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a b s t r a c t 

Motivated by an industry example, we develop a mathematical framework to address the inventory re- 

plenishment and capacity planning problem for a closed-loop supply system with random returns. The 

provider needs to deliver new or refurbished products to a group of clients under a fixed cyclic sched- 

ule, and also collects back a random portion of the used products in the subsequent delivery cycle for 

refurbishment. We first address the product replenishment strategy, in which only a random portion of 

the delivered products will be returned for refurbishment and the supplier must regularly purchase new 

products to replace the lost units. We then analyze the capacity decision problem where the provider 

uses his facility to refurbish the returned products for reuse, and the provider could incur extra refur- 

bishing cost to handle the returned product at the end of each cycle due to insufficient capacity. Our 

models provide a simple decision support tool for making effective replenishment and capacity decisions 

in managing such a closed-loop supply system. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

We recently visited a supply company that offers a variety of fa-

ility products such as cloth table napkins used at local restaurants.

he supply company delivers some fixed amount of the clean nap-

ins to the individual restaurant owners and then collects back the

oiled napkins based on some pre-determined weekly delivery and

ollection schedule. The exact delivery quantity and delivery inter-

al depend on the specific usage of each individual restaurant. The

oiled napkins returned are then cleaned, packed and recycled for

uture use. This supply company offers a variety of napkin styles,

.g., white or black, and each style can be shared among a num-

er of local restaurants. One interesting feature of this problem is

hat the amount of soiled napkins returned is only a (random) frac-

ion of the delivered quantity, and it is difficult and expensive for

he supply company to count the exact quantity of each type of

he soiled napkins from each individual restaurant before they are

orted and combined with those returned from the other restau-

ants. 

The above example motivates us to study the inventory and

apacity management issues in a closed-loop supply recovery
∗ Corresponding author. Tel.: +1 949 824 5054; fax: +1 949 725 2845. 

E-mail addresses: candicehuynh@cpp.edu (C.H. Huynh), rso@uci.edu (K.C. So), 

urnanih@wfu.edu (H. Gurnani). 
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ystem with random returns. Specifically, we consider a closed-

oop system involving a single product supplied by a service

rovider to its clients. The provider delivers a fixed quantity of this

roduct to its clients using a cyclic delivery schedule, and at the

ame time, collects back the used products from clients delivered

n the previous cycle. These used products are then refurbished by

he provider, and recycled back to the clients for future use. An im-

ortant feature of this system is that only a (random) fraction of

he delivered products will be recycled back for refurbishment, as

ome of these products are lost or deemed non-usable due to nor-

al wear and tear. Our model applies to an operating environment

n which a firm uses recyclable components or products that will

e returned and refurbished for future use under a regular delivery

nd collection schedule. In another application of our problem set-

ing, Straus uses reusable glass bottles for their creamery products,

nd they deliver new inventory of creamery products and pick up

he empty used bottles from the farmers markets (such as Whole

oods, Mother’s Market and others) on a regular basis. 1 

The provider faces two important operations issues. First, the

rovider needs to determine an effective replenishment strategy

or their products. As a random portion of the products (new or

efurbished) is lost during each delivery cycle, the provider must
1 See http://strausfamilycreamery.com/values- in- action/reusable- glass- bottles for 

ore information. 
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i  
regularly purchase new products from its supplier to replace the

lost units in order to maintain an adequate supply of the prod-

ucts to its clients. We refer to this as the optimal replenishment

problem. 

Second, the provider needs to maintain an appropriate capacity

in its facility to refurbish the returned products, so that the re-

furbished products can be recycled back to the closed-loop supply

system in a timely manner. Since the amount of returned products

is random, the provider must plan the capacity effectively to mini-

mize the operating cost of refurbishment. We assume that any re-

turned products that cannot be refurbished at the end of each time

period due to capacity constraint can be either carried over to the

next period, or processed using overtime (or possibly outsourced)

at a higher unit operating cost. The provider must carefully take

into account the random return rate of the used product in plan-

ning the refurbishing capacity in order to balance between excess

idle capacity and the higher operating cost due to overtime pro-

cessing. We refer to this as the optimal capacity problem. 

We develop an analytical model to address these two opera-

tional problems. For the optimal replenishment problem, we as-

sume that the number of returned products follows a Binomial

distribution based on the delivery quantity and the average return

rate of the products. We first develop a decision model to deter-

mine the optimal replenishment policy. Then, we analyze how the

different model parameters affect the optimal replenishment pol-

icy and provide some numerical results to illustrate several basic

insights derived from our model. 

For the optimal capacity problem, we develop a simple approx-

imation scheme to estimate the amount of returned products to

be refurbished under some fixed refurbishment policy. We also

perform a set of numerical experiments to demonstrate the accu-

racy of this approximation scheme and compare the effectiveness

of this approximation scheme with two other simple approaches

in selecting the optimal refurbishment capacity that minimizes the

average capacity and processing costs. Our numerical results show

that the approximation scheme provides near-optimal performance

and can be used as an effective decision support tool in capacity

planning for the facility. 

The paper is organized as follows. In Section 2 we briefly re-

view the existing research literature on managing inventory and

capacity in closed-loop supply chains. In Section 3 we describe our

model setup and introduce the basic notation used in our model.

We then analyze the optimal replenishment problem and the op-

timal capacity problem in Section 4 and Section 5 , respectively. In

Section 6 we provide our concluding remarks and illustrate two

important applications of our models in managing such a closed-

loop supply system. 

2. Literature review 

Our research is concerned with the management of closed-loop

supply chains with recoverable products. Product recovery man-

agement is an important element in sustainable supply chain man-

agement, in which the manufacturer can recover, reuse, and re-

manufacture some of the used products (or its components) in a

closed-loop supply chain. It has been well documented that an ef-

fective recovery and remanufacturing process coupled with an ef-

ficient closed-loop supply chain can be profitable for a number

of popular product categories including single-use cameras, toner

cartridges, glass bottles, computer chips, and automobile batter-

ies; see Ayres, Ferrer, and Leynseele (1997) , Davis (1996) , Ginsburg

(2001) , and Kodak (2001) . Given the importance of sustainable

supply chain management with recoverable manufacturing sys-

tems, research interest in managing closed-loop supply chains has

been increasing in the past two decades. Researchers have studied

various operational and strategic issues arising from a closed-loop
upply chain ranging from production planning, inventory control,

uality management, reverse logistics network design, product re-

overy management to pricing strategy, and competition between

ew and remanufactured products. We refer the readers to Guide

nd van Wassenhove (2006) and Verter and Boyaci (2007) for two

pecial journal issues on some earlier research on closed-loop sup-

ly chains and reverse logistics, as well as Atasu, Guide, and van

assenhove (2008) and Souza (2013) for two recent reviews. 

Broadly speaking, Kenne, Dejax, & Gharbi (2012) describe four

ategories of return items that have been commonly analyzed in

losed-loop supply chains: reuseable items (such as returned pal-

ets that do not require any rework and can immediately put back

nto use), repair services (where products are sent back to cus-

omers after repair), remanufacturing (an industrial process where

sed products are put back into the system after refurbishing) and

ecycling of raw materials and waste. Our paper focuses on some

pecific inventory and capacity management issues for repair ser-

ices or remanufacturing under an operating environment as de-

cribed in Section 1 . 

There exists an extensive literature on using quantitative mod-

ls for studying inventory and capacity management issues in

losed-loop supply chains. We refer to a recent comprehensive re-

iew article by Akcali and Cetinkaya (2011) who classify this ex-

sting quantitative literature based on the product characteristics

nd quantitative nature of the models. Our paper falls into the cat-

gory of stochastic demand and/or return models for single-item

roblems. However, our problem context consists of some unique

eatures that have not been addressed in the extant state-of-the-

rt literature in this area. 

First, the products are continuously used and refurbished in the

losed-loop system, which does not require coordination between

ew and recycled products until the amount of recycled products

n the system becomes low and a replenishment of new products

s required. Second, the system has a cyclic delivery schedule and

he facility needs to refurbish all returned products at the end of

ach delivery cycle. This cyclic nature of demand (along with un-

ertain product returns) has implications on the capacity invest-

ent needed to reintroduce used products back into the system,

nd provides a different set of issues from the general closed-loop

upply chains. To the best of our knowledge, closed-loop supply

ystems with joint inventory replenishment, cyclic scheduling, and

apacity planning decisions have not been addressed in the exist-

ng literature. 

One research stream of particular relevance to our work is

n inventory and production planning for remanufacturing using

ull or push management strategies. For example, van der Laan,

alomon, Dekker, and van Wassenhove (1999) analyzed a hybrid

ystem for a single durable product in which the outputs of the

anufacturing process of new products and the remanufactur-

ng process can be used to fulfill customer demands. The main

ecision is whether the returned products should be remanufac-

ured as soon as available (push strategy) or as late as conve-

ient (pull strategy). van der Laan and Teunter (2006) further

eveloped heuristics for finding near-optimal pull and push strate-

ies. Heyman (1977) ; Kelle and Silver (1989) ; Muckstadt and Isaac

1977) and van der Laan, Dekker, Ridder, and Salomon (1996) ,

mong others, have also studied inventory models that use push

trategy to manage single-item products with random returns. In

ontrast to these existing models, our model assumes that all re-

urned products will be remanufactured when available using a

xed regular capacity, but need to be fully processed at the end

f each delivery and collection cycle. 

Finally, some literature on cyclic scheduling is also of relevance

o our research. First, there exists an extensive literature on the

nventory routing problem where a vendor needs to replenish the

nventories of a set of customers repeatedly, and an effective cyclic
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elivery schedule is deployed for the product delivery to mini-

ize the transportation and inventory costs. We refer to Ekici,

zener, and Kuyzu (2014) for some discussions and references in

his research stream. Our paper assumes that the cyclic schedule

s pre-determined and does not explicitly address the construc-

ion of effective cyclic construction, but instead focuses on the op-

imal inventory replenishment strategy due to the (random) loss

n the returned products. Second, one research stream in the lit-

rature has examined the performance of cyclic schedules in a

e-entrant manufacturing environment. For example, Zhang and

raves (1997) have studied the behavior of cyclic schedules in a

tochastic re-entrant flow shop where the machines can be subject

o random failures, and found effective cyclic schedules that would

inimize task delays. In contrast, our research focuses on finding

he optimal operating capacity for a given cyclic schedule subject

o random returns. 

. Model setup 

Consider a firm that must make one delivery of some fixed

uantity of a (new) product to a number of clients in a cyclic

chedule, e.g., weekly deliveries. Each cycle consists of a fixed

umber of delivery periods (e.g., 5 days in a weekly delivery cycle),

nd each client is being assigned to one of these delivery periods

ased on her geographical location or delivery quantity. When the

rm delivers the products to the client locations in each cycle, he

lso collects back (used) products from his clients delivered in the

revious cycle. 

The used products by the clients are subject to random re-

urns, and some returned products are not reusable due to severe

ear and tear. All returned products collected from the clients in

ach period are combined together before refurbishment, and it

s not possible (or economical) for the firm to separate the re-

urned products from individual clients to determine her specific

eturn/reusable proportion. For simplicity, our model assumes the

ame probability for a new product delivered in a cycle to be re-

urned and reusable in the subsequently period, and we refer it as

he reusable probability. 

All returned products collected from the clients in a period

eed to be first pre-processed (e.g., cleaned and inspected), and all

eusable products can then be refurbished at the firm’s refurbish-

ent facility in the next period. All refurbished products are recy-

led back for future use as new products. The refurbishment facil-

ty has a fixed capacity. In the event that the amount of reusable

roducts collected in a period exceeds the refurbishment capac-

ty, the extra reusable products will be refurbished in the subse-

uent periods. At the end of a delivery cycle, any leftover amount

f reusable products will be refurbished at an extra cost (e.g., via

vertime over the weekends) and will be available for delivery as

ew products at the start of the next cycle. However, the returned

roducts collected during the last period of a cycle are only avail-

ble for refurbishment in the first period of the next cycle, as the

esources required to pre-process the returned products are not

vailable until the start of the next cycle. 

We introduce the following notation: 

M = number of periods in a cycle, 

Q = refurbishment capacity per period, 

d m = delivery quantity of new products for period m in each cycle, 

d = 

∑ M 
m =1 d m = total delivery quantity of new products in one cycle, 

p = the reusable probability of a new product, 

R n m = amount of reusable products collected during period m in cycle n, 

X n m = amount of available new products at the beginning of period m in 

cycle n, 

Y n m = amount of reusable products to be refurbished at the beginning of 

period m in cycle n, 

The sequence of events in cycle n is as follows. (1) At the be-

inning of period m , m = 1 , 2 , . . . , M, d m 

units of new products are
elivered during the period, and reusable products collected from

he previous period are pre-processed for refurbishment. (2) Dur-

ng period m , the firm delivers d m 

units of new products and also

ollects back R n m 

units of reusable products, and the facility refur-

ishes the available reusable products collected from the previous

eriods up to the maximum capacity of Q . (3) All refurbished prod-

cts are recycled back to the inventory of new products. (4) Any

eusable products leftover at the end of period M will be refur-

ished at an extra cost. Fig. 1 provides a timeline of the event se-

uences for product delivery, collection and refurbishment. 

Using the above notation, the amount of reusable products re-

urbished at period m in cycle n is equal to min (Y n m 

, Q ) . Therefore,

he amount of new products and reusable products to be refur-

ished at the beginning of period m ( m = 1 , 2 , . . . , M) in cycle n

re given by the following relationships: 

 

n 
1 = X 

n −1 
M 

+ min (Y n −1 
M 

, Q ) − d m 

 

n 
1 = (Y n −1 

M 

− Q ) + + R 

n −1 
M 

, (1) 

nd for m ≥ 2, 

 

n 
m 

= X 

n 
m −1 + min (Y n m −1 , Q ) − d m −1 

Y n m 

= (Y n m −1 − Q ) + + R 

n 
m −1 . (2) 

ince any reusable products left at the end of each cycle will be

efurbished (e.g. via overtime), (1) is reduced to 

 

n 
1 = X 

n −1 
M 

+ Y n −1 
M 

− d m 

 

n 
1 = R 

n −1 
M 

. (3) 

e substitute (2) repeatedly into (3) to obtain 

 

n +1 
1 = X 

n 
M 

+ Y n M 

− d m 

= [ X 

n 
M−1 + min (Y n M−1 , Q ) − d M−1 ] + [(Y n M−1 − Q ) + + R 

n 
M−1 ] −d m

= X 

n 
M−1 + Y n M−1 + R 

n 
M−1 − (d M−1 + d m 

) 

= ... 

= X 

n 
1 + Y n 1 + (R 

n 
1 + · · · + R 

n 
M−1 ) − (d 1 + · · · + d m 

) 

= X 

n 
1 + (R 

n 
1 + · · · + R 

n 
M−1 + R 

n −1 
M 

) − (d 1 + · · · + d m 

) . (4)

As each new product delivered in a cycle has the same reusable

robability p in the subsequent cycle, the amount of reusable prod-

cts collected during period m , R n m 

, follows a Binomial distribu-

ion with parameters ( d m 

, p ). Also, since any reusable products col-

ected at the end of the time period will be refurbished during

he next time period, the total amount of reusable products refur-

ished in cycle n , (R n 
1 

+ ... + R n 
M−1 

+ R n −1 
M 

) , follows a Binomial dis-

ribution with parameters ( d , p ). Therefore, we can rewrite (4) as

 

n +1 
1 = X 

n 
1 − B n = · · · = X 

1 
1 −

n ∑ 

j=1 

B j , (5)

here B j represents the amount of products lost in cycle j , and

 j ’s are i.i.d. random variables with a Binomial distribution with

arameters (d, 1 − p) . Therefore, the total amount of products lost

n n cycles, 
∑ n 

j=1 B j , follows a Binomial distribution with param-

ters (nd, 1 − p) , with E( 
∑ n 

j=1 B j ) = n (1 − p) d and V ar( 
∑ n 

j=1 B j ) =
p(1 − p) d. 

. The optimal replenishment problem 

Let an N -replenishment policy denote the policy that the facil-

ty will replenish the amount of lost products once every N cy-

les. We formulate the decision problem as to determine the opti-

al N -replenishment policy with the corresponding initial amount

f available products which minimizes the total expected ordering

nd holding costs subject to the service constraint that the prob-

bility of a stockout occurred during the N -replenishment cycle is
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Fig. 1. A timeline for the delivery, collection and refurbishment sequence. 
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no more than α, where α is the desired service level specified by

the manager. 

Suppose that the initial amount of new products at the be-

ginning of the replenishment cycle is given by x 0 , i.e., X 1 
1 

= x 0 .

For any given N , a stockout occurs during the next N cycles if

X n m 

< d m 

for some n = 1 , 2 , . . . , N and m = 1 , 2 , . . . , M. It is clear

from Eq. (5) that X n 
1 

is decreasing in n , i.e., the available amount of

new products for delivery at the beginning of each cycle decreases

within the N -replenishment cycle. This implies that the probability

of a stockout is the highest during the last cycle N , i.e., P (X N m 

<

d m 

) ≥ P (X n m 

< d m 

) for all m = 1 , 2 , . . . , M, and n = 1 , 2 , . . . , N − 1 .

Thus, we can simply approximate the probability of a stockout oc-

curred during the N -replenishment cycle as P (X N+1 
1 

< 0) , or equiv-

alently, P ( 
∑ N 

j=1 B j > x 0 ) in view of (5) . Furthermore, we approx-

imate the total amount of products lost in N cycles, 
∑ N 

j=1 B j , by

a normal distribution with mean of N(1 − p) d and variance of

Np(1 − p) d. For a fixed N , we can set the initial amount of new

products under the N -replenishment policy as 

x 0 = N(1 − p) d + z α
√ 

Np(1 − p) d , (6)

such that the stockout probability is no more than α, where z α is

the normal constant corresponding to the specified service level α.

We consider the following costs incurred for every N cycles: (1)

a fixed ordering cost s , (2) procurement cost of new products to

replenish lost products in the expected amount of N(1 − p) d with

unit product cost of c , and (3) holding (opportunity) cost of initial

capital investment in new products (equal to cx 0 ) at the beginning

of each replenishment cycle with a unit holding cost per cycle of

h . Then, the total expected cost during the N cycles is equal to s +
cN(1 − p) d + hN(cx 0 ) . Using (6) , we can express the average total

cost per cycle under an N -replenishment policy as: 

g(N) = 

1 

N 

{ s + cN(1 − p) d + hN(cx 0 ) } 
= 

s 

N 

+ c(1 − p) d + hc 

[ 
N(1 − p) d + z α

√ 

Np(1 − p) d 
] 
. (7)

Therefore, our decision problem is to find the optimal N that mini-

mizes the average total cost per cycle g ( N ) with the corresponding

optimal initial amount of new products x 0 given in (6) . 

Consider N as a continuous variable for now. Taking the first

derivative of g ( N ) with respect to N , we obtain 

g ′ (N ) = 

−s 

N 

2 
+ hc(1 − p) d + 

hcz α

2 

√ 

p(1 − p) d 

N 

. (8)

We can derive the following analytical properties for the average

cost function g ( N ). 
roposition 1. There exists a unique solution y ∗ to the first-order

ondition g ′ (y ∗) = 0 . Furthermore, the function g ( N ) is unimodal, and

 

∗ minimizes g ( N ) . 

roof of Proposition 1. We take the second derivative of g ( N )

ith respect to N and obtain 

 

′′ (N )= 

2 s 

N 

3 
− hcz α

√ 

p(1 − p) d 

4 N 

3 / 2 
= 

1 

N 

3 / 2 

( 

2 s 

N 

3 / 2 
− hcz α

√ 

p(1 − p) d 

4 

)

(9)

herefore, g ′′ (x ∗) = 0 when x ∗ = ( 8 s 

hcz α
√ 

p(1 −p) d 
) 2 / 3 , with g ′ ′ ( x ) > 0

hen x < x ∗ and g ′ ′ ( x ) < 0 when x > x ∗. This implies that g ′ ( x ) is
ncreasing in x when x < x ∗ and is decreasing in x when x > x ∗.

lso, it is straightforward to show from (8) that g ′ ( x ) > 0 when x

 x ∗ and that g ′ (x ) → −∞ as x → 0. Thus, there exists a unique y ∗

 [0, x ∗] such that g ′ (y ∗) = 0 . 

Furthermore, g ′ ( N ) < 0 when N < y ∗ and g ′ ( N ) > 0 when N >

 

∗. This implies that g ( N ) is decreasing in N when N < y ∗ and is

ncreasing in N when N > y ∗. In other words, the function g ( N ) is

nimodal, and y ∗ minimizes g ( N ). �

It follows from Proposition 1 that the optimal N 

∗ can be readily

ound. In particular, we can easily compute the unique solution to

he first-order condition g ′ (y ∗) = 0 numerically. Then, the optimal

 

∗ is given by one of the two neighboring integers by comparing

he values of g ( N ) at these two integer points. 

We next provide some results to show how the different model

arameters would affect the optimal replenishment cycles N 

∗.

pecifically, we show how the optimal first-order solution y ∗ given

n Proposition 1 changes with respect to the different model pa-

ameters. 

roposition 2. y ∗ is strictly increasing in s and α, while y ∗ is strictly

ecreasing in h and d. Also, y ∗ is strictly increasing in p for p > 1/2 . 

roof of Proposition 2. As shown in the proof of Proposition 1 ,

 

′ ( N ) < 0 when N < y ∗ and g ′ ( N ) > 0 when N > y ∗. Since the

alue y ∗ minimizes the cost function g ( y ), we have g ′ (y ∗; s ) = 0 .

e use the envelope theorem to take the derivative of g ′ ( y ∗; s )

ith respect to s (at a neighborhood of y ∗) and obtain 

dg ′ (y ∗; s ) 

ds 
= 

∂g ′ 
∂y 

∂y 

∂s 
| y = y ∗ + 

∂g ′ 
∂s 

| y = y ∗ = 0 . (10)

ince y ∗ minimizes g ( y ), we have ∂g ′ 
∂y 

| y = y ∗ > 0 . Also, we can dif-

erentiate g ′ ( y ∗) given in (8) with respect to s and obtain 

∂g ′ (y ∗) 
∂s 

=
−1 

y ∗2 < 0 . Therefore, it follows from (10) that ∂y 
∂s 

| y = y ∗ > 0 , which

hows that y ∗ is strictly increasing in s . 
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Table 1 

Impact of p on N ∗ , g ∗ and x 0 . 

p N ∗ g ∗ x 0 

.05 2 29,571 57,088 

.10 2 28,041 54,121 

.15 2 26,511 51,144 

.20 2 24,982 48,161 

.25 2 23,452 45,174 

.30 2 21,922 42,185 

.35 2 20,392 39,192 

.40 2 18,862 36,197 

.45 3 17,331 49,746 

.50 3 15,786 45,247 

.55 3 14,241 40,746 

.60 3 12,696 36,242 

.65 3 11,151 31,735 

.70 3 9606 27,226 

.75 4 8052 30,247 

.80 4 6492 24,228 

.85 5 4927 22,727 

.90 6 3349 18,209 

.95 8 1747 12,176 
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Using a similar argument, it is straightforward to show that
∂y 
∂α

| y = y ∗ < 0 , ∂y 
∂h 

| y = y ∗ < 0 and 

∂y 
∂d 

| y = y ∗ < 0 . Since z α decreases as α
ncreases, we prove that y ∗ is strictly increasing in α, and is strictly

ecreasing in h and d . 

Finally, we can differentiate g ′ ( y ∗) given in (8) with respect to p

nd obtain 

∂g ′ (y ∗) 
∂ p 

= −hcd + 

hcz α

4 

( √ 

p(1 − p) d 

y ∗

) −1 / 2 

(1 − 2 p) d 

y ∗
. 

his implies that ∂g ′ (y ∗) 
∂ p 

< 0 when p > 1/2. Following the same ar-

ument as above, we can deduce that ∂y 
∂ p 

| y = y ∗ > 0 when p > 1/2.

herefore, y ∗ is strictly increasing in p for p > 1/2. This completes

he proof. �

Since the optimal replenishment cycle N 

∗ is given by one of the

wo neighboring integers around y ∗, we expect the relationships

rovided in Proposition 2 for y ∗ will also apply to N 

∗. Specifically,

he optimal N 

∗ increases as the fixed ordering cost s increases, as

 longer replenishment cycle would reduce the frequency of in-

urring the fixed ordering cost. Also, the optimal N 

∗ decreases as

he unit holding cost h is higher, as a shorter replenishment cycle

ould reduce the initial amount of new products needed, which

educe the overall holding cost. Similarly, the optimal N 

∗ decreases

s the total amount of products delivered in each cycle d increases.

 larger value of d would require a higher initial amount of new

roducts, which has the same effect as a smaller unit holding cost.

lso, the optimal N 

∗ increases as a lower service level is required,

.e., higher α. To explain this result, a lower service level (higher

tockout probability α) would require less safety stock and smaller

nitial amount of new products, which also has the same effect as

 smaller unit holding cost. Thus, the optimal N 

∗ increases. 

Finally, the optimal N 

∗ increases as the reusable probability of

 product p increases as long as p > 1/2 (which is applicable to

ur specific problem here). The intuition for this is as follows. Note

hat the average amount of products lost in a cycle is proportional

o ( 1 − p), whereas the variance is proportional to p ( 1 − p). For p

 1/2, both the mean and variance of products lost is strictly de-

reasing in p . Consequently, it follow from (6) that a higher value

f N would not lead to large increase in initial inventory x 0 for a

iven service level. Moreover, from Eq. (7) , the balance between

ower fixed cost per cycle and the holding cost can be achieved

ith a higher value of N as the third term is decreasing in p . Con-

ersely, if p < 1/2, an increase in p would lead to higher variance

n the amount of products lost and, as such, the tradeoff of lower-

ng the fixed cost using a higher N is negated by an increase in the

olding (capital) cost. 

umerical Example : 

We provide the following example to illustrate some of our

nalytical results. Let s = 10 0 0 , c = 1 , h = 0 . 01 , p = . 9 , M = 2 ,

 1 = 10 , 0 0 0 , d 2 = 20 , 0 0 0 , and α = 0 . 05 (with z α = 1 . 645) . In this

xample, the optimal solution to the first-order condition y ∗ in

roposition 1 is given by y ∗ = 5 . 756 . Direct computation of the av-

rage cost gives g(5) = 3352 and g(6) = 3349 . Therefore, the op-

imal replenishment cycle N 

∗ = 6 , with the corresponding initial

tocking quantity x 0 = 18 , 209 and the optimal minimum cost g ∗ =
349 . 

We next illustrate how the reusable probability p can affect the

ptimal replenishment cycle N 

∗, the initial amount x 0 and the cor-

esponding optimal cost g ∗. Here, we used the same values for all

odel parameters as given in the above numerical example, but

aried the value of p from 0 to 1. The results are summarized in

able 1 . We observe the intuitive results that optimal N 

∗ increases

nd the optimal cost g ∗ decreases as p increases, showing the fact

hat a higher return rate increases the length of the replenishment
ycle and reduces the optimal cost, as the facility does not need to

eplenish the products as frequent. Interestingly, the initial stock-

ng quantity x 0 decreases as p increases when N 

∗ is constant,

.e., less initial stock is required as p increases when the replen-

shment cycle is constant. However, x 0 is not monotone in gen-

ral when p increases, as the optimal N 

∗ increases as p increases

for p > 1/2). 

. The optimal capacity problem 

We next analyze the optimal capacity problem to minimize the

verage total operating cost of refurbishing the reusable products.

et Q be the maximum refurbishment capacity per period. Also,

he facility can use overtime to refurbish all used products left over

t the end of each cycle n at a higher cost, and this amount is

iven by (Y n 
M 

− Q ) + . 
We consider three basic cost components in our model: (1)

apacity cost of c 1 Q , which is incurred regardless of whether all

vailable capacity Q is utilized in each period; (2) normal opera-

ion cost of v (R n 
1 

+ · · · + R n 
M 

) for refurbishing all reusable products

eturned in each cycle; and (3) extra operating cost of c 2 (Y 
n 
M 

− Q ) + 

or refurbishing any reusable products left over at the end of each

ycle. Since the normal operation cost is independent of the capac-

ty Q , we assume v = 0 to simplify our notation. We also assume

hat 0 < c 1 < c 2 , because otherwise, it would be cheaper to simply

efurbish all reusable products at the end of each cycle rather than

o acquire any regular capacity, i.e., Q 

∗ = 0 . Then, the expected op-

rating cost per cycle is given by 

 (Q ) = Mc 1 Q + c 2 E(Y n M 

− Q ) + , (11)

nd the optimal capacity problem is to select the optimal Q 

∗ that

inimizes G ( Q ). 

.1. M = 2 case 

For this special case with M = 2 , we substitute (2) and (3) into

11) to obtain 

 (Q ) = 2 c 1 Q + c 2 E 
[
(Y n 1 − Q ) + + R 

n 
1 − Q 

]+ 

= 2 c 1 Q + c 2 E 
[
(R 

n −1 
2 − Q ) + + R 

n 
1 − Q 

]+ 

= 2 c 1 Q + c 2 

{ 

P (R 

n −1 
2 ≤ Q ) 

d 1 ∑ 

i = Q+1 

(r 1 − Q ) P (R 

n 
1 = r 1 ) 
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+ P (R 

n −1 
2 > Q ) 

d 2 ∑ 

r 1 = Q+1 

d 1 ∑ 

r 2 =2 Q−i +1 

(r 1 + r 2 − 2 Q ) 

×P (R 

n 
1 = r 1 ) P (R 

n −1 
2 = r 2 ) 

} 

. (12)

We use normal approximations for the amount of returned

products, R n 
1 

and R n −1 
2 

, which follow a Binomial distribution with

parameters ( d 1 , p ) and ( d 2 , p ), respectively. Then, we can approxi-

mate (12) as 

G (Q ) = 2 c 1 Q + c 2 

⎡ 

⎣ 

Q ∫ 
0 

∞ ∫ 
Q 

(r 1 − Q ) f 1 (r 1 ) dr 1 f 2 (r 2 ) dr 2 

+ 

∞ ∫ 
Q 

∞ ∫ 
(2 Q−r 2 ) + 

(r 1 + r 2 − 2 Q ) f 1 (r 1 ) dr 1 f 2 (r 2 ) dr 2 

⎤ 

⎦ , (13)

where f i is the density function of a normal distribution with mean

of pd i and variance of p(1 − p) d i , i = 1 , 2 . We can derive the fol-

lowing result: 

Proposition 3. The function G ( Q ) given in (13) is strictly convex in

Q. Furthermore, there exists a unique solution Q 

∗ to the first-order

condition function G 

′ (Q ) = 0 that minimizes the G ( Q ) . 

Proof of Proposition 3. Taking the derivatives of G ( Q ) given in

(13) with respect to Q , we obtain 

G 

′ (Q ) = 2 c 1 − c 2 F 2 (Q )[1 − F 1 (Q )] 

−2 c 2 

∞ ∫ 
Q 

[ 1 − F 1 (2 Q − r 2 ) ] f 2 (r 2 ) dr 2 , (14)

and 

G 

′′ (Q ) = 

{ 

−c 2 f 2 (Q )[1 − F 1 (Q )] + c 2 F 2 (Q ) f 1 (Q ) 
} 

+ 

{ 

4 c 2 

∞ ∫ 
Q 

f 1 (2 Q − r 2 ) f 2 (r 2 ) dr 2 + 2 c 2 [1 − F 1 (Q )] f 2 (Q ) 
} 

= c 2 f 2 (Q )[1 − F 1 (Q )] + c 2 F 2 (Q ) f 1 (Q ) 

+4 c 2 

∞ ∫ 
Q 

f 1 (2 Q − r 2 ) f 2 (r 2 ) dr 2 . 

Clearly, G 

′ ′ ( Q ) > 0, which shows that G ( Q ) is strictly convex in Q .

Also, it is easy to show that G 

′ (0) = 2 c 1 − 2 c 2 < 0 since c 1 < c 2 ,

and G 

′ (Q ) = 2 c 1 as Q → ∞ . Thus, there exists a unique solution Q 

∗

to the first-order condition function G 

′ (Q ) = 0 that minimizes the

G ( Q ). �

Proposition 3 shows that the optimal Q 

∗ can be readily found.

In particular, we can easily compute the unique solution to the

first-order condition G 

′ (Q 

∗) = 0 numerically. Then, the optimal Q 

∗

is given by one of the two neighboring integers by comparing the

values of G ( Q ) at these two integer points. 

Proposition 4. Q 

∗ is strictly decreasing in c 1 , while Q 

∗ is strictly in-

creasing in c 2 . 

Proof of Proposition 4. We differentiate G 

′ ( Q ) given in (14) with

respect to c 1 and obtain 

∂G ′ (Q ∗) 
∂c 1 

= 2 > 0 . Therefore, Q 

∗ is strictly

decreasing in c 1 . Similarly, we can easily show from (14) that
∂G ′ (Q ∗) 

∂c 2 
< 0 . �

Proposition 4 shows the intuitive result that the firm would de-

crease the capacity Q as the unit regular operating cost increases.
n the other hand, the firm would increase the capacity Q as the

nit overtime operating cost for processing the leftover products

ncreases. Since the return rate of the reusable products are ran-

om, the firm employs overtime to refurbish products at a higher

nit cost of c 2 to hedge against the risk of having insufficient regu-

ar capacity. A higher value of c 1 makes the hedge more attractive,

hus lowering the optimal capacity Q . Similar, a higher value of c 2 
as the opposite effect, and the optimal capacity Q decreases. 

.2. M > 2 case 

We next extend our analysis to the general case with M peri-

ds, with M > 2. We first introduce some notation. Let Z i be the

mount of reusable products left at the end of period i in cycle

 , i.e., Z i = (Y n 
i 

− Q ) + . (For simpler notation, we ignore the super-

cript n on Z i without causing any confusion.) To simplify our ex-

osition, we also consider Z i as a continuous random variable here.

et q i denote the probability that there is no leftover products at

he end of period i , i.e., q i = P (Z i = 0) . Also, let h i (.) denote the

ensity function for the event ( Z i | Z i > 0), i.e., the amount of left-

ver products in period i given that there are leftover products in

eriod i . 

We note the following relationships between periods i and

(i + 1) . If there is no leftover products at the end of period i , then

here is no leftover products at the end of period (i + 1) if and only

f the amount of reusable products returned in period (i + 1) does

ot exceed Q . If there are leftover products at the end of period i ,

iven by ( Z i | Z i > 0), then there is no leftover products at the end

f period (i + 1) if and only if the amount of reusable products re-

urned in period (i + 1) does not exceed Q − (Z i | Z i > 0) . Effectively,

he available capacity in period (i + 1) in this case is reduced by

he amount of ( Z i | Z i > 0). Therefore, we can easily establish the

ollowing relationships: 

q 1 = 

Q ∫ 
0 

f 1 (r 1 ) dr 1 = F 1 (Q ) 

(Z 1 ) = 

∞ ∫ 
Q 

(r 1 − Q ) f 1 (r 1 ) dr 1 , 

nd for i = 2 , 3 , . . . , M, 

 i = q i −1 F i (Q ) + (1 − q i −1 ) 

∞ ∫ 
0 

F i (Q − x ) h i −1 (x ) dx (15)

(Z i ) = q i −1 

∞ ∫ 
Q 

(r i − Q ) f i (r i ) dr i 

+(1 − q i −1 ) 

∞ ∫ 
0 

∞ ∫ 
Q−x 

[ r i − (Q − x )] f i (r i ) dr i h i −1 (x ) dx. (16)

hen, the expected amount of leftover products at the end of each

ycle is then given by E ( Z M 

), and the corresponding expected oper-

ting cost is equal to 

 (Q ) = Mc 1 Q + c 2 E(Z M 

) . (17)

The density function h i (.) depends on Q , and is generally very

omplex, even for small values of M . We next develop a recursive

cheme that can be used to approximate the values of q i and E ( Z i ).

n particular, we simply replace the random variables, Z i | Z i ≥ 0,

y E ( Z i | Z i > 0), and then approximate the value of E ( Z i | Z i > 0) by
˜ 
 (Z i | Z i > 0) using the following recursive scheme: 

˜ 
 1 = F 1 (Q ) 

˜ 
 (Z 1 | Z 1 > 0) = 

∫ ∞ 

Q (r 1 − Q ) f 1 (r 1 ) dr 1 

1 − ˜ q 1 
, 
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w  
nd for i = 2 , 3 , . . . , M, 

˜ 
 i = 

˜ q i −1 F i (Q ) + (1 − ˜ q i −1 ) F i (Q − ˜ E (Z i −1 | Z i −1 > 0)) (18) 

˜ 
 (Z i ) = 

˜ q i −1 

∞ ∫ 
Q 

(r i − Q ) f i (r i ) dr i 

+(1 − ˜ q i −1 ) 

∞ ∫ 
Q− ˜ E (Z i −1 | Z i −1 > 0) 

[
r i − (Q − ˜ E (Z i −1 | Z i 1 > 0)) 

]
× f i (r i ) dr i (19) 

˜ 
 (Z i | Z i > 0) = 

˜ E (Z i ) 

1 − ˜ q i 
. (20) 

.3. Numerical experiments 

We conducted a set of numerical experiments to illustrate the

ccuracy of the above approximation scheme. We first analyze how

he pattern of returns affects the performance of the approxima-

ion scheme. We assume a 5-day process cycle, i.e., M = 5 , and that

he (random) reusable quantity follows a normal distribution with

 coefficient of variation of 0.1. In particular, we consider the fol-

owing four scenarios for the reusable quantity R i in period i : 

• S1 : R 1 = R 2 = R 3 = R 4 = R 5 = N(100 , 10) 
• S2 : R 2 = R 3 = R 4 = R 5 = N(100 , 10) , R 1 = 0 
• S3 : R 1 = R 2 = R 4 = R 5 = N(100 , 10) , R 3 = 0 
• S4 : R 1 = R 2 = R 3 = R 4 = N(100 , 10) , R 5 = 0 . 

In particular, scenario S 1 depicts the situation where the facility

as the same return characteristic in all 5 days, scenario S 2 depicts

he situation where the facility has no return in the early periods

f the cycle, scenario S 3 depicts the situation where the facility

as no return in the middle periods of the cycle, and scenario S 4

epicts the situation has no return in the late periods of the cycle.

We set c 1 = 1 and c 2 = 10 . We simulated the system for 10,0 0 0

ycles and recorded the average amount of leftover products at the

nd of period 5, E ( Z 5 ). We then computed the expected operating

ost G ( Q ) given in (17) over the 10,0 0 0 cycles for different values

f Q . We further calculated the value of ˜ E (Z 5 ) using the approxi-

ation scheme given in (18) –(20) for each value of Q . 

Fig. 2 shows the approximation error, E(Z 5 ) − ˜ E (Z 5 ) for differ-

nt values of Q . Observe that the approximation scheme consis-

ently underestimates the expected leftover amount at the end of

ach cycle, i.e., E(Z 5 ) − ˜ E (Z 5 ) > 0 for all values of Q . This can be

xplained by the fact that the approximation scheme simply uses

he expected leftover amount in each period, rather than the dis-

ribution of the leftover amount, to compute the leftover amounts

n subsequent periods. In other words, the approximation scheme

gnores the tails of the distribution of leftover amounts, resulting

n underestimating the expected leftover amount at the end of a

ycle. 

Also, the approximation schemes performs the worst for sce-

ario S 4. Here, the leftover amounts accumulate over the first 4

eriods, and the tails of the distribution of leftover amount have

 more significant impact on E ( Z 5 ). Furthermore, the system has

nly period 5 to clear out the leftovers and to smooth out the tail

ffect of the distribution of leftover amount. Consequently, the ap-

roximation scheme performs relatively poor in such situations as

t simply uses the expected leftover amount in each period, rather

han the distribution of the leftover amount, to compute the left-

ver amount in the subsequent periods. 

We also conducted a similar set of numerical experiments with

igher degrees of variability of the reusable quantities in each pe-

iod. In particular, Fig. 3 provides the results for the same four sce-

arios as described earlier with the amounts of reusable products
ollected follow a normal distribution with a coefficient of varia-

ion of 0.3. The basic observations are similar to those as provided

n Fig. 2 . 

Table 2 shows the optimal value of Q based on the simulation

esult, denoted by Q 

∗, as well as the optimal value of Q based on

ur approximation, denoted by ˜ Q 

∗, for all four scenarios. We also

how the corresponding average operating costs using Q 

∗ and 

˜ Q 

∗,
enoted by G ( Q 

∗) and G ( ̃  Q 

∗) , respectively. We further computed

he percent increase in the optimal capacity value, �Q = 

˜ Q ∗−Q ∗
Q ∗ , as

ell as the percent increase in the average operating cost in using

˜ 
 

∗ instead of Q 

∗, i.e., �G = 

G ( ̃  Q ∗) −G (Q ∗) 
G (Q ∗) 

. The results in Table 2 sug-

ests that the approximation scheme gives near-optimal solutions

n most cases. For instance, even for scenario S 4 where the ap-

roximation scheme performs the worst, ˜ Q 

∗ is still relative close

o Q 

∗, and the average operating cost using ˜ Q 

∗ is about 10 percent

igher than the minimum expected operating cost G ( Q 

∗). Thus, it

eems that the approximation scheme can be used to determine

ear-optimal capacity values in most realistic cases. 

Comparisons with Other Methods We next conducted a set of

umerical experiments to assess the performance of the approx-

mation scheme as a decision support tool for selecting the op-

imal capacity. In this set of experiments, we assume M = 5 and

he expected amount of reusable quantity collected in period i is

iven by r i , i.e., E(R i ) = r i , i = 1 , 2 , . . . , M. In our numerical exper-

ments, r i is randomly selected from a uniform distribution with

upport on [100 − β, 100 + β] . (For actual applications, the service

rovider can easily estimate r i by multiplying the delivery quan-

ity d i by the reusable probability p .) Then, we assume that the

random) amount of reusable products R i follows a normal distri-

ution with a mean of r i with a fixed coefficient of variation cv .
e consider different scenarios with different values of cv and β ,

here cv measures the variability of the amount of reusable prod-

cts within a given period, and β measures the variability of the

verage amount of reusable products across periods within a cycle.

e set c 1 = 1 and consider different values of c 2 . 

For each scenario, we randomly generated 100 cases for the val-

es of r i , i = 1 , . . . , M. For each case with given values of r i , we ran

 simulation of 10,0 0 0 cycles to calculate the average operating

ost for any given value of capacity level Q , from which we de-

ermine the optimal capacity Q 

∗. We then used the approximation

cheme to estimate the average cost for each given value of Q , from

hich we selected the optimal Q based on the estimated average

ost. 

We also evaluated two other simple approaches in selecting the

apacity Q : (i) first, we consider the simple approach of using the

verage of 
∑ 5 

i =1 r i ; (ii) second, we use an aggregate newsvendor

pproach to select the capacity level Q . Specifically, we consider

hat the aggregate 5-period demand follow a normal distribution

ith mean of 
∑ 5 

i =1 r i and standard deviation of cv 
√ ∑ 5 

i =1 r 
2 
i 

. In this

pproach, we set the unit understocking cost to c 2 − c 1 , as it corre-

ponds to the unit additional overtime cost due to insufficient ca-

acity, and set the unit overstocking cost to 5 c 1 , as it corresponds

o the unit cost due to excess capacity over the 5-period cycle. We

hen apply the classical newsvendor fractile ratio to select the ca-

acity level. 

For each approach, we computed the deviation of the selected

apacity level from the optimal capacity level by �Q = 

| Q −Q ∗| 
Q ∗ .

lso, we used a simulation of 10,0 0 0 cycles to estimate the aver-

ge operating costs G ( Q ) and G ( Q 

∗) as given in (17) . We then com-

uted the deviation of this average cost from the optimal average

ost by �G = 

G (Q ) −G (Q ∗) 
G (Q ∗) 

. For each approach, the average values of

Q and �G over the 100 random cases in each scenario are shown

n Table 3 . 

Table 3 shows that the approximation scheme performs very

ell in all scenarios. The deviations of the selected capacity level
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Fig. 2. Approximation error: E(Z 5 ) − ˜ E (Z 5 ) when R i ∼ N (100, 10). 

Fig. 3. Approximation error: E(Z 5 ) − ˜ E (Z 5 ) when R i ∼ N (100, 30). 
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Table 2 

Performance of the approximation scheme for scenarios S 1–S 4. 

cv Scenario Q ∗ ˜ Q ∗ �Q (percent) G ( Q ∗) G ( ̃  Q ∗) �G (percent) 

0.1 S 1 108 108 0 .0 560 .1 560 .1 0 .0 

S 2 108 108 0 .0 560 .0 560 .0 0 .0 

S 3 106 106 0 .0 554 .8 554 .8 0 .0 

S 4 86 80 −7 .0 436 .3 481 .1 10 .3 

0.2 S 1 116 114 −1 .7 621 .9 623 .7 0 .3 

S 2 116 114 −1 .7 619 .6 620 .6 0 .2 

S 3 112 110 −1 .8 608 .0 608 .2 0 .0 

S 4 90 82 −8 .9 470 .8 526 .4 11 .8 

0.3 S 1 125 122 −2 .4 681 .4 682 .5 0 .2 

S 2 123 121 −1 .6 679 .2 680 .7 0 .2 

S 3 117 116 −0 .9 663 .5 663 .7 0 .0 

S 4 95 82 −13 .7 508 .9 614 .3 20 .7 

Table 3 

Performance of the three approaches of setting optimal capacity level. 

r i c 2 cv Approximation Simple average Newsvendor 

�Q (percent) �G (percent) �Q (percent) �G (percent) �Q (percent) �G (percent) 

U [50,150] 2 0.1 2 .0 0 .2 4 .1 0 .6 6 .0 1 .3 

0.2 1 .3 0 .1 3 .6 0 .4 8 .3 1 .8 

0.3 2 .7 0 .2 3 .1 0 .3 13 .1 2 .6 

10 0.1 4 .0 4 .6 15 .3 27 .6 13 .9 22 .4 

0.2 3 .1 1 .6 19 .9 28 .0 17 .3 19 .8 

0.3 3 .6 1 .5 24 .5 34 .2 20 .7 22 .5 

U [0,200] 2 0.1 2 .0 0 .2 9 .3 1 .9 11 .3 2 .8 

0.2 3 .0 0 .2 10 .6 1 .2 13 .5 2 .4 

0.3 6 .0 0 .8 7 .1 1 .2 16 .0 3 .3 

10 0.1 4 .1 4 .8 20 .9 44 .0 19 .4 38 .4 

0.2 5 .1 4 .4 26 .6 42 .7 23 .9 33 .8 

0.3 5 .1 6 .4 27 .2 41 .8 23 .2 29 .6 
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o  
rom the optimal level and the corresponding average cost are

uch smaller than the other two approaches in all scenarios. In

articular, the average deviations from the optimal capacity level

ange from 1.3 percent to 5.0 percent, while the average devia-

ions from the minimum average cost range from 0.1 percent to

.4 percent in all scenarios. We also observe that the approxima-

ion scheme performs worse as the unit overtime cost c 2 increases.

his is expected as the approximation scheme tends to underesti-

ate the expected leftover amount at the end of each cycle, as

iscussed earlier. As c 2 increases, this under-estimation increases

he error in estimating the expected overtime cost, resulting in a

igher deviation from the optimal capacity level and a higher av-

rage cost. 

It is interesting to point out that the performance of the ap-

roximation scheme remains about the same as the coefficient of

ariation cv is higher or as the variability of the average return

mounts within one cycle is higher, i.e., r i ∼ U [50, 150] versus r i 
U [0, 200]. Our results thus suggest that the performance of the

pproximation scheme is rather robust with respect to both the

egree of variability of the amount of reusable products within a

iven period and the variability of the average amount of reusable

roducts within a cycle. 

Our numerical cases further suggest that the approximation

cheme performs the worst when the average return amounts in

arly periods are substantially higher than those in late periods of

he cycle. For instance, among the 100 randomly generated cases

or the scenario with r i ∼ U [0, 200], cv = 0 . 2 and c 2 = 10 , the

pproximation scheme gives the worst performance for the case

ith (r 1 , r 2 , r 3 , r 4 , r 5 ) = (183 , 34 , 157 , 78 , 3) , with �Q = 11 . 5 per-

ent and �G = 18 . 1 percent. This observation is consistent with

ur earlier result that the approximation scheme performs the

orst for scenario S 4. 

We further note that the newsvendor method does better than

he simple average method for c = 10, but the comparison is re-
2 
ersed when c 2 = 2. We can explain this observation as follows.

he newsvendor method uses the aggregate capacity and aggre-

ate demand to estimate the optimal capacity level. Generally, this

nderestimates the optimal capacity level, as some available ca-

acity in the early periods of the cycle could be lost if the re-

urn quantities for the early periods are low. The simple average

ethod does not use the cost parameters c 1 and c 2 in determining

 , and would perform badly if the relative difference between the

nderlying overstocking and understocking capacity costs is large.

n particular, when c 1 = 1 and c 2 = 10 , the simple average method

enerally gives a value of Q that is much larger than the optimal

apacity level, and performs worse than the newsvendor method.

n the other hand, when c 1 = 1 and c 2 = 2 , the simple average

ethod generally gives a value of Q that is closer to the optimal

apacity level than that by the newsvendor method, and thus per-

orms better than the newsvendor method. 

We conclude this section by illustrating the benefit of ap-

lying our model to determine the optimal capacity for one

pecific (simplified) scenario using the data provided by the

upply company that motivates our study. The company uses

 5-day delivery/collection cycle with daily delivery quanti-

ies (d 1 , d 2 , d 3 , d 4 , d 5 ) = (4140 0 , 3950 , 70 0 0 , 33630 , 26920) for one

articular product. The company estimates that about 90 percent

f the delivered products are returned and reusable in each cy-

le, so we set the average return quantities (r 1 , r 2 , r 3 , r 4 , r 5 ) =
(37 , 260 , 3555 , 6300 , 30 , 267 , 24 , 228) in our model. We also ap-

roximate the return quantity variability in our model with cv =
 . 1 . The company uses overtime and pays a 50 percent wage pre-

ium for workers to refurbish all leftover reusable products at the

nd of each week, so we normalize the unit cost as c 1 = 1 and

 2 = 1 . 5 . The company sets its regular daily refurbishment capac-

ty equal to the average return quantity, i.e., Q = 20 , 322 , which

ives an average operating cost of 122,401. Using simulation, the

ptimal capacity Q 

∗ = 15 , 879 with the optimal operating cost of
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115,407, which represents about a 6 percent cost reduction. Our

approximation scheme gives ˜ Q 

∗ = 15 , 734 , which gives an average

operating cost of 115,422. 

6. Applications and concluding remarks 

In this paper we develop a simple mathematical framework to

analyze some inventory replenishing and capacity planning issues

in a product recovery system with random returns and cyclic de-

livery schedules. Our models can be used as an effective decision

support tool to select appropriate operating policies in managing

such systems. In particular, we can apply our models to provide

useful information for addressing the following two issues of par-

ticular importance. 

First, we can apply our model to evaluate how a change in the

return rate of reusable products can impact the underlying inven-

tory replenishment and capacity cost in the existing system. As il-

lustrated in Table 1 , our model can estimate how an increase in

the reusable probability p can affect the optimal replenishment cy-

cle and the associated cost. As it could be costly to monitor the

actual return rate from individual clients, it becomes important to

design an appropriate incentive system to entice clients to improve

the current return rate of used products. The information provided

by our analysis would be useful for the manager to evaluate the

associated costs and benefits. 

As another application, the manager needs to incorporate new

clients into the existing delivery and collection schedule, since new

clients constantly arrive for service from the facility. Our models

can be useful in determining the most effective method of assign-

ing a new client into the existing schedule as well as understand-

ing how the new schedule would impact the corresponding inven-

tory replenishment and capacity planning decisions. We use the

following simple example to illustrate some underlying tradeoffs

in the assignment decision. 

The facility has an existing 5-day weekly delivery schedule with

delivery quantity (d 1 , d 2 , d 3 , d 4 , d 5 ) = (90, 110, 70, 100, 85). The fa-

cility now needs to add a new client with delivery quantity of 50

units to the existing schedule, and the new client can be assigned

to any day of the week. To accommodate this new client, the facil-

ity must adjust its processing and delivery capacity accordingly. For

the unit processing costs defined in Section 5 , we assume c 1 = 1

and c 2 = 2 . We also assume that the facility has a daily delivery

capacity of 120 units, and any extra delivery above 120 units will

require a third-party transportation service at an extra unit cost of

c T . Thus, the facility faces a tradeoff between the additional capac-

ity cost and transportation cost in adding the new client to the ex-

isting schedule. For simplicity, assume that the return probability

p = 0 . 8 for all existing and new clients, and that the return quan-

tity R i follows a normal distribution with a mean of r i = 0 . 8 d i and

a standard deviation of 
√ 

0 . 8(1 − 0 . 8) d i . In this simple example,
t seems reasonable to assign the new client either to Day 1 to

inimize additional capacity cost (as it is always beneficial to re-

eive the return units as early as possible) if the additional trans-

ortation cost is relatively low, or to Day 3 to minimize any extra

ransportation cost if the additional transportation cost is relatively

igh. Indeed, our analysis shows that it is optimal to assign the

ew client to Day 1 when c T < 0.50, but it is optimal to assign the

ew client to Day 3 when c T > 0.50. 
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