Recent Work

Title
Design of Pulsed X-Ray System for Fluorescent Lifetime Measurements with a Timing Accuracy of 109 PS

Permalink
https://escholarship.org/uc/item/8r42r4pn

Authors
Derenzo, S.E.
Moses, W.W.
Blankespoor, S.C.
et al.

Publication Date
1992-10-01
Presented at the IEEE Nuclear Science Symposium, Orlando, FL, October 27–31, 1992, and to be published in IEEE Transactions on Nuclear Science

Design of a Pulsed X-Ray System for Fluorescent Lifetime Measurements with a Timing Accuracy of 10^9 PS

S.E. Derenzo, W.W. Moses, S.C. Blankespoor, M. Ito, and K. Oba

October 1992
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
DESIGN OF A PULSED X-RAY SYSTEM FOR FLUORESCENT LIFETIME MEASUREMENTS WITH A TIMING ACCURACY OF 109 PS*

S. E. Derenzo, W. W. Moses, and S. C. Blankespoor
Lawrence Berkeley Laboratory, University of California, Berkeley, CA 94720

M. Ito, and K. Oba
Hamamatsu Photonics K.K., Hamamatsu City, Japan

ABSTRACT

We describe the design of a table-top pulsed x-ray system for measuring fluorescent lifetime and wavelength spectra of samples in both crystal and powdered form. The novel element of the system is a light-excited x-ray tube with a tungsten anode at +30 kV potential. The S-20 photocathode is excited by a laser diode with a maximum rate of 10 MHz, each pulse having <100 ps fwhm (full-width at half-maximum) and >10⁷ photons. In a collimated 2 mm x 2 mm beam spot 40 mm from the anode we expect >1 x-ray per pulse. A sample is exposed to these x-rays and fluorescent photons are detected by a microchannel PMT with a photoelectron transit time spread of 60 ps fwhm, a sapphire window, and a bialkali photocathode (wavelength range 180-600 nm). The combined time spread of a laser diode, the x-ray tube, and a microchannel tube has been measured to be 109 ps fwhm. To measure wavelength spectra, a reflection grating monochromator is placed between the sample and the PMT.

1 BACKGROUND AND INTRODUCTION

In previous work, an electron synchrotron was used in single-bunch mode to measure the x-ray excited fluorescence of over 400 compounds. Interesting fluorescence emissions were detected from several compounds by this method, including CeF₃, PbCO₃, PbSO₄, Yb₂O₃, CeCl₃, BaCl₂, and CuI [1, 2]. At the same time, a light-excited x-ray tube was developed for producing very brief (<100 ps) pulses of x-rays (Figure 1) [3].

In this work, we describe the design of a table-top pulsed x-ray fluorescence measurement system using a laser diode and a light-excited x-ray tube. This system has a number of advantages over the electron synchrotron technique. Among these are (i) measuring samples without having to transport personnel and equipment to a remote site, (ii) measuring samples immediately rather than waiting for the next single-bunch beam run, (iii) a narrower x-ray pulse width (<100 ps), and (iv) the ability to vary the excitation repetition period from 100 ns to well beyond 10 μs.

The method of Bollinger and Thomas [4] (as modified by Moszynski and Bengtson [5] for coincident 511 keV annihilation photons) is also used to measure fluorescent decay spectra. However, the timing accuracy is limited to about 200 ps fwhm by jitter in the trigger scintillator, and it is difficult to determine the fraction of slow components.

2 PULSED X-RAY SOURCE

2.1 Laser Diode

The PLP-01 Picosecond Light Pulser consists of a controller and a laser diode head. The pulse width and number of photons per pulse depend only weakly on the pulse rate, which can be varied from 1 Hz to 10 MHz. Each light pulse is preceded by a timing pulse with a time jitter of ±10 ps. In addition, the laser diode can be externally triggered or operated in dc mode. See Table 1 for additional details.

Table 1. Characteristics of Hamamatsu PLP-01 Light Pulser with C3551-01 Controller and LDH065 Laser Diode Head

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Emission wavelength</td>
<td>650 nm</td>
</tr>
<tr>
<td>Peak power</td>
<td>>100 mW</td>
</tr>
<tr>
<td>Pulse width</td>
<td>50-100 ps fwhm</td>
</tr>
<tr>
<td>Pulse repetition rate</td>
<td>dc to 10 MHz</td>
</tr>
<tr>
<td>Photons per pulse</td>
<td>>10⁷</td>
</tr>
<tr>
<td>Timing pulse jitter</td>
<td>±10 ps</td>
</tr>
</tbody>
</table>

* This work was supported in part by the U.S. Department of Energy contract DE-AC03-76SF00098, in part by Public Health Service Grants Nos. PO1 25840, RO1 CA48002, and GM08155-07, and in part by The Whitaker Foundation.
2.2 Light-excited X-ray Tube

The light-excited x-ray tube (Figure 1), is essentially a single-stage photomultiplier tube. It has an S-20 photocathode at ground potential and a tungsten anode at +30 kV. Light liberates photoelectrons at the photocathode, which are accelerated to 30 keV to strike the tungsten target, producing bremsstrahlung x-rays. The photocathode to anode transit time is 0.8 ns and the anode surface is oriented at 45° with respect to the incident electron beam. See Table 2 for additional details.

The maximum anode current of 50 µA corresponds to a maximum photon rate of 3×10^{15}/s at 10% quantum efficiency. At 10 MHz and 2×10^7 photons per pulse, the laser diode will provide 2×10^{14} photons/s.

Table 2. Characteristics of Hamamatsu N5084 Light-excited X-Ray Tube

Overall tube length	152 mm
Tube Diameter	52 mm
Photocathode	S-20
Quantum efficiency @ 650 nm	> 10%
Photocathode diameter	12 mm
Target material (anode)	Tungsten (45°)
Output window material	Beryllium
Output window diameter	20 mm
Output window thickness	0.5 mm
Cooling	Natural air
Tube voltage (max)	30 kV
Tube current (max)	50 µA
Photocathode photon rate (max)	3×10^{15}/s @ 10% QE

3 RESULTS

3.1 Measurement of Timing Response

The light-excited x-ray tube was tested by illuminating its photocathode with laser diode pulses and measuring the x-rays with a Be-window microchannel electron multiplier (Figure 2). The laser diode was coupled to the x-ray tube with an optical fiber. The measured time distribution of detected x-rays is shown in Figure 3. The 109 ps fwhm includes three components: the width of the laser diode pulses (55 ps), time spread in the light-excited x-ray tube, and the timing resolution of the microchannel tube (57 ps). The contribution of the light-excited x-ray tube is inferred to be 75 ps.

3.2 System for Fluorescence Measurements

Figure 4 shows the system for measuring fluorescence decay timing spectra from powder or crystal samples. The delayed coincidence method is used to record the time distribution between the x-ray pulses and the individual fluorescent photons.

The laser diode head is proximity coupled to the x-ray tube photocathode for maximum photon rate. The microchannel PMT has a bialkali photocathode, a sapphire window, a wavelength range from 180 to 600 nm, and a 60 ps transit time spread. The PMT is thermoelectrically cooled to -20°C to reduce the dark rate to a few photoelectrons/s.

Emission spectra can be measured by inserting a monochromator between the sample and the microchannel phototube. To extend the upper limit to 900 nm, a phototube with a quartz window, a GaAs photocathode, and 4 ns transit time spread can be used.

The sample chamber is evacuated to a pressure below 10^{-3} mm Hg to avoid fluorescence from air. A current meter at the photocathode is used to monitor the photoelectron current and a current meter at the power supply is used to monitor the sum of the anode current and any leakage currents to ground.
3.3 Data Acquisition and Analysis

Time differences between the x-ray excitation and the arrival of fluorescent photons are digitized by a time to digital converter (TDC) with a bin width of 50 ps and a maximum dynamic range of 800 μs, corresponding to the maximum 24-bit CAMAC data number. The TDC can detect multiple photon detections in the conversion time range, and these events are rejected to reduce bias and permit substantially higher data rates [6]. A compression algorithm preserves the 50 ps bin width near the time of the excitation but combines data into progressively wider bins at later times. In a typical case, 2×10^5 bins spanning a 10 μs conversion range are compressed into 2×10^3 bins for fitting. The fitting program determines fractions, decay times, and rise times of fluorescent components by fitting a sum of exponentials (convolved with the system timing response) to the compressed data [7].

4 CONCLUSIONS

By combining a state-of-the-art laser diode and a recently developed light-excited x-ray tube, we have designed a tabletop system for measuring fluorescent intensities and decay times with a timing accuracy of about 100 ps. The data acquisition uses photon counting and signal averaging, so that accurate measurements are possible for even weakly fluorescing samples. The system is more accurate than methods using coincident nuclear radiation and more accurate and convenient than methods using synchrotron x-radiation.

5 ACKNOWLEDGEMENTS

We would like to thank J. Cahoon and T. Vuletich for technical assistance, R. Muller for technical coordination, and P. Rentzepis and K. Kaufmann for helpful discussions.

This work was supported in part by the Director, Office of Energy Research, Office of Health and Environmental Research, Medical Applications and Biophysical Research Division of the U.S. Department of Energy under contract No. DE-AC03-76SF00098, and in part by Public Health Service Grant Nos. P01 HL25840, R01 CA48002, and GM08155-07, awarded by the National Heart Lung and Blood, National Cancer, and General Medical Institutes, Department of Health and Human Services. Two of us (S.C. Blankespoor and W.W. Moses) were supported in this research by the Whitaker Foundation.

Reference to a company or product name does not imply approval or recommendation by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.

REFERENCES
