Title
LASER OPTOACOUSTIC SPECTROSCOPE PROJECT. ROUGH CALIBRATION OF PHASE I HELMHOLTZ COIL SYSTEMS

Permalink
https://escholarship.org/uc/item/8r56q0hx

Author
Nelson, D.H.

Publication Date
1982-03-01
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
The "Helmholtz" coil design for the coil pair tested is described in MT 314. This note presents the preliminary tests and calibrations completed by Magnetic Measurements Engineering before we loaned the equipment to Shu-Shia Chen.

Figure 1 shows the hardware loaned to Shu-Hsia Chen for studies related to the Laser Optoacoustic Spectrometer Project. Table I lists specific equipment and some significant parameters.

After adjusting the Gaussmeter's zero and calibration controls, we collected the data summarized in Table II.

On March 17th, Dr. Shu-Hsia Chen reported successful operation of the hardware provided. She does not plan to operate at higher (than ~250 Gauss) fields as the coil temperature masks the effect of magnetic field.

Distribution

N. Amer
S.H. Chen
C.G. Dols
M.I. Green
E.C. Hartwig/L.J. Wagner/F.S. Goss
J. Katz

This work was supported by the U.S. Dept. of Energy under Contract DE-AC03-76F00098.
Laser Optoacoustic Spectrometer Project
Rough Calibration of Phase I Helmholtz Coil System

NAME: D.H. Nelson
DATE: March 19, 1982

Figure 1 Circuit for Energizing Helmholtz Coil
and for Measuring Resultant Field
Helmholtz Pair

Coil Form

MT 314, Figure 1

Coils (2 each)

350 Turns AWG No. 24 Heavy Formvar
Mean Radius, \(a = 0.016 \) m
Room Temperature Resistance \(\approx 7.0 \pm 0.3 \Omega \)

Locator Holes

4 - 3/16" D Holes (See MT 314, Figure 1)

Resistors (Current Limiting) None Required for Phase I

Ammeter

Keithley Mod 172A
S/N 14098

Power Supply

Lambda Mod LP520FM
(5 A/10 V)
S/NB14168

Gaussmeter

F.W. Bell Mod 620
AEC No. 501586

Probe Mod HTJ4-0608
S/N 150289

Shield Mod YA111
No S/N

TABLE I Equipment List

<p>| Helmholtz Coil-Pair Magnetic Normalized |</p>
<table>
<thead>
<tr>
<th>Series Current</th>
<th>Induction</th>
<th>Magnetic</th>
<th>Induction</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_0) (A)</td>
<td>(E_{load}) (V)</td>
<td>(B_z(z = 0)) (G)</td>
<td>(B_z/I_0) (G/A)</td>
</tr>
<tr>
<td>+1.0</td>
<td>6.8 ±0.1</td>
<td>177</td>
<td>177</td>
</tr>
<tr>
<td>+1.5</td>
<td>>10</td>
<td>260</td>
<td>173</td>
</tr>
<tr>
<td>-1.0</td>
<td>7.1</td>
<td>177</td>
<td>177</td>
</tr>
<tr>
<td>-1.47</td>
<td>>10</td>
<td>256</td>
<td>174</td>
</tr>
</tbody>
</table>

(Measured Values \(\sim 14\% \) Low @ 1.5 A)

Design Estimate 1.53 300 196

TABLE II Rough Calibration of Helmholtz Coil Pair
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.