Lawrence Berkeley National Laboratory

Recent Work

Title
COLLISIONAL QUENCHING OF METASTABLE HYDROGEN ATOMS

Permalink
https://escholarship.org/uc/item/8p767445

Authors
Slocamb, C.A.
Miller, W.H.
Schaefer, H.P.

Publication Date
1971-02-01
COLLISIONAL QUENCHING OF METASTABLE HYDROGEN ATOMS

C. A. Slocomb, W. H. Miller, and H. F. Schaefer

February 1971

AEC Contract No. W-7405-eng-48
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
COLLISIONAL QUENCHING OF METASTABLE HYDROGEN ATOMS

by

C. A. Slocomb, W. H. Miller

Inorganic Materials Research Division, of the Lawrence Radiation Laboratory and the Department of Chemistry, University of California, Berkeley, California 94720

and

H. F. Schaefer

Department of Chemistry, University of California, Berkeley, California 94720

ABSTRACT

Quenching of metastable hydrogen atoms by low energy collisions with atoms and molecules is considered, the actual process being $\text{H}(2s) + X \rightarrow \text{H}(2p) + X$. The Born approximation, with long-range multipole-multipole interactions, is used to describe collisions of $\text{H}(2s)$ with molecules, and simple formulas for the cross section result. Collisions with spherically symmetric species (i.e., rare gas atoms) are treated in the adiabatic approximation, and the process is seen to be formally identical to symmetric charge transfer. Numerical results for collisional quenching by helium, based on accurately computed potential curves, are presented.
I. INTRODUCTION.

Unperturbed hydrogen atoms in the 2s state have a natural lifetime of $\sim \frac{1}{7}$ second, the decay being by two-photon spontaneous emission. The 2p states, however, which are nearly degenerate with the 2s state (within 1 cm$^{-1}$), are connected to the 1s ground state by ordinary dipole selection rules and have a radiative lifetime of $\sim 10^{-9}$ seconds. Unlike other atomic and molecular metastable species, therefore, 2s hydrogen atoms are "fragile", for external perturbations induce 2s \rightarrow 2p transitions quite efficiently; this is not so readily possible with other metastable species because of a much larger energy separation from other (short-lived) states.

This paper investigates the destruction, or quenching, of 2s hydrogen atoms by low energy collisions with neutral atoms and molecules; collisional quenching by charged particles has been treated by Purcell2 and Seaton3. Quenching by neutrals has also been considered recently by Gersten4 and Byron and Gersten5. More specifically, the process

\begin{equation}
H(2s) + X \rightarrow H(2p) + X
\end{equation}

is treated, and quenching actually takes place by subsequent spontaneous emission of the 2p states6. Although there is the possibility of quenching by direct transitions

\begin{equation}
H(2s) + X \rightarrow H(1s) + X + 10.2 \text{ eV}
\end{equation}

\begin{equation}
\rightarrow H(1s) + X^* + \Delta E
\end{equation}

or by other indirect paths

\begin{equation}
\rightarrow H(3p) + X + \Delta E
\end{equation}

the cross sections for such non-resonant processes7 at thermal energy is expected to be small, no more than $\sim 1\text{A}^2$; as shall
be seen, the cross section for Eq. (1) is usually much larger than this.

Section II considers collision partners with permanent multipole moments (i.e., molecules). Because of the long-range nature of the interaction, a Born approximation treatment is possible and simple analytic formulas for the quenching cross sections result. Section III treats the case of a collision partner with no permanent multipole moments (i.e., a rare gas atom), and Section IV presents results for the He + H(2s) collision based on accurately computed potential curves.
II. COLLISION PARTNERS WITH PERMANENT MULTIPOLE MOMENTS.

Consider the collision process in Eq. (1) where X is a molecule whose first non-zero multipole moment is of order L (L = 1 is a dipole, L = 2 is a quadrupole, etc.). For the collision only channels in which hydrogen is in 2s and 2p states are considered, and X is in its ground electronic state (but in all possible rotational states). As interaction potential we take the standard long-range expression (a sum of multipole-multipole interactions) and apply the Born approximation. In this approximation the S-matrix is related simply to matrix elements of the interaction potential

\[<pM, j_2 M_2, \ell_2 m_2 | S | s, j_1 M_1, \ell_1 m_1> \]

where \(j_1, M_1 (j_2, M_2) \) are the initial (final) rotational angular momentum of X and its projection; s is the 2s state of hydrogen, and pM (M=0,±1) are the three components of the 2p state; m is the reduced mass of H and X.

Eq. (3) takes on a relatively simple form because the product of the 2s and 2p hydrogenic states has dipole symmetry--thus the integral over the electronic degrees of freedom of hydrogen selects only the dipole term on the hydrogen center. The (diagonal) matrix element over the electronic degrees of freedom of X selects, of course, the Lth moment on that center. Thus the matrix element of the potential in Eq. (3) looks just
like the classical interaction between a permanent dipole on
the hydrogen center with the L-pole on the X center; this gives

$$< \ell_2, M_2, m_2 | S | j_1, M_1, \ell_1, m_1 > = -2i \left(\frac{2m}{h^2} \right) \mu_H q_L (4\pi)^{3/2}$$

$$\left[\frac{L+1}{3(2L+3)} \right]^{1/2} \ell_2 \left| R^{-L-2} \right| \ell_1 > \sum_{m_1, m_2} C(1, L, L+1; m_1, m_2)$$

$$< 1M | 1m_1 | 00 > < j_2 M_2 | Lm_2 | j_1 M_1 > < \ell_1 m_1 | L+1, m_1 + m_2 | \ell_2, m_2 >,$$

where the radial integral is

$$< \ell_2 | R^{-S} | \ell_1 > = k \int_0^\infty dR R^2 j_{\ell_2} (kR) R^{-S} j_{\ell_1} (kR),$$

q_L is the L-pole moment of X, and μ_H is the transition dipole
of $2s \rightarrow 2p$

$$\mu_H = < 2s | \mu_z | 2p_z > = 3 \text{ e} a_0;$$

the matrix elements in the summation of Eq. (4) are integrals
over three spherical harmonics and are thus given in terms of
Clebsch-Gordan coefficients. [Note that the initial and
final translational energy have been taken as equal, the
change in rotational energy of X being neglected.]

From the above S-matrix the net probability for the $2s \rightarrow 2p$
transition is constructed by summing the square modulus of S
over M, j_2, M_2, ℓ_2, and m_2, and averaging over M_1. Carrying
out this procedure is tedious but straight-forward; the
calculation is parallel to that of Cross and Gordon for the
dipole-dipole interaction, and the result one obtains is
independent of m_1 and j_1.
$P(b) = \left(\frac{m_H q_L}{\hbar^2} \right)^2 \frac{16}{3} (L+1) \sum_{\ell_2} C(\ell_1, L+1, \ell_2; 00)^2$

\[<\ell_2 | R^{-L-2} | \ell_1 >^2, \quad (7) \]

where $b = (\ell_1 + \frac{1}{2})/k$ is the incident impact parameter. Under the usual semiclassical conditions ($\ell_1, \ell_2 > 1, |\ell_1 - \ell_2| < \ell_1$) one has

\[<\ell_2 | R^{-s} | \ell_1 > = \pi \frac{1}{2s} \frac{1}{\hbar k s-1} \left(\frac{s-2}{s+\ell_2-\ell_1} - 1 \right) \quad (8) \]

\[C(\ell_1 \ell_2; 00)^2 = 4^{-\lambda} \left(\frac{\lambda-\ell_2+\ell_1}{2} \right) \left(\frac{\lambda+\ell_2-\ell_1}{2} \right), \quad (9) \]

so that Eq. (7) becomes

\[P(b) = A_L \left(\frac{\mu_H q_L}{\hbar v} \right)^2 b^{-2L-2}, \quad (10) \]

where v is the incident velocity, and the constant A_L is

\[A_L = \frac{\pi^2 (L+1)}{3} \sum_n \left(\frac{L}{L-n} \right)^2 \left(\frac{L+1-n}{L+1-n} \right) \left(\frac{L+1+n}{L+1+n} \right), \quad (11) \]

and the sum is over values $n = L+1, L-1, L-3, \ldots, -L-1$; e.g.,

\[A_0 = \frac{4}{3} \quad (12a) \]

\[A_1 = \frac{8}{9} \quad (12b) \]

\[A_2 = \frac{32}{45} \quad (12c) \]

\[A_3 = \frac{64}{105} \quad (12d) \]

From the transition probability in Eq. (10) one constructs the cross section in the usual way

\[\sigma(v) = 2\pi \int_0^\infty db \ b \ P(b); \quad (13) \]
since \(P(b) \) exceeds 1 for small \(b \), one cuts off the integration in this region in the spirit of the Massey-Mohr approximation. [Because of the use of the long-range potential and the Born approximation, Eq. (10) is actually only valid for large \(b \).] The transition probability in Eq. (10) is the sum of the transition probability from the 2s state of hydrogen to all three 2p states; since only four states of hydrogen are considered and since the 2s \(\rightarrow \) 2s transition is zero via the dipole-L-pole interaction, it is clear that the value of \(b \) at which the integration should be cut off is that value for which \(P = 1 \); for all \(b < B \), one takes \(P(b) \equiv 1 \). Thus

\[
\sigma(v) = \pi B^2 + 2\pi \int_b^\infty dB b P(b),
\]

where \(B \) is determined by

\[
P(B) = 1,
\]

and with Eq. (10) this becomes

\[
\sigma(v) = \pi B^2 (1 + 1/L)
\]

or

\[
\sigma(v) = C_L \left(\frac{\mu_H q_L}{\hbar v} \right)^{2/L+1},
\]

where

\[
1/L+1
\]

\[
C_L = \pi(1+1/L) A_L
\]

with \(A_L \) as in Eq. (11); e.g.,

\[
C_1 = \frac{4\pi}{3} \sqrt{2} = 5.924
\]

\[
C_2 = \frac{3\pi}{2} \left(\frac{32}{45} \right)^{\frac{1}{3}} = 4.206
\]

\[
C_3 = \frac{4\pi}{3} \left(\frac{64}{105} \right)^{\frac{1}{4}} = 3.701.
\]
Eqs. (16)-(18) are the final result. A similar expression has been derived by Gersten using a time-dependent approach, but constants different from \(C_L \) above were obtained; in particular, the coefficients for \(L = 1 \) and \(2 \) are factors of \(\frac{3}{2} \) and \(\frac{3}{3} \) greater than those in Eq. (18). This is somewhat surprising, since Cross and Gordan found that the Born approximation and the time-dependent, straight-line trajectory approach gave identical results. One can readily verify that the \(L = 1, 2 \) coefficients from Eqs. (17), (18) are the ones obtained for ordinary dipole-dipole and dipole-quadrupole scattering.

Table I shows the cross sections from Eq. (16) for quenching by several molecules, compared to the results of Fite et al.; the agreement is quite good. A subsequent Erratum, however, indicated that the experimental values should be increased by 50%. Still later work has shown that the assumptions on which the Erratum was based are incorrect; revised values for the quenching cross sections, however, were not given.

Finally, it is interesting to note that quenching by charged particles (\(L = 0 \)) can also be treated in the Born approximation, but that here the non-degeneracy of the 2s and 2p states must be considered--otherwise the second term in Eq. (14) is infinite. The radial matrix element in Eq. (8) is modified to permit \(k_1 \neq k_2 \); Cross has worked out the necessary expressions, and if \(\Delta k/k \ll 1 \), one has

\[
\langle \ell_2 | R^{-s} | \ell_1 \rangle = \frac{\pi}{2^s} \frac{1}{2^{s-1}} \frac{e^{-z/2}}{\Gamma \left(\frac{s+k_2-k_1}{2} \right)} \left(\frac{s-k_2+k_1}{2} \right) s, z, \] (19)
where U is the confluent hypergeometric function 19, and

$$z = 2b\Delta k = 2b(\Delta \varepsilon /\hbar \nu); \quad (20)$$

as $z \to 0$, one recovers Eq. (8). For large b, therefore, one finds that

$$P(b) \sim e^{-2b\Delta k/b};$$

application of Eqs. (14) and (15), with the more rigorous $P(b)$, gives essentially the same results as Purcell 2 and Seaton 3.
III. QUENCHING BY SPHERICALLY SYMMETRIC COLLISION PARTNERS.

If the collision partner in Eq.(1) has no permanent multipole moments, then the matrix element of the long-range potential vanishes; i.e., the interaction is of shorter range and thus more difficult to deal with in a simple manner. At low collision energies, however, one may take advantage of the 2s-2p degeneracy and the Born-Oppenheimer approximation to simplify the treatment.

For fixed positions of the nuclei there are two Σ Born-Oppenheimer (BO) electronic states and one Π state arising from the ground state of X (a closed shell) and the $n=2$ states of hydrogen. The initial electronic configuration, $X + H(2s)$, is obviously a Σ state, and for low collision energies it is in the spirit of the BO approximation to assume that the Σ-character of the electronic state is preserved throughout the collision. The validity of neglecting such $\Sigma-\Pi$ transitions has been discussed by a number of workers20, who generally conclude that it is quite well justified. Lawley and Ross21 have applied the same approximation to molecular rotational angular momentum (neglect of coupling in their M-representation) and found it to be reasonably satisfactory even here; one expects it to be a much better approximation for the case of electronic angular momentum--i.e., the component of angular momentum of the electron along the relative position vector should "follow" the incoming atom more closely than the rotational angular momentum of a molecule.
Within this approximation, therefore, it is only necessary to consider the two potential curves arising from X and the n=2 states of hydrogen. The collision involving these two states can be simplified even further by the following arguments: for very large internuclear distances these BO states correspond to hydrogen being pure 2s and pure 2p. At an internuclear distance R_t ($\sim 19a_0$ for $X \equiv$ He), however, the BO states change quite rapidly (within $1a_0$) to states for which hydrogen is essentially $2s + 2p$ and $2s - 2p$. (In chemical language, the BO states become s-p hybrids.)

The character of the electronic states changes quite slowly for all smaller internuclear distances. Because the energy separation of the two states is so small at R_t, it is easy to show (see the Appendix) that the sudden approximation describes this transition region; i.e., hydrogen is initially in the $2s$ state (and thus one of the BO states), and after passing through the transition region at R_t, it is still in the $2s$ state. Now, however, the $2s$ state is not one of the BO states, but a linear combination of them:

$$2s = [(2s+2p)/\sqrt{2} + (2s-2p)/\sqrt{2}]/\sqrt{2}.$$

Since the electronic states vary slowly with internuclear distance for $R < R_t$, one invokes the adiabatic approximation in this region: no transitions occur between the two BO states for $R < R_t$—i.e., the scattering for $R < R_t$ is pure elastic scattering on the two separate BO potentials.

The above discussion implies that the overall $2s \to 2p$ transition takes place in the same manner as symmetric charge
transfer. In this case the initial electronic state has the electron definitely on one center; this electronic state is resolved into g and u components which then scatter independently (since the Hamiltonian preserves g-u symmetry); after collision, the g and u components are converted back into atomic states, and there is a probability that transfer has occurred because of the different scattering phase shift for the g and u potentials. The 2s + 2p transition discussed above is exactly the same, except that (1) there is no exact symmetry (such as g-u) which prevents transitions between the two BO potentials—the BO approximation itself takes care of this, and (2) the pertinent phase shift difference is that out only to \(R_t \), rather than \(\infty \). The mathematical details are so similar to symmetric charge transfer that we only give the result: the cross section is given by Eq.(13), where the transition probability is

\[
P(b) = \sin^2[\eta_2(b) - \eta_1(b)],
\]

where \(\eta_1 \) and \(\eta_2 \) are the phase shifts for the two \(\Sigma \) potential curves; with the WKB approximation for these phase shifts one has

\[
\Delta \eta(b) \equiv \eta_2(b) - \eta_1(b) = \int_{R_1}^{R_t} dR \left[2\mu[E-V_2(R) - Eb^2/R^2] / \hbar^2 \right]^{1/2} - \int_{R_2}^{R_t} dR \left[2\mu[E-V_1(R) - Eb^2/R^2] / \hbar^2 \right]^{1/2},
\]

where \(V_i \) and \(R_i \) are the two BO potentials and the classical turning points thereon. In Eq.(22) the upper limit is \(R_t \).
and not a value \(R + \infty \); this is the only difference between the above expressions and those for symmetric charge transfer. In practice, though, \(R_t \) is so large that it is effectively infinite.

Rather than evaluate the integral over \(b \) in Eq. (13) with the highly oscillatory transition probability of Eq. (21), one may make a Massey-Moehr\(^{12}\)-like approximation. Thus \(B \) is the largest value of impact parameter for which

\[
\sin^2[\Delta \eta(b)] = \frac{1}{2}, \tag{23}
\]

and then

\[
\sigma(v) = \pi B^2(\frac{1}{2}) + 2\pi \int_b^\infty d b \ b \sin^2[\Delta \eta/b)]. \tag{24}
\]

Furthermore, since \(B \) will typically be large, one may employ the large \(b \) limit of the WKB phase shift, so that Eq. (22) becomes

\[
\Delta \eta(b) = -\frac{1}{hv} \int_b^{R_t} dR \Delta V(R) (1-b^2/R^2)^{-\frac{1}{2}}, \tag{25}
\]

where \(\Delta V = V_2 - V_1 \) and \(v \) is the collision velocity. Most of the results in the next section were computed using Eqs. (23)-(25); some calculations were made using Eqs. (13), (21), (22) and there was less than 10% difference in results of the two procedures.

One may attempt an estimate of \(\Delta V(R) \) for large \(R \) in order to obtain a simple analytic expression for the cross section, analogous to that of Section II. Although the collision partner has no permanent multipoles, it is polarizable. The simplest approximation for \(\Delta V \) thus is

\[
\Delta V(R) \sim 12 \alpha \ \mu_H q_H R^{-7}, \tag{26}
\]

where \(\alpha \) is the polarizability of \(X \), and \(\mu_H = 3 \epsilon a_o \), \(q_H = 6 \epsilon a_o^2 \).
are the dipole and quadrupole of a (2s+2p) hydrogen atom. Byron and Gersten \(^5\) have recently investigated this long-range interaction in detail and find that the interaction is greatly increased when proper account is taken of excited states of hydrogen, giving

\[\Delta V(R) \sim 1020 \alpha R^{-7}. \]

Using Eq. (27) with Eqs. (23)-(25) gives

\[\sigma(v) \approx 18 \frac{\alpha}{v} \frac{1}{3}, \]

all quantities being in atomic units. Eq. (28), however, actually does not fit the more accurate treatment of the next section very well; Eq. (27) is just not accurate for sufficiently small \(R \).
IV. EXAMPLE: QUENCHING BY HELIUM ATOMS.

The two $^2\Sigma$ potential curves arising from ground state He and the n=2 states of H have been computed by a full configuration interaction (321 configurations!) with an extended basis set: Slater orbitals 1s(1.0), 1s'(2.2), and 2p(2.0) on He, and Slater orbitals 2s(1.0), 2p(1.0), plus the exact hydrogenic ls,2s,and 2p orbitals on H; the method of calculation has been described in detail elsewhere24. Figure 1 shows these two $^2\Sigma$ potentials, along with the ground state He-H potential. Michels and Harris25 have earlier carried out less extensive calculations for these two states, the higher one being described only roughly.

These potential curves are quite interesting, the lower one having a large attractive well of 2.50 eV at internuclear distance 1.4 α_0. The upper curve is particularly unusual, having a well depth of 0.63 eV at 1.6 α_0 and a maximum of 0.85 eV (above its asymptotic limit) at 3.8 α_0.

The presence of this maximum can have interesting consequences for He-H(2s) scattering. Consider first the angular distribution; in similarity again with symmetric charge transfer22, the differential cross section for the 2s \rightarrow 2p transition is

$$\sigma(\theta) = \left| f_2(\theta) - f_1(\theta) \right|^2$$

(29)

where f_1 and f_2 are the elastic scattering amplitudes for the two potentials. Interference structure will be present in $\sigma(\theta)$, therefore, because of the cross term $2 \text{Re}(f_1 \ast f_2)$ in Eq. (29). For energies below the maximum of V_2 (the upper potential),
the interference structure should be quite similar to that for symmetric charge transfer, for V_2 is effectively a purely repulsive potential and V_1 is attractive (as is typically the case for symmetric charge transfer). For energies above the maximum of V_2, however, there is a small impact parameter orbiting singularity in V_2. Figure 2 shows a sketch of classical deflection functions for potentials V_1 and V_2 in this energy region; the significant feature is that they must cross (this cannot happen for a collision energy below the barrier maximum). This means that the frequency of the oscillations in $\sigma(\theta)$ resulting from the interference term in Eq. (29) becomes zero as $\theta \to \theta_0$; i.e., the oscillations "stop oscillating" in the region about θ_0. For a collision energy just above $V_{2\text{max}}$, $\theta_0 \approx \pi$, and as the energy increases, θ_0 decreases and can pass through zero. The orbiting singularity in θ_2 eventually becomes a finite minimum as the collision energy increases further, so that $\theta_2(b)$ has two rainbow angles.

There are also interesting consequences of the maximum in V_2 which appear in the total cross section. Eqs. (23)-(25) give the Massey-Mohr-like approximation to the integral over impact parameter with the transition probability of Eq. (21). Analogous to the glory contribution to total elastic cross sections, however, there will be an "extra" contribution to the integral over impact parameter if a point of stationary phase exists, i.e., a root of the equation

$$\Delta n'(b) = 0$$

but since $n'(b) = \frac{1}{2}k_0(b)$, Eq. (30) is equivalent to
As has been seen above, a root of Eq. (31) will exist if the collision energy is greater than V_2^{max}. This "extra" oscillatory contribution to the total cross section is given by an expression analogous to the glory contribution for elastic scattering

$$\Delta \sigma = \pi b_0 \left(\frac{\pi}{-\Delta \eta_0''} \right)^{\frac{1}{2}} \sin \left(2\Delta \eta_0 - \frac{\pi}{4} \right),$$

(32)

where b_0 is the root of Eq. (31) (the intersection of θ_1 and θ_2 in Fig. 2), $\Delta \eta_0 = \Delta \eta(b_0)$, and $\Delta \eta_0'' = \Delta \eta''(b_0)$. When the oscillatory term first appears, b_0 is small and $\Delta \eta_0''$ is large, so that the amplitude of the oscillations is quite small; we determined the amplitude in Eq. (32) for energies up to 3 eV and found it not to exceed 1Å². Byron and Gersten have also observed this type of oscillatory contribution to the total cross section.

Figure 3 shows the cross section for the $2s \rightarrow 2p$ transition as calculated from Eqs. (23)-(25) of the previous section. At the higher energies, of course, there is the possibility (as discussed in the Introduction) that processes other than Eq. (1) contribute to the overall quenching of H(2s).

Byron and Gersten have recently reported results for this same collision system. They generated the necessary potentials by two means, a perturbation treatment and a pseudo-potential method, and performed the scattering calculation in a straight-line trajectory, time-dependent framework. The agreement between our results in Fig. 2 and their pseudo-
potential values is reasonably good, particularly so when one realizes the completely different approaches used.

The only experimental value for collisional quenching by helium at low energy is that given by Comes and Wenning, $\sigma = 8 \AA^2$ at an average hydrogen velocity of $\bar{v} = 3.5 \times 10^5$ cm/sec (~ 0.064 eV). At this energy Fig. 2 gives $\sigma \approx 85 \AA^2$, a factor of 10 larger; Byron and Gersten's two methods gives $\sim 30 \AA^2$ and $\sim 60 \AA^2$ in this energy region. It is clear that more experimental and theoretical studies would be useful.

ACKNOWLEDGEMENT

Appreciation is expressed to Drs. F.W. Byron and J.I. Gersten for sending us a copy of their work (ref. 5) prior to publication.
Table I. Cross Section for Quenching of Metastable Hydrogen Atoms by Collision with Molecules

<table>
<thead>
<tr>
<th>Collision Partner</th>
<th>L^a</th>
<th>$q_L(ea_o L)^b$</th>
<th>BA^c</th>
<th>Expd</th>
</tr>
</thead>
<tbody>
<tr>
<td>H$_2$O</td>
<td>1</td>
<td>0.724</td>
<td>981</td>
<td>1000</td>
</tr>
<tr>
<td>N$_2$</td>
<td>2</td>
<td>1.13</td>
<td>111</td>
<td>100</td>
</tr>
<tr>
<td>H$_2$</td>
<td>2</td>
<td>0.484</td>
<td>63</td>
<td>70</td>
</tr>
<tr>
<td>O$_2$</td>
<td>2</td>
<td>0.29</td>
<td>45</td>
<td>60</td>
</tr>
</tbody>
</table>

a. Order of the multipole moment.

c. Cross section (in A2) given by Eq. (16) and (18).

d. Cross section reported by Fite, et al., reference 15.
APPENDIX

The effect of the Born–Oppenheimer states changing from 2s and 2p for $R > R_t$ to $(2s \pm 2p)/\sqrt{2}$ for $R < R_t$ can be examined within the distorted wave Born approximation. The distorted wave functions are the solutions on the two adiabatic (BO) potential curves, and the non-adiabatic coupling involves derivatives of the internal functions with respect to internuclear distance. If the transformation from the atomic 2s and 2p functions to the adiabatic internal functions is expressed by the unitary transformation

$$\begin{pmatrix} \cos \omega & \sin \omega \\ -\sin \omega & \cos \omega \end{pmatrix}, \quad (A1)$$

where $\omega = \omega(R)$ [note that $\omega(R) = 0$ for $R >> R_t$ and $\frac{\pi}{4}$ for $R << R_t$], then the S-matrix connecting channels 1 and 2 is

$$S_{1,2} = -2i(2m/\hbar^2) e^{i(\delta_1 + \delta_2)} \int_0^\infty dR \ u_1(R)$$

$$\left[-\frac{\hbar^2}{2m} \omega''(R) u_2(R) - 2\left(\frac{\hbar^2}{2m} \omega'(R) u_2'(R) \right) \right], \quad (A2)$$

or integrating by parts gives

$$S_{1,2} = 2i e^{i(\delta_1 + \delta_2)} \int_0^\infty dR \ \omega'(R) [u_1(R) u_2'(R) - u_1'(R) u_2(R)]. \quad (A3)$$

With the WKB approximation for the radial functions

$$u_1(R) = k_1(R)^{-\frac{1}{2}} \sin \left[\frac{\pi}{4} + \int_R^R dR' \ k_1(R') \right] \quad (A4)$$

and with recognition of the fact that the major contribution to the integral comes at large R for which $k_1(R) \approx k_2(R)$, this becomes
\begin{align}
S_{1,2} &= 2i e^{(\delta_1 + \delta_2)} \int_{R_1}^{R_2} dR' \omega'(R') \sin \left[\int_{R_1}^{R_2} dR' k_1(R') - \int_{R_1}^{R_2} dR' k_2(R') \right] . \tag{A5}
\end{align}

In the sudden approximation \(\omega(R) \) is a step-function

\[\omega(R) = \frac{\pi}{4} \, h(R_t-R) , \tag{A6} \]

so that \(\omega'(R) \) is a delta function

\[\omega'(R) = -\frac{\pi}{4} \delta(R_t-R) . \tag{A7} \]

In this limit, therefore, Eq. (A5) becomes

\begin{align}
S_{1,2} &= -i \frac{\pi}{2} e^{(\delta_1 + \delta_2)} \sin \left[\int_{R_1}^{R_2} dR k_1(R) - \int_{R_1}^{R_2} dR k_2(R) \right] , \tag{A8}
\end{align}

and

\[|S_{1,2}|^2 = \left(\frac{\pi}{2} \right)^2 \sin^2 \left[\int_{R_1}^{R_2} dR k_1(R) - \int_{R_2}^{R_1} dR k_2(R) \right] . \tag{A9} \]

Eq. (A9) would be exactly the same as Eq. (21) of the text if \(\frac{\pi}{2} \) were replaced by 1; the fact that \(\frac{\pi}{2} \), rather than 1, appears in Eq. (A9) is a result of the distorted wave approximation.

To consider the more general case, suppose that \(\omega'(R) \)

is of the form

\[\omega'(R) = \frac{\pi}{4} \left(\frac{\alpha}{\pi} \right)^{\frac{1}{2}} e^{-\alpha(R-R_t)^2} . \tag{A10} \]

as \(\alpha \to \infty \), this reduces to the delta function of Eq. (A7). The integral in Eq. (A5) is evaluated by expanding the argument of the sine function as a quadratic about \(R_t \); the integral can then be evaluated analytically, and the result for \(|S_{1,2}|^2 \) is Eq. (A9) multiplied by the correction factor \(\exp \left[-(\Delta k)^2/2\alpha \right] \).

Since \(\Delta k = \Delta E/h\nu \) for collision energies large compared to the
energy separation of the two potentials at R_L, this correction factor is $\exp\left(-E_t/E\right)$, where

$$E_t = \frac{2m}{\hbar^2} (\Delta E)^2/8\alpha;$$

from our calculation one determines $E_t \approx 3.6 \times 10^{-9} \text{ eV} = 4 \times 10^{-5} \text{ K}$, so that the sudden approximation is valid in the transition region for essentially all collision energies.
References

*Acknowledgement is made to the donors of the Petroleum Research Fund, administered by the American Chemical Society, to the Research Corporation, and the Atomic Energy Commission for partial support of this research.
†Alfred P. Sloan Fellow.

6. A 2p hydrogen atom (radiative lifetime \(\sim 10^{-9} \) second) will not radiate during the collision (collision time \(\sim 10^{-13} \) second) in which it is formed; if the time between collisions is \(> 10^{-7} \) second, it will radiate before another collision takes place.
7. If \(X^* \) is an ionized state, \(X^+ + e^- \), however, the process can be exactly resonant [Eq. (2b) would then be an example of Penning ionization] and thus have an appreciable cross section; for this to be possible the collision partner \(X \) must have an ionization potential less than 10.2 eV.
9. Defined as \(q_L = e <r^L p_L> \).

20. See, for example, W.R. Thorson, *J. Chem. Phys.* 50, 1702 (1969); R.T. Pack and J.O. Hirschfelder, *J. Chem. Phys.* 52, 4198 (1970). In physical language, the argument goes something like this: physically meaningful S-matrix elements are those in a representation in which the centrifugal potential is diagonal—thus this "interaction"
causes no transitions; if the S-matrix is computed in another representation in which the centrifugal potential is not diagonal, therefore, any "transitions" caused solely by it cannot contribute to actual transitions when one transforms the S-matrix to the physical representation.

27. For a more general discussion of the distorted wave Born approximation with adiabatic internal functions, see W.H. Miller, J. Chem. Phys. 49, 2373 (1968).
Figure Captions

1. The lowest three $^2\Sigma$ states of He-H, dissociating to ground state He and 1s, 2s, 2p states of H.

2. A sketch of the classical deflection functions which correspond to the first and second excited $^2\Sigma$ states of He-H, at a collision energy greater than the relative maximum in the second excited state (see Fig. 1).

3. The cross section for He + H(2s) + He + H(2p) as a function of relation collision energy, as computed from the potentials in Fig. 1 and Eqs. (23)-(25) of the text.
Fig. 1
Fig. 2
This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Atomic Energy Commission, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.