Lawrence Berkeley National Laboratory
Recent Work

Title
FAR-INFRARED DICHROIC BAND-PASS FILTERS

Permalink
https://escholarship.org/uc/item/8pm49024

Authors
Nolte, D.D.
Lange, A.E.
Richards, P.L.

Publication Date
1984-11-01
Materials & Molecular Research Division

Submitted to Applied Optics

FAR-INFRARED DICHROIC BAND-PASS FILTERS

D.D. Nolte, A.E. Lange, and P.L. Richards

November 1984

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
Abstract

Filters which serve as dichroic beam dividers are useful for certain types of far-infrared photometer. We have used inductive cross metal mesh as reflective coatings on solid dielectric Fabry-Perot etalons to produce dichroic filters with quality factors in the range 3<Q<10. These filters reflect strongly at frequencies below the band-pass and retain their well defined band-pass at angles of incidence as large as 45°. They have been used to make an efficient far-infrared dichroic photometer with six frequency bands between 10 and 100 cm⁻¹.

I. Introduction

Certain applications of far-infrared photometry to plasma diagnostics and astrophysics require measurements of transient phenomena in one region of space simultaneously at several frequencies. Several technologies exist which permit such dichroic photometers to be made. Diffraction gratings are efficient dichroic elements if the required frequency bands are narrow and the wavelength range not too large. Reststrahlen
reflection filters provide efficient dichroic band separation at frequencies where they are available.

We were interested in constructing a far-infrared dichroic photometer for a rocket measurement of astrophysical backgrounds between 10 and 100 cm\(^{-1}\). For this experiment it was necessary to separate the frequency range into six nearly contiguous bands. Since neither of the above technologies was appropriate for this application, we have developed a new approach to the dichroic problem.

Fabry-Perot (FP) etalons made from capacitive or inductive metal mesh are well known band-pass filters at far-infrared frequencies. Although these etalons tend to reflect strongly at frequencies below the transmittance band, their usefulness as dichroic filters is limited by the fact that their band-pass characteristics degrade rapidly as the angle of incidence increases from zero. It is a matter of great convenience in a far-infrared optical system to have large angular separations between dichroic channels.

Our approach was to use FP etalons made from the inductive cross metallic mesh discussed by Ulrich.\(^1\)\(^2\) The use of such etalons as band-pass filters has been discussed by Davis,\(^3\) Tomaselli et al.,\(^4\) and Cunningham.\(^5\) Several workers have minimized the amount of dielectric in the etalon to maximize filter efficiency. We use solid dielectric etalons at some cost in efficiency to minimize internal angles when the etalons are used at large angles of incidence.
In this paper we discuss the theory of etalons made from inductive cross mesh deposited on both sides of dielectric substrates. We show that the phase shift on reflection from an inductive cross mesh can be used to superimpose different orders of interference and to control the band-pass characteristics in a useful way. Finally, we present practical design data and measured performance for dichroic band-pass filters used with the angle of incidence equal to 45°.

II. Model

Our filters can be modeled as FP etalons with frequency-dependent reflectivity and frequency-dependent phase shift on reflection at the mesh. This frequency dependence is provided by the resonant properties characteristic of the inductive cross metallic mesh. In the more conventional inductive or capacitive mesh the mesh resonance is close to the frequency at which diffraction effects begin. In the inductive cross mesh the mesh resonance occurs at frequencies far enough below the onset of diffraction that it can be used to tailor the properties of the filter. Our analysis follows the approach used by Ulrich to analyze etalons made from inductive mesh operated far from diffraction. The condition for Fabry-Perot transmittance maxima at normal incidence is

\[\frac{2\pi nt}{\lambda} + \phi = N\pi \quad N = 0, 1, 2, \ldots \] (1)
where \(t \) is the thickness of the substrate, \(n \) is the index of refraction of the substrate, and \(\phi \) is the phase shift for a single internal reflection. For the case of an etalon made from a bare dielectric slab in a vacuum, \(\phi = 0 \), and the FP peaks are evenly spaced in frequency. If the phase shift for internal reflection is a function of frequency, however, the FP peaks will no longer be equally spaced, but will occur at frequencies which must be determined from the combined contributions to the phase shift from the path difference and the internal reflection.

A well known type of microwave waveguide band-pass filter makes use of this phenomenon. In a quarter wavelength filter, two resonant structures are separated by a waveguide which is one quarter of a guide wavelength long at the resonant frequency. The phase shift on reflection from the resonant structure jumps from \(-\pi/2\) below resonance to \(\pi/2\) above resonance. In the approximation that the jump in phase is discontinuous, the \(N=0 \) and \(N=1 \) orders of the etalon both occur at the frequency of the resonant structures. These coincident orders form the single pass band of the filter. Other orders are less important because they occur away from the resonant frequency of the structures and thus have very high finesse.

Inductive Cross Mesh

Our filters are made for far-infrared applications by using inductive cross mesh (ICM) in place of the microwave resonant
structures. The ICM pattern has three parameters: the grid spacing \(g \), the inductive element width \(2a \), and the capacitive element width \(2b \), as are shown in Fig. 1. Several approaches to the analysis of electromagnetic scattering from metallic mesh are reviewed by Durschlag and DeTemple.\(^{10}\) Following the approach of Anderson,\(^ {11}\) the results of Marcuvitz\(^ {12}\) can be used to obtain expressions for the effective capacitance \(C \) and inductance \(L \) of the mesh. These quantities are then used in an equivalent parallel LC resonant circuit to compute the lumped-circuit equivalent reactance \(X_g \) of the mesh. Assuming that both \(a \) and \(b \) are small compared with \(g \), the expression for \(X_g \) is

\[
X_g = \left(\frac{L}{C} \right)^{1/2} \frac{\omega_0}{\omega - \omega^2}
\]

(2)

where

\[
\frac{L}{C} = \frac{b \ln(g/\pi a)}{4(g - 2b - 2a) \ln(g/\pi b)}
\]

(3)

and the resonant frequency is

\[
\omega_0 = \left(LC \right)^{1/2} = \pi \left[2b(g - 2b - 2a) \ln(g/\pi a) \ln(g/\pi b) \right]^{-1/2}
\]

(4)
The expression for L/C agrees well with our experiments, but the expression for \(\omega_0 \) gives values which are too large by approximately a factor 2. This discrepancy in \(\omega_0 \) is due to the deviation of the actual values of \(L \) and \(C \) from the theoretical expressions as the angular frequency approaches the value \(2\pi/ng \) at which the diffraction begins. In this work \(\omega_0=0.8(2\pi/ng) \). Diffraction corrections to the frequency \(\omega_0 \) which depend on the product \(LC \) are large, while corrections to \(L/C \) are small.

Influence of the dielectric substrate

When a resonant mesh is placed on a dielectric substrate, the behavior of the mesh is affected in several ways. Most important for the fabrication of dichroic beam dividers, a large index of refraction for the substrate allows good filter performance at large angles of incidence because of the reduction in internal angles. Also, the effective capacitance of the mesh on the dielectric is greater than its free space value. Timusk and Richards\(^{13}\) proposed the relation

\[
C_n = \frac{1}{2}(n^2+1)C_{\text{free}} ,
\]

which assumes that the increase is equivalent to half filling a capacitor with dielectric. This conjecture is supported by detailed calculations due to Compton,\(^{16}\) although there has been considerable debate in the literature.\(^{10,15}\) This increase in
Capacitance decreases \(\omega \). The index of refraction of the substrate also appears in the expression \(2\pi/\omega g \) for the frequency at which diffraction becomes important, and in the expression for the phase shift experienced on internal reflection.

The amplitude reflection coefficient \(r \), and the phase shift \(\phi \) on internal reflection from the dielectric-mesh-air interface can be calculated in terms of the equivalent circuit reactance \(X_g \) for a lossless mesh by matching boundary conditions,

\[
r = \frac{X_g^2(n^2-1) - 1 - 2iX_n}{X_g^2(n+1)^2 + 1}, \tag{6}
\]

and

\[
\phi = \tan^{-1} \left| \frac{-2X_n}{X_g^2(n^2-1) - 1} \right| + \pi. \tag{7}
\]

When mesh are deposited on both sides of the substrate, the standard results for a FP etalon are:

\[
\frac{I_t}{I_i} = (1 - \frac{A}{1-R})^2 \cdot \frac{1}{1 + F \sin \delta / 2}, \tag{8}
\]

where

\[
F = \frac{4R}{(1-R)^2}, \quad \delta = \frac{4\pi}{\lambda} n \cos \theta' + 2\phi. \tag{9}
\]

and \(\theta' \) is the angle of incidence in the medium.
Here \(R = |r|^2 \) and \(A \) are the power reflectance and absorptance coefficients for a single mesh.

In order to illustrate the importance of these relationships for our filters, we have shown in Fig. 2 the phase shift \(\phi \) for a single internal reflection given by Eq. (6). Equation (6) is plotted for \(L/C = 36 \) for a free-standing mesh and also for mesh on both sides of a dielectric substrate with \(n=1.7 \). We have also shown the phase shift \(2\pi nt/\lambda \) which arises from a single traversal of an etalon of thickness \(nt=\lambda/4 \).

For the case of the free-standing mesh, there is a jump of \(\pi \) in the phase shift at the resonant frequency of the mesh. For this reason, both the \(N=0 \) and the \(N=1 \) orders occur at the resonant frequency marked \(\beta \). For the mesh on the dielectric, the phase function is continuous and the order \(N=0 \) occurs at the frequency marked \(\alpha \) and the order \(N=1 \) occurs at the frequency marked \(\gamma \). The bandwidth of the resulting filter is strongly influenced by the separation of these two transmittance peaks. This separation is determined by the slope of the curve of reflection phase shift versus frequency, and hence by \(L/C \) for the mesh and also by the index \(n \) of the substrate.

Changes in the thickness \(t \) of the etalon change the slope of the path-difference contribution to the phase shift. This leads to a change in the frequency of the pass-band which is significantly less than would be expected for an etalon with non-resonant mesh. As a consequence, the requirements for flatness and parallelism are relaxed significantly compared with
etalons with non-resonant reflectors. This could be of considerable importance in producing high finesse etalons with free-standing mesh.

Diffraction effects at frequencies above $2\pi/\lambda g$ provide significant attenuation on the high frequency side of the bandpass. The amount of energy diffracted out of the beam depends upon the optics of the detection system.

III. Construction of Filters

The peak transmittance of our filters depends strongly on the quality of the Aluminum films, which were 0.12 μm thick. When mylar substrates were used, the evaporation rate was kept below 5Å/sec to avoid heating the mylar and causing it to curl. Care was taken to insure that the film quality was the same on both sides of the substrate. We used the facilities of the U.C. Berkeley Microfabrication Laboratory to pattern the Al films. The masks for lower frequencies were produced directly on a computerized mask generator. A step-and-repeat camera was used to obtain masks with sufficient area for the 32 and 80 cm$^{-1}$ filters. Conventional contact printing and Hg arc lamp exposure were used with Shipley16 1350-J positive photoresist. The quality of the mesh pattern affects both the peak transmittance and the bandwidth of the filter. Care was required during contact printing to insure that the mask and mylar were flat. Overdevelopment of the photoresist which could produce rounded corners of the mesh was avoided. The aluminum was etched at 50°C using Transene17 Type-A
aluminum etch until the unprotected aluminum had visibly cleared. An additional six seconds of etch was used to insure that no optically thin film remained. An example of the resulting mesh pattern is shown in Fig. 1.

IV. Filter Evaluation

Filter measurements were made using a Michelson Fourier spectrometer with f/2 optics. The detector was a helium cooled bolometer.19 The filters could be tested at either room temperature or immersed in superfluid helium. Some improvement in transmittance occurred for cold filters, presumably due to reduction in the ohmic and/or dielectric loss.

High purity Si with resistivity near 500 Ωcm has negligible absorption and a large index n=3.4. It can easily be etched into parallel sided sheets as thin as 75 μm, which correspond to filter transmittance peaks near 10 cm⁻¹. Transmittance measurements of an etalon which had ICM with g=125, a=0.05, and b=0.13 μm on both sides of a 75 μm Si substrate gave a well defined filter bandpass with a 10% bandwidth and a peak transmittance of 0.65. The performance of this filter was insensitive to angle up to 45° incidence. The extension of this technology to higher frequencies is limited because it becomes difficult to fabricate the required Si substrates.

Since our application required higher frequencies and broader bandwidths, we used mylar polyester substrates with n=1.7. The
parameters of five filters made on mylar substrates are given in Table I.

Figure 3 shows the transmittance of a typical band pass filter measured both at normal incidence and at 45° incidence. Some changes in the pass band are observed, largely due to small changes in the frequencies of the resonances of order N = 0, 1 and 2.

Figure 4 shows individual transmittance curves measured at 45° incidence for four filters whose parameters are given in Table I. Reflectance measurements were also made at 45° incidence for several filters. The sum of reflectance and transmittance is >95° for the frequency region ω<0.7ω₀, which is important for dichroic applications, and approaches 50% at high frequencies.

With proper selection of parameters, calculations using the theory outlined above gave transmittance curves that were in semiquantitative agreement with the measurements at frequencies below the diffraction limit. We found that calculations are very useful in guiding the selection of experimental parameters.

Several general trends can be observed in our data. The bandwidth and the peak transmittance both increase with increasing b. The bandwidth result is easily understood in terms of Eq.(3) which describes the mesh resonance. Low Q filters tend to have high transmittance peaks because of the reduced influence of
absorption. As \(b \) increases, the amount of high frequency leakage increases. This can be understood in terms of the ray-optics limit since the area free of metal increases with the increasing \(b \).

The behavior of the filter response cannot be predicted quantitatively for frequencies in the diffractive region above \(2\pi/n \). In the absence of diffraction there should be high order FP transmittance peaks. With diffraction, these transmittance peaks are diminished dramatically due to the scattering of energy into large angles. This effect can assist in providing good rejection at high frequencies.

V. Conclusions

We have found that the use of resonant ICM in FP etalons yields additional experimental parameters which can be selected to produce useful infrared dichroic filters. These filters have been used in a multichannel far infrared photometer with six frequency channels between 10 and 100 cm\(^{-1} \). The dichroic beamsplitters are arranged so that the beam entering the instrument is incident on each of them at 45°, in order of decreasing frequency. The measured response of the four low frequency channels of this photometer is shown in Fig. 5. These measurements were made with a room temperature spectrometer and bolometric detectors. When comparisons are made to the transmittances of individually measured mesh etalons shown in Fig. 4 some extra structure is seen that comes from additional low and
high pass filters in each channel. It is also seen that the cut-on of one filter reduces the second order response of the next lower frequency filter. In the complete instrument this effect will also be used to improve the shape of the 30 cm\(^{-1}\) band. The detailed design and performance of this photometer will be published elsewhere.\(^{19}\)

VI. Acknowledgements

We are very grateful to Ms. Kim Chan of the U.C. Berkeley Microfabrication Laboratory for invaluable help in producing the ICM. This work was supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Materials Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
References

19. A. Lange and P.L. Richards, to be published.
PARAMETERS FOR DICHROIC BAND-PASS FILTERS ON MYLAR SUBSTRATES WITH $n=1.7$. FOR EACH CASE $a=0.05g$ AND $b=0.09g$. TRANSMITTANCE CURVES FOR THESE FILTERS ARE GIVEN IN FIG. 4.

<table>
<thead>
<tr>
<th>$\nu (\text{cm}^{-1})$</th>
<th>$t (\mu m)$</th>
<th>tn/λ_0</th>
<th>$g (\mu m)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>175</td>
<td>.30</td>
<td>375</td>
</tr>
<tr>
<td>15</td>
<td>100</td>
<td>.26</td>
<td>250</td>
</tr>
<tr>
<td>23</td>
<td>75</td>
<td>.30</td>
<td>164</td>
</tr>
<tr>
<td>32</td>
<td>50</td>
<td>.28</td>
<td>118</td>
</tr>
</tbody>
</table>
Fig. 1. Photograph of aluminum inductive cross mesh on mylar substrate. The grid on the reverse side is out of focus and appears as a shadow. The definitions of the mesh parameters a, b, and g are shown. In this case, g=164 μm.

Fig. 2. Plot of phase shift computed for a single internal reflection from a resonant inductive cross mesh. The dashed curve for the free standing mesh has a phase discontinuity at resonance. The solid phase curve for a mesh on a dielectric substrate is continuous through the resonance. The contribution to the phase shift from a single transmittance through a substrate of thickness λ/4n, is also plotted as a diagonal straight line. For the free standing mesh, the N=0 and N=1 orders of the etalon occur at frequency β. For the mesh on a dielectric substrate, the order N=0 occurs at frequency α where the reflection and path difference phase shifts add to zero. The order N=1 occurs at frequency γ where the two phase shifts add to π.

Fig. 3. Transmittance of an inductive cross mesh band-pass filter on a mylar substrate at 1.3 K for 45° incidence (dashed line), and normal incidence (solid line). The orders of the Fabry-Perot etalon are labeled for the case of normal incidence. The parameters for this filter are t=75μm, g=118μm, a=0.05g and b=0.061g.
Fig. 4. Transmittance of individual ICM filters on mylar at 1.3 K for 45° incidence. The parameters for these filters are given in Table I.

Fig. 5. Response of four channels of a dichroic photometer using the filters described in Table I plus additional low and high pass filters in each channel. The peak response has been normalized to the same value for each channel.
FIGURE 2

Phase Shift vs. Frequency, ω/ω_0
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.