of the plasma.

The author thanks A. N. Kaufman for his assistance and criticism and is indebted to D. Nicholson, C. Max, M. Mostrom, K. Watson, R. Pyle, W. Kunkel, Y.-R. Shen, and J. Dawson for their discussion and encouragement.
Fig. 1. Dimensionless action fluxes $\overline{J}_0(t,z)$ and $\overline{J}_1(t,z)$, as functions of dimensionless time t' and position z' defined below, for input ratio $\rho = 1$. Case (a) shows step-function pulse profiles for a uniform plasma, with $t' = \Gamma J_0^{\text{in}} ct$ and $z' = \Gamma J_0^{\text{in}} z$. Case (b) shows linear pulse profiles for a uniform plasma, with $t' = (\Gamma J_0')^{1/2} ct$, and $z' = (\Gamma J_0')^{1/2} z$. Case (c) shows step-function pulse profiles for a linear density variation, with $t' = 4\pi J_0^{\text{in}} ct$ and $z' = 4\pi J_0^{\text{in}} z$. Case (d) shows linear pulse profiles for a linear density variation, with $t' = (4\pi J_0')^{1/2} ct$ and $z' = (4\pi J_0')^{1/2} z$. In (a) and (b) for a uniform plasma, $\Gamma = 4\pi \omega [v^2 + (2\Delta \omega)^2]^{-1}$. In (c) and (d) for a linear variation of the plasma density, $h' = 0.0025$ and 0.005 respectively in the dimensionless units of z'.
Fig. 1a
Fig. 1c
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.