Title
A NEW 20-HOUR ELECTRON- CAPTURING RHENIUM ISOTOPE, Re181

Permalink
https://escholarship.org/uc/item/8rb3x7qr

Authors
Gallagher, Charles J.
Sweeney, Michael
Rasmussen, John O.

Publication Date
1957-05-01
UNIVERSITY OF CALIFORNIA

Radiation Laboratory

TWO-WEEK LOAN COPY

This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

BERKELEY, CALIFORNIA
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
A NEW 20-HOUR ELECTRON-CAPTURING RHENIUM ISOTOPE, Re181

Charles J. Gallagher, Jr., Michael Sweeney, and John O. Rasmussen

May, 1957
A NEW 20-HOUR ELECTRON-CAPTURING RHENIUM ISOTOPE, Re181

Charles J. Gallagher, Jr., Michael Sweeney, and John O. Rasmussen
Radiation Laboratory and Department of Chemistry
University of California, Berkeley, California

May, 1957

During an investigation of neutron-deficient rhenium isotopes1 produced by 48-Mev alpha particles on tantalum, a very prominent 366-kev gamma transition was observed which decayed with an approximately 20-hour half-life. Since a 17-hour activity had been observed when bombarding with alpha energies above 40 Mev in a stacked tantalum foil excitation function,2 and since no isotope Re181 had been previously reported,3 we assigned the activity to the electron-capture decay of a new isotope, Re181. The 366-kev gamma associated with this decay is then a transition in W181.

To verify this assignment two experiments were done. The first consisted of two stacked-foil excitation functions performed by bombarding a stack of 0.001-inch tantalum (99.98\% pure) with a very low-intensity beam of alpha particles in the Berkeley 60-inch cyclotron.

In the first experiment the foils were counted directly in a sodium iodide counter with a 50-channel differential pulse-height analyzer. The intensity of the 366-kev gamma in each foil was then plotted against the energy of the alpha particle incident on each foil to give a rough excitation function. The threshold energy was approximately 33 Mev, and the curve was still rising at the full energy of the cyclotron, ~48 Mev. This threshold and the shape of the curve clearly must correspond to a Ta181 (\alpha,4n) Re181 reaction. The excitation function is illustrated in Fig. 1.

The second stacked-foil bombardment was used to determine the half-life of the isotope. Much greater activities were produced, and carrier-free chemical separation to obtain pure rhenium was performed4 on the first foil. The decay of the 366-kev transition was followed in a double-focusing beta-ray spectrometer at 0.3\% resolution and on the previously mentioned 50-channel gamma analyzer. The results obtained by the two methods were in good agreement. The half-life determined was 20 ± 2 hours. In this experiment we determined a K/L\textsubscript{I}/M\textsubscript{I} ratio of 5.7/1/\~0.2 for the 366-kev gamma. The L\textsubscript{II} and L\textsubscript{III} lines were not observed.

The second experiment was conducted several weeks after the second
bombardment. Tungsten carrier was added to the previously-separated pure
rhenium activity. WO_3 was precipitated and the precipitate was gamma-analyzed.
A single peak was observed at the energy of tantalum K γ-rays. Since W^{181}, the
only radioactive tungsten isotope in this region, has been observed to decay
almost entirely to the ground state of Ta^{181}, and since the long-lived
rhenium isotopes exhibit complex gamma spectra, we feel that this experiment
further establishes the activity first observed as Re^{181}. The half-life of the
K γ-ray peak is in agreement with the 120-day half-life reported for W^{181}, but
we have not followed it for a long enough period to verify this value.

Dr. D. Strominger performed coincidence studies on the Re^{181}, using fast-
slow coincidence pulse-analysis apparatus. He observed no coincidences between the
366-kev gamma and K γ-rays, and from this result it was concluded that the half-
life of the state giving rise to this gamma is greater than 10^{-7} sec.

Recent studies of short-lived isomers produced by betatron excitation
of natural tungsten7,8 have revealed a 366-kev gamma transition with a half-life
of 14.4×10^{-6} sec. The transition was reported8 to have a K-conversion coeffi-
cient of 0.30 \pm 0.03. These workers assigned the transition to W^{181}. Our work
confirms this assignment, since the isomer is formed in decay of Re^{181}. Bureau
and Hammer8 (hereafter called BH) suggest that the multipolarity of the 366-kev
transition, as determined by their absolute conversion coefficient, agrees with
either a 28% El - 72% M2 or 65% M2 - 35% E3 mixture. From our failure to observe
the L_{II} and L_{III} conversion electrons we can rule out the M2 - E3 assignment.
Their mixing ratio was calculated using Rose's9 theoretical conversion coefficients,
which are now generally considered to be too high because of the neglect of a
finite nuclear size correction. Using Sliv's10 K-shell internal-conversion coefficients, we recalculate the mixture to be 14% El - 86% M2. Furthermore, the
experimental limits of error given by BH do not eliminate a pure M2 assignment.
The value of 5.7 we obtained for the K/L$_I$ is in excellent agreement with the
theoretical K/L$_I$ ratio for a pure M2 transition. This is not a sensitive test
for mixing, however, since the strong M2 conversion would mask small El con-
tributions.

BH also advance an explanation of the isomeric W^{181} state in terms of
nucleon states in a spheroidal well as calculated by Nilsson.11 They suggest
that the transition observed corresponds to a transition between two Nilsson odd-
neutron states, $7/2^- \rightarrow 9/2^+$, the predominant M2 character resulting from a
high degree of cancellation of El transition matrix elements for the Nilsson states in question. Although retardation from single-particle formula rates12 occurs generally for low-energy El transitions, the retardation (granting El admixture of 14% here) of about 10^{10} would be exceptionally large for El transitions not K-forbidden, retardations of $10^{4} - 10^{5}$ being the general rule.13 These lifetime considerations strengthen our alternative assignment of pure M2 character to the isomeric transition. The M2 transition is retarded by about a factor of 700.

Consideration of the Nilsson diagram for neutron states also shows a nearby $5/2^{-}$ state which would give rise to a pure M2 transition to the $9/2^{+}$ ground state in W181, and we favor this state assignment for the isomer.

Another test of the assignment of the isomeric state can perhaps be obtained from the Re181 studies if the log ft value for electron capture to the 366-kev state can be ascertained. This test is a consequence of the asymptotic-quantum-number beta-selection rules proposed by Alaga.14 If we postulate that the $5/2^{+}$ odd-proton ground state, proposed for Re183, Re185, and Re187,15 is also the ground state of Re181, then decay to the $7/2^{-}$ state proposed by BH should theoretically exhibit a larger log ft value then decay to the $5/2^{-}$ state, since for electron capture to these states the $5/2^{+} \rightarrow 7/2^{-}$ beta transition is first-forbidden, hindered, while the $5/2^{+} \rightarrow 5/2^{-}$ transition is first-forbidden, unhindered. We have observed some additional weaker gamma transitions which may be associated with the decay of Re181, but because of the complexity of the gamma spectra of the Re182 isomers with not too different half-lives, the isotope assignment of the weaker transitions in our samples is still quite uncertain.

We would like to acknowledge interesting and helpful discussions with Dr. S. G. Nilsson. We are grateful to Dr. Sigvard Thulin for help in some of these experiments and to Dr. Donald Strominger for help in coincidence measurements.

This work was carried out under the auspices of the U. S. Atomic Energy Commission.
REFERENCES

10. L. A. Sliv, privately circulated tables.
Fig. 1. Excitation function (in arbitrary units of σ) for the Ta181 $(\alpha,4n)$ Re181 reaction. E_{max} indicates the maximum alpha particle energy produced by the cyclotron. The function was determined from the relative intensity of the 366-kev gamma in a series of .001-inch foils.