Title
Position and Height Asymmetries in Hiatus Resolution: A Case Study of Korean VV Sequences

Permalink
https://escholarship.org/uc/item/8pd460bh

Author
Kang, Hijo

Publication Date
2016

Peer reviewed
General Session

Special Session
Language Isolates and Orphans

Parasession
Writing Systems and Orthography

Editors
Nicholas Rolle
Jeremy Steffman
John Sylak-Glassman

Berkeley Linguistics Society
Berkeley, CA, USA
Contents

Acknowledgments v

Foreword vii

Basque Genitive Case and Multiple Checking
Xabier Artiagoitia .. 1

Language Isolates and Their History, or, What’s Weird, Anyway?
Lyle Campbell ... 16

Putting and Taking Events in Mandarin Chinese
Jidong Chen ... 32

Orthography Shapes Semantic and Phonological Activation in Reading
Hui-Wen Cheng and Catherine L. Caldwell-Harris 46

Writing in the World and Linguistics
Peter T. Daniels .. 61

When is Orthography Not Just Orthography? The Case of the Novgorod Birchbark Letters
Andrew Dombrowski .. 91

Gesture-to-Speech Mismatch in the Construction of Problem Solving Insight
J.T.E. Elms ... 101

Semantically-Oriented Vowel Reduction in an Amazonian Language
Caleb Everett .. 116

Universals in the Visual-Kinesthetic Modality: Politeness Marking Features in Japanese Sign Language (JSL)
Johnny George ... 129

Equative and Predicational Copulas in Thai
Nancy Hedberg and David Potter .. 144
On the Reflexive-Antipassive Polysemy: Typological Convergence from Unrelated Languages
Katarzyna Janic ... 158

Position and Height Asymmetries in Hiatus Resolution: A Case Study of Korean VV Sequences
Hijo Kang ... 174

Negative Concord in Western Armenian
Hrayr Khanjian ... 188

Emergent Hidden Grammar: Stochastic Patterning in Korean Accentuation of Novel Words
Hyun-Ju Kim ... 203

Evidentiality in Korean Conditional Constructions
Iksoo Kwon ... 218

The Source-Goal Asymmetry in SLA
Wojciech Lewandowski ... 233

Subject Relatives and Expletives in Early New High German
Caitlin Light ... 247

An Embodied Account of Argument Structure Development
Josita Maouene, Nitya Sethuraman, Mounir Maouene, and Linda B. Smith 261

A Gujarati Origin for Scripts of Sumatra, Sulawesi and the Philippines
Christopher Miller ... 276

A Quantitative Analysis of Nominative/Genitive Alternation in Japanese
Satoshi Nambu ... 292

A Sibling Precedence Approach to the Linearization of Multiple Dominance Structures
David Potter ... 307

Surface Faithfulness Phenomena and the Consonantal Root in the Modern Hebrew Verb System
Tom Recht ... 322

Partial Wh-Movement and Wh-Copying in Dutch: Evidence for an Indirect Dependency Approach
Ankelien Schippers ... 338

Computational Cognitive Morphosemantics: Modeling Morphological Compositionality in Hebrew Verbs with Embodied Construction Grammar
Nathan Schneider ... 353
Some Hypotheses About Possible Isolates within the Atlantic Branch of the Niger-Congo Phylum
Guillaume Segerer ... 368

From Relativization to Nominalization and More: Evidence from the History of Okinawan
Reijirou Shibasaki ... 382

A Cross-linguistic Study of Sound Symbolism: The Images of Size
Kazuko Shinohara and Shigeto Kawahara .. 396

Testing for Frequency and Structural Effects in an English Stress Shift
Morgan Sonderegger ... 411

Neighborhood Density in Phonological Alternations
Sverre Stausland Johnsen .. 426

Person Indexicals in Uyghur Indexical Shifting
Yasutada Sudo ... 441

Metathesis and Reanalysis in Ket
Edward Vajda ... 457

An Empirical Investigation of Typicality and Uniqueness Effects on Article Choice in Attributive-Possession NPs
Gregory Ward, Christopher Ahern, and Tom Hayden 472

Perception of Illegal Contrasts: Japanese Adaptations of Korean Coda Obstruents
James D. Y. Whang ... 488

Diglossia versus Register: Discursive Classifications of Two Sinhala Varieties
Cala Zubair ... 499
Acknowledgments

The editors of the 36th Annual Meeting of the Berkeley Linguistics Society are grateful to conference participants, our volunteers, session chairs, and the faculty, all of whom made the event an intellectually stimulating and enriching event. We would like to extend our sincere gratitude to the contributors of this volume for their professionalism, responsiveness, attention to detail, and patience in the editorial process, without which this would not have been possible.

Within our department, special thanks go to Paula Floro and Belén Flores for all their support with BLS 36 and this annual conference in general. The editors wish to also thank the executive committee of BLS 36 who organized and ran the conference, and Zachary O’Hagan for expertise in the final compilation using LaTeX.

Finally, we would like to thank the following organizations for their generous financial support:

Department of Linguistics
Graduate Assembly
Social Sciences Division
Student Opportunity Fund
International Computer Science Institute (ICSI)
Foreword

This monograph contains 34 of the 51 talks given at the 36th Annual Meeting of the Berkeley Linguistics Society (BLS 36), held in Berkeley, California, February 6-7, 2010. The conference included a General Session, one Special Session entitled Language Isolates and Orphans, and one Parasession entitled Writing Systems and Orthography. It was planned and run by the second-year graduate students in the Department of Linguistics at the University of California, Berkeley. The members of this executive committee were Jessica Cleary-Kemp, Clara Cohen, Stephanie Farmer, Melinda Fricke, Laura Kassner, and John Sylak-Glassman.

The papers contained herein were edited principally for style by the three editors Nicholas Rolle, Jeremy Steffman, and John Sylak-Glassman, and then given back to contributors to make changes. Nicholas Rolle took upon primary editorial responsibilities, Jeremy Steffman was an undergraduate editorial assistant, and John Sylak-Glassman helped to edit papers. Upon the final resubmission, the final versions of these papers were incorporated by Zachary O’Hagan and Nicholas Rolle into the monograph found here. Our goal has been the speedy publication of these proceedings, and as such, certain aspects – e.g., the complete unification of formatting – have been sacrificed. It is our belief that this does not detract from the final publication in any way.

Nicholas Rolle
Jeremy Steffman
John Sylak-Glassman

January 2016
Position and Height Asymmetries in Hiatus Resolution:
A case study of Korean VV sequences

HIJO KANG
Stony Brook University

Introduction

Typological patterns in synchronic data, for example, the question of why pattern A is more frequent than B across languages, have been one of the most important issues in linguistics, in particular in phonology. Ohala (1993) seeks the answer in human articulatory and/or auditory mechanisms. If a phonetic ‘perturbation’ is not corrected properly in perception, a hypo-correction could occur and it could result in a sound change. In this model, typological patterns are assumed to reflect the very variation in ordinary speech. Two crosslinguistic asymmetries in hiatus resolution are the main concerns in this paper. Casali (1996) and Rosenthal (1997) present positional and height asymmetries. They take another approach to the typological patterns in that they suggest universal constraints and rankings to account for the asymmetries in the framework of Optimality Theory (Prince and Smolensky 1993). Crosslinguistically, hiatus resolution such as vowel deletion or gliding is more likely to occur in V₁ and high vowels than in V₂ and non-high vowels. If these patterns result from human articulatory and auditory mechanisms as Ohala (1993) argues, it would be expected that the production of vowel sequences will show a pattern of phonetic variation, which is similar to the phonological processes. As the first step, a set of acoustic data on Korean hiatus is presented in this paper. The results will show that V₁ in hiatus is consistently shorter than V₂, which corresponds to the positional asymmetry in Casali (1996). As for the height asymmetry, it will be reported that high vowels are more reduced in fast speech, compared to their durations in slow speech. In the next section, after presenting the typological asymmetries, the hypotheses will be presented with previous studies which provided the phonetic basis for the hypotheses. In section 2, the methods and results of a production experiment on Korean hiatus will be presented. Then, in section 3, the results will be discussed, focusing on what should be done in the future.
1 Previous Research

1.1 Crosslinguistic Findings

Casali (1996, 1997) surveyed 68 Niger-Congo and 19 non-Niger-Congo languages which have vowel elision in at least one context. The survey results in a conclusion that V₁ elision is far more common and productive than V₂ elision in terms of frequency of occurrence (85 vs. 30). Furthermore, V₁ elision implies V₂ elision with only two exceptions. V₂ elision occurs only when it belongs to a function word or a suffix and V₁ belongs to a lexical word or a root. In other words, V₂ elision is morphologically driven. To account for his finding, Casali proposes the universal constraint rankings in (1).

(1) Universal rankings about hiatus resolution (Casali 1996: 31, 137)
 a. \textsc{parse}(F)-\[w >> \textsc{parse}(F) \quad (\textsc{maxwi} >> \textsc{max} \text{ in Casali 1997})
 b. \textsc{parse}(F)-\text{lex} >> \textsc{parse}(F) \quad (\textsc{maxlex} >> \text{max} \text{ in Casali 1997})

The ranking in (1b) accounts for morphologically-determined elision (e.g., V₂ elision) and (1a) for the prevalence of V₁ elision, when hiatus takes place due to combination of morphemes.

Rosenthall (1997) presents additional typological findings on hiatus, which are given in (2). The focus was on the distribution of surface results of underlyingly prevocalic vowels (or V₁s) such as deletion, glide formation, and epenthesis. (2a) and (2c) imply that if a prevocalic vowel is weakened,¹ high vowels should be the first.

(2) Generalizations on the relation between distribution and vowel height
 (Rosenthall 1997: 140)
 a. If a high vowel has a distribution (other than glide formation), other vowels have the same distribution.
 b. Languages exhibit at most two outcomes of prevocalic vowels.
 c. If mid vowels have nonmoraic counterparts, so must high vowels.

The two typological studies above can be generalized as two asymmetries in hiatus resolution, which are presented in (3).

(3) Two asymmetries in hiatus resolution
 a. Position asymmetry: If hiatus is resolved by the weakening of one vowel, V₁ is more likely to be weakened than V₂.
 b. Height asymmetry: If hiatus is resolved by the weakening of one vowel, high vowels are more likely to be weakened than non-high vowels.

¹ In this paper, ‘vowel weakening’ is defined as ‘losing nucleus status in syllabic structure’.
Position and Height Asymmetries in Hiatus Resolution

It is not the case that weakening of high V₁ takes place only next to a morphological boundary. In language change, glide-formation of V₁ is very common even within morphemes, in particular when V₁ is high (Millar 2007: 80). Chitoran and Hualde (2007) found that the diphthongization of iV sequences in Romance languages has occurred within morphemes when the language had diphthongs from other sources such as loanwords and/or when the first vowel, i, is not lengthened prosodically (e.g., French and Spanish). So historical linguistic data lead us to the question of how we could account for cases where morphology has nothing to do with hiatus resolution, since here V₂ is not an initial segment of any morpheme or word as Casali proposes. Even synchronically, languages have vowel hiatus without morphological conditioning. We will consider a variety of hiatus resolution strategies in Korean in the next section, focusing on ‘within-morpheme’ phenomena.

1.2 Hiatus Resolution in Korean

Basically, Korean speakers use different strategies depending on the categories of words. Glide formation, glide insertion, and deletion (in particular, /ɯ/, irrespective of its position) are applied in verbal suffixation and conjugation. In nouns, glide formation (underlined), deletion (bold), and coalescence (italic) are optionally adopted, as shown in table (4).²

(4) The realization of hiatus within nouns in Korean (Kim 2000, Chung 2007)

* Shaded cells represent ‘no change or no hiatus resolution’.

<table>
<thead>
<tr>
<th>V₁</th>
<th>V₂</th>
<th>i</th>
<th>u</th>
<th>u</th>
<th>e</th>
<th>o</th>
<th>a</th>
</tr>
</thead>
<tbody>
<tr>
<td>i</td>
<td></td>
<td>iu~ju</td>
<td>ie~je</td>
<td>io~jo</td>
<td>ia~jʌ</td>
<td>ia~ja</td>
<td></td>
</tr>
<tr>
<td>u</td>
<td></td>
<td>ui~wi</td>
<td>ue~we</td>
<td>uʌ~wʌ</td>
<td>uʌ~wa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>e</td>
<td></td>
<td>eu~e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>o</td>
<td></td>
<td>ow~ʌ</td>
<td>ow~ʌ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ʌ</td>
<td></td>
<td>ʌi~e</td>
<td>ʌu~ʌ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>a</td>
<td></td>
<td>ai~e</td>
<td>au~ʌ</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

It seems that sonority (high V vs. non-high V), rather than position (V₁ vs. V₂), plays a crucial role in hiatus resolution in Korean. The higher the sonority is, the more likely the vowel is to be retained. For example, /u/ is deleted irrespective of its position in verbal suffixation and conjugation. However, Korean data do show some cases where V₂ looks weaker than V₁. /i+u/ and /e+ʌ/ can be realized as [i] and [e] even though V₂ does not have lower sonority than V₁ (e.g.,

² Korean does not have many cases of hiatus in nominal declension because the most frequently used case markers have allomorphs. For example, the nominal case marker is realized as –i after a consonant and as -ka after a vowel.
Hijo Kang

[ʨʰiu]–[ʨʰi] ‘to put in order’ and [pe ʌra]–[pera] ‘cut!’). This might be accounted for by the ranking in (1b), PARSE(F)-lex >> PARSE(F) since the first vowels in the examples belong to a root or stem. The Korean patterns have been assumed to be the result of phonological processes, rather than the result of automatic articulatory processes. While Kim (2000) employs different constraint rankings to explain speech rate effects on hiatus resolution, Chung (2007) attempts to explain the variety of hiatus resolution in Korean by adopting rules and repairs. Although Kim (2000) and Chung (2007) are concerned with language-specific data on hiatus resolution, they take the same approach as Casali (1996, 1997) and Rosenthall (1997) in that they view hiatus resolution as involving ‘phonological’ processes. Whether phonological processes or not, I assume that the aforementioned typological patterns are phonetically grounded, since some hiatus resolutions occur irrespective of morphological environments and they are sensitive to speech rate. Additionally, there is a case where hiatus resolution seems to be not a phonological process but a phonetic process. Van Heuven and Hoos (1991) conducted a production and a perception experiment showing that glides [j] and [w] which surface due to glide insertion in Dutch are different from ‘underlying’ glides. On the basis of the results, they argue that there is no glide insertion rule in the phonology of Dutch. I speculate that phonetic details of hiatus will provide phonetic clues to the source of the typological patterns because such details should be the starting point of any kind of sound change leading to phonological hiatus resolution (Hyman 1977 and Ohala 1993). Also on the basis of the typological patterns in Casali (1996 and 1997) and Rosenthall (1997), I provide the hypotheses in (5). In this study, speech rate is manipulated as a means of inducing variation which may be related to sound change.

(5) Hypotheses concerning hiatus

Hypothesis I: In fast speech, the steady state of V_1 will be reduced more than that of V_2.

Hypothesis II: In fast speech, the steady state of high vowels will be reduced more than that of non-high vowels.

Definitely, the weakening of a vowel in the two asymmetries in (3) involves ‘shortening’ of its duration (note that gliding occurred in Romance languages when a prevocalic i was not lengthened). So Hypotheses I & II are related directly to the position & height asymmetries in (3). In the next section, we review relevant literature on vowels in sequences as supporting evidence for the hypotheses.

1.3 Phonetic Studies on Vowels

Unfortunately, there are few phonetic studies on hiatus. Whether it is a phonological or a phonetic process, we need to know what is really occurring in the realiz-
tions of vowel sequences. As Kim (2000) points out, speech rate influences the ways vowel sequences are realized. Gay (1968) investigates how English diphthongs vary according to different speech rates. First, he measured the durations of onset steady state, glide, and offset steady state of /ɔɪ/, /ɔɪ/, /ɔɪ/, /ɔɪ/, and /ɔɪ/ in slow, moderate, and fast speech. It was found that in fast speech, onset and/or offset steady states are negligible or absent and that glide durations are longer than both onset and offset regardless of speech rates. Second, the formant properties of diphthongs were also revealed to be influenced by speech rate. In general, the faster the speech, the shorter the distance between onset and offset in the vowel space (for F1 and F2). It was concluded that the two crucial features of diphthongs are onset frequency and second-formant rate of change. With these results and conclusion, Gay (1970) conducted perception experiments where onset/offset formants or durations of English diphthongs were manipulated. The stimuli were perceived as diphthongs even though they did not have any initial or terminal steady states. As for duration, the shifts from monophthongs to diphthongs occurred between 130 and 180ms. The results show that the specific course of the glide, rather than the locations of the targets, serves as the primary distinguishing cue for each diphthong and that transitional duration rather than change in frequency provides the primary cues for separating vowels and diphthongs. In sum, Gay revealed the most crucial part of English diphthongs (i.e., glide or transition) by comparing different speech rates and confirmed it by perception experiments. Though English diphthongs are distinguished from hiatus in that they take only one nucleus position, I expect that an acoustic analysis on hiatus would produce similar results since both vowel sequences and diphthongs involve sequences of vocoids. As the onset and offset steady states are reduced or disappear in fast speech, the steady states of vowels in hiatus are also expected to be reduced. Will the reduction occur in both steady states (i.e., V₁ and V₂) at the same rate? I expect that V₁ reduction will be more extensive than V₂ reduction, based on the typological tendency described in section 1.1. Also, note that the onset steady states, as well as the offset steady states, were drastically reduced in English diphthongs, though the first vocoid target (e.g., /ɔ/ in /ɔɪ/) is considered a nucleus. This implies that the steady states in hiatus could also be reduced or totally lost even though each vowel is parsed under a nucleus.

In sum, acoustic studies of vowels show that the duration of steady states in VV sequences varies drastically depending on speech rate and that diachronically gliding results from 'shortening' of vowels. On the basis of the previous research and the hypotheses in (5), I make specific predictions as follows:
Hijo Kang

(6) Predictions
a. SS1 (the steady state of V1) will be shorter than SS2 (the steady state of V2) in fast speech, but not in slow speech. If SS1 is shorter than SS2 in slow speech, the difference between the proportions of SS1 and SS2 will be bigger in fast speech. (Statistically, a significant interaction of rate and position)

b. SS1 of a high vowel will be shorter than SS1 of a non-high vowel and the difference will be greater in fast speech than in slow speech. (Statistically, a significant interaction of rate and height)

To see whether these predictions are correct or not, Korean was selected as test language. As we saw in section 1.2, Korean has many cases where underlying hiatus is realized as VV without hiatus resolution. More importantly, Korean does not have lexical stress, which has a strong effect on vowel length. In the next section, I will describe the experiment in detail.

2 Experiment

2.1 Methods

The materials for acoustic analysis were bisyllabic words containing VV sequences. Out of 7 monophthongs in Modern Korean (/i/, /ɯ/, /u/, /e/, /o/, /ʌ/, and /a/), 6 vowels excluding /ɯ/ were adopted for both V1 and V2. Combined with word-initial /p/, the vowels produced 30 target nonce words (p’V1V2, 6 vowels for V1 × 5 vowels, excluding the same vowel as V1, for V2). Nine p’V1pV2 (/i/, /u/, and /a/ for both V1 and V2) nonce words were adopted to compare the durational aspects of vowels in vowel hiatus and CVCV sequences. To compare VV sequences with and without a glide, Four p’V1GV2 (glide had the same features as the V1 except that it is non-syllabic) nonce words were also included. In sum, the stimuli included 30 CV1V2 target words plus 9 CVCV and 4 CVGV control words. The total 43 words are listed in the appendix. A randomized list of 54 nonce words (including 11 fillers) was presented in written form, embedded in a sentence con-

3 The high back unrounded vowel /ɯ/ was excluded because 1) /ɯ/ is the weakest phonologically and phonetically, which means that it is deleted (Kim 2000) or inserted (Kang 2003) at the phonological level most often in Korean and that it is reduced to [u] at the phonetic level (Lee 1996), 2) /ɯ/ is considered as the only diphthong in Korean (Lee 1996) so it could be realized differently from other VV sequences and 3) in a pilot experiment, its reduction made measurements impossible.

4 Labial stops were selected for the stimuli following Beddor et al (2002). The initial consonant was tense (p’), which have the shortest VOT period (Lee 1996) and the medial consonant was lax (p) because tense and aspirated consonants shorten the preceding vowel (Choi and Jun 1998).

5 The fillers were presented mostly at the first and the last parts of the list since speakers tended to be the slowest at the beginning and the fastest at the end of the list in the pilot experiment.
Six native speakers of Korean (three female and three male) were recorded. All were born in Seoul, where standard Korean is spoken, and were Stony Brook University students or their wives at the time of recording. The range of age was 24 to 32 (average was 28) and their length of stay in the US was 6 months to 4 years. Subjects were paid for their participation.

Recording was done in a sound-attenuated room at Stony Brook University. The devices used for the recording were Marantz PMD 660 digital recorder and Shure SM 48 microphone. The utterances were recorded and digitized at a 44.1kHz sampling rate and 16-bit quantization. Speakers were requested to read the written sentences ‘slowly and clearly but not syllable-by-syllable’ three times and ‘as fast as they could without noticeable errors’ three times. After the instructions were given, speakers practiced reading sentences at both slow and fast rates. In total, 1,548 tokens (43 tokens × 2 rates × 3 repetitions × 6 speakers) were obtained from the recording.

Analysis was done using Praat (Boersma and Weenink 2005). Segmentation was done by means of visual inspection of waveforms and spectrograms, with the following criteria. Each target word \((p'V_1V_2)\) was divided into three parts: SS1, TP (transitional period), and SS2. The onset of the \(V_1V_2\) vocalic region (or SS1) was the first peak of the periodic waveform after a stop burst. The offset of \(V_1V_2\) (or SS2) was marked at the last vocalic peak of the waveform before the more sinusoidal waveform of the following nasal. Then the onset of TP was marked where the stream of the first and/or second formant changed its direction abruptly. The offset of TP was determined in the same way. These were done on the basis of spectrographic display with an overlay of formant values computed by LPC analysis.

When there was no abrupt change, the spectrogram was enlarged focusing on F1 or F2 in question. The slope of formant curve (Hz/ms) was calculated and TP was defined where the absolute value of the slope is over 1 Hz/ms for F1 and 4 Hz/ms for F2. An example is given in (7), where the onset and the offset of TP are relatively prominent.

6 The LPC analysis was set with 5ms window length, 50dB dynamic range, 100 dB/Hz maximum, 6.0dB/oct. pre-emphasis, and 0 dynamic compression.
As for CVCV words, the only additional criterion involved the offset of the first vowel. This was taken as the last peak of the periodic waveform before a closure.\(^7\) As for CVGV words, as Shin (2000) points out, glides did not have any steady states. The onset and the offset of a glide were determined according to the same criteria as TP in V1V2 sequences. During the segmentation, 15 tokens\(^8\) (0.97%) were excluded because their formant structure did not show any observable change and 3 tokens\(^9\) (0.19%) were discarded because the targeted vowels were not articulated.

After segmentation, the duration of each part (V1, TP/C/G, and V2) was computed using a Praat script. The total duration of the three parts will be referred to as ‘word duration’.\(^\text{10}\) The durational proportions were calculated on the basis of this word duration.

2.2 Results

An ANOVA was carried out on the word duration data. The first test, where speech rate was the only independent factor, confirmed that all the speakers used significantly different speech rates in the fast and slow conditions (F(1,5)=34.07, \(P<0.003\)). The ratios (fast to slow) ranged from 0.40 to 0.72 and the average was 0.57.

\(^7\) Sometimes there was no clear-cut stop closure for the second consonant (lax bilabial stop). Then the offset of the first vowel was marked as the last peak that was higher than the following plateau waveform.

\(^8\) They include 7 of ‘pou’, 3 of ‘puo’, 2 of ‘pao’, 1 of ‘pao’ and 2 of ‘pei’.

\(^9\) They include each of ‘pubu’, ‘poo’, and ‘paa’.

\(^10\) Word-initial /p’/ was excluded since there was no way to determine the beginning of the closure.
Having shown a speech rate effect, we now consider whether the effect is stronger for V_1 (Hypothesis I) and whether high vowels are more affected than low vowels (Hypothesis II). The charts in (8) and (9) give segment and word durations in absolute (8) and proportionate (9) units. The data in (8) and (9) include the average durations of CV_1V_2, CVCV, and CVGV types for each speech rate. The chart in (8) shows that speech rate has an effect on the duration of each part as well as on the duration of the word. The chart in (9) gives an impression that CVCV is fairly well-balanced while CV$_1$V$_2$ is slightly inclined to the left.

(8) Duration of V_1, TP/C/G, and V_2 for three word types at two speech rates

(9) Proportion of V_1, TP/C/G, and V_2 for three word types at two speech rates

It was hypothesized that SS$_1$ would be reduced more than SS$_2$ in fast speech (Hypothesis I). To test this hypothesis, a series of ANOVAs were performed on the durations and the proportions11 with factors such as position and rate, for each word type. Hypothesis I is interpreted as an ‘interaction of position and rate’ statistically. In CV$_1$V$_2$ words, SS$_1$ was significantly shorter than SS$_2$ ($F(1,5)=12.90$,

11 Proportions were included since it has been noted that durational proportion in word is an ‘invariant’ property of vowel in Japanese and Swedish vowel length contrast, which is little affected by speech rate (Hirata 2004 and Segerup 2000).
$P<0.02$ for durations and $F(1,5)=10.70$, $P<0.03$ for proportions). The steady states of vowels in hiatus were proportionally reduced in fast speech (29.6% (SD=1.86) \rightarrow 23.5% (5.28) for SS$_1$ and 34.7% (3.75) \rightarrow 32.1% (2.39) for SS$_2$). However, there was no interaction between rate and position ($F(1,5)=1.52$, $P=0.27$), even though the direction was consistent with Hypothesis I. This means that SS$_1$ is shorter than SS$_2$ but it is not reduced in duration significantly more than SS at fast rates. It seems that the duration asymmetry is unique to CV$_1$V$_2$ words. In CVCV words, proportions as well as durations were not different depending on the position of the vowel ($F(1,5)=0.55$, $P=0.49$ for durations and $F(1,5)=0.35$, $P=0.58$ for proportions). Speech rate made a significant difference in proportion ($F(1,5)=21.42$, $P<0.01$). But there was no position asymmetry in CVCV words. The results of CVGV words seem hybrid. Position did not make a significant difference on its own ($F(1,5)=1.81$, $P=0.24$ for durations and $F(1,5)=0.04$, $P=0.86$ for proportions), but there was a significant interaction between rate and position ($F(1,5)=8.04$, $P<0.04$). V$_1$ was longer than V$_2$ in slow speech but shorter in fast speech. In statistics, Hypothesis I was not confirmed. However, it was found that V$_1$ is shorter than V$_2$, which was not found in other types of words.

(10) The durations and the fast/slow ratios of SS$_1$ and SS$_2$ for each vowel height

<table>
<thead>
<tr>
<th>position</th>
<th>height</th>
<th>Dur. at fast</th>
<th>Dur. at slow</th>
<th>fast/slow ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS$_1$</td>
<td>high</td>
<td>39.7</td>
<td>82.4</td>
<td>0.48</td>
</tr>
<tr>
<td></td>
<td>mid</td>
<td>46.8</td>
<td>96.1</td>
<td>0.49</td>
</tr>
<tr>
<td></td>
<td>low</td>
<td>49.3</td>
<td>94.5</td>
<td>0.52</td>
</tr>
<tr>
<td>SS$_2$</td>
<td>high</td>
<td>49.0</td>
<td>103.3</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td>mid</td>
<td>56.5</td>
<td>112.8</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>low</td>
<td>57.2</td>
<td>101.2</td>
<td>0.56</td>
</tr>
</tbody>
</table>

Hypothesis II states that a rate effect will be greater in high vowels than non-high vowels. An ANOVA tested the effect of vowel height as well as rate and position on the durations of steady states in CV$_1$V$_2$ words. SS$_1$ was the shortest when V$_1$ was high and the difference was significant ($F(1,5)=19.37$, $P<0.01$). The ‘height’ effect interacted with rate ($F(1,5)=7.16$, $P<0.05$). As predicted by Hypothesis II, steady state was reduced in fast speech more when the vowel was high than when it was not. Also, the interaction of all the three factors was significant ($F(1,5)=8.47$, $P<0.05$). The fast-to-slow ratios in (10) make clear the reason for this interaction. The reduction of high vowel duration/proportion is bigger in SS$_2$ than in SS$_1$.

183
3 Discussion and Remaining Issues

This study began from typological asymmetries in both synchronic and diachronic hiatus resolution. The question was why V₁ tends to delete or glide more than V₂, such that, for example, a sequence like /ia/ is much more likely to produce [ja] or [a] than would /ai/. Our acoustic analysis of Korean hiatus suggests some answers. First, the tendency for [i] to glide or to be lost may derive from the fact that the duration of V₁ is consistently shorter than V₂, irrespective of speech rate, and the duration of a high vowel was reduced more than that of a non-high vowel, in fast speech. From the viewpoint of articulation, it seems likely that both effects be due primarily to anticipation. The articulation of V₂ starts before that of V₁ ends and this invasion is prominent when there are no intervening consonants. Consequently the duration of V₁ is short. And the height asymmetry seems, ultimately, due to the intrinsic disparity between high and non-high vowels. However, it remains unanswered why the anticipation effect and the intrinsic disparity have ‘synergy’ effect in the context of hiatus.

This study raises several interesting questions for future research. Above all, we need to know whether the acoustic patterns reported here are found in other languages. One logical language to conduct followup research on is Japanese, where glide insertion may occur depending on what the VV sequence is and otherwise, VV sequences are realized without hiatus resolution at the surface. Besides determining whether Japanese data will show similar patterns as Korean data, it would be interesting to see whether inserted glides are acoustically different from underlying glides and whether hiatus resolution (via glide insertion) will make a difference in the duration and/or formants of V₁. In other words, will glide insertion protect V₁ from acoustical weakening as in CVGV words in Korean? The second question is whether hiatus in fast speech, which has proportionately short or absolutely no SS₁, will be more prone to misperception than forms with longer SS₁. It should be found under what acoustic conditions hiatus sequences are misperceived. The presence/absence of ‘compensation’ would be an additional variable in perception. The third question is whether real words will produce different results. Will the disparities between V₁ and V₂ and between high vowels and non-high vowels be widened? If so, a sound change could be accelerated.

As noted in section 2, hiatus resolution has been regarded as a phonological process in most research. As a result, the two asymmetries in hiatus resolution have been also considered as the results of universal grammar. However, the presence of phonological grammar does not imply the absence of the effects of articulatory/auditory mechanisms at the phonetic level and vice versa. This study

12 Hyman (1977) notes “In order for a change to catch on (and become a phonological ‘rule’) it is necessary for it to be perceived and diffused throughout a speech community. In that way phonological change is perception-oriented, even though the seeds for a change may be articulatory.”
Hijo Kang showed that the acoustic variation reflects the very typological patterns, suggesting that the typological patterns could be the results of phonetic variation.

Appendix: Stimulus materials – Korean nonce words

<table>
<thead>
<tr>
<th>CV₁V₂</th>
<th>CVCV</th>
<th>CVGV</th>
</tr>
</thead>
<tbody>
<tr>
<td>p'iu</td>
<td>p'ei</td>
<td>p'ʌi</td>
</tr>
<tr>
<td>p'ie</td>
<td>p'eu</td>
<td>p'ʌu</td>
</tr>
<tr>
<td>p'io</td>
<td>p'eo</td>
<td>p'ʌe</td>
</tr>
<tr>
<td>p'ia</td>
<td>p'ea</td>
<td>p'ʌa</td>
</tr>
<tr>
<td>p'ui</td>
<td>p'oi</td>
<td>p'ai</td>
</tr>
<tr>
<td>p'ue</td>
<td>p'ou</td>
<td>p'au</td>
</tr>
<tr>
<td>p'uo</td>
<td>p'oe</td>
<td>p'ae</td>
</tr>
<tr>
<td>p'ua</td>
<td>p'oa</td>
<td>p'ʌa</td>
</tr>
<tr>
<td>p'up</td>
<td>p'ou</td>
<td>p'ʌu</td>
</tr>
<tr>
<td>p'ui</td>
<td>p'ai</td>
<td>p'apu</td>
</tr>
</tbody>
</table>

References

Hijo Kang
Department of English Education
Hijo Kang

309 Pilmun-daero, Dong-gu, Gwangju
501-759 Korea

hijo.kang@gmail.com