Title
Non-Invasive Image-Based Assessment of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

Permalink
https://escholarship.org/uc/item/8r659211

Authors
Heylman, CM
Datta, R
Kurokawa, Y
et al.

Publication Date
2014-12-01

License
CC BY 4.0

Peer reviewed
O-373: Non-Invasive Image-Based Assessment of Human Induced Pluripotent Stem Cell-Derived Cardiomyocytes

C. M. Heylman¹, R. Datta¹, Y. Kurokawa¹, D. D. Tran¹, B. R. Conklin², E. Gratton¹, S. C. George¹;

¹University of California, Irvine, Irvine, CA, ²Gladstone Institutes, San Francisco, CA.

Problem: Human induced pluripotent stem (iPS) cells have emerged as a viable source of human cardiomyocytes for developing more accurate in vitro cardiac drug screening platforms. With improved cardiac tissue models, non-invasive, non-destructive methods that assess functional tissue metrics longitudinally in response to drugs are necessary.

Objectives: The objectives of this study are to develop and validate non-invasive and non-destructive methods for assessing the electrophysiology and metabolic state of human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CMs).

Methodology: We differentiated beating hiPS-CM from human iPS cell line WTC-11. The electrophysiological phenotype was assessed using the membrane voltage sensitive dye (VSD), di-4-ANEPPS, and the genetically encoded calcium indicator, GCaMP6. The metabolic phenotype of hiPS-CM was quantified as the ratio of glycolysis to oxidative phosphorylation using fluorescence lifetime imaging microscopy (FLIM) of nicotinamide adenine dinucleotide (NADH), a central metabolite. hiPS-CM were subjected to several stimuli known to affect the metabolism and/or electrophysiology of cardiomyocytes including different doses of isoproterenol, propranolol, hypoxia, and potassium cyanide.

Results: Beta blocker propranolol (10 μM) and beta adrenergic agonist isoproterenol (100 nM) elicited a 56% decrease and a 19% increase in beat frequency, respectively. 24 hours exposure to hypoxia generated a shift of 17% of pixels analyzed from oxidative phosphorylation to glycolysis (p = 0.015). Potassium cyanide (4 mM) generated a significant shift of pixels analyzed from oxidative phosphorylation to glycolysis (p < 0.05).

Significance: These unique electrophysiological and metabolic endpoints will facilitate the development of in vitro human cardiac tissues with the potential to identify cardiotoxic effects in drug discovery applications.

Acknowledgments: NIH #1UH2TR000481-01