Lawrence Berkeley National Laboratory
Recent Work

Title
THE ELASTIC SCATTERING OF POLARISED PROTONS BY 40Ar

Permalink
https://escholarship.org/uc/item/8rk585fv

Author
Okumusoglu, N.T.

Publication Date
1982-10-01
Submitted to Nuclear Physics A

THE ELASTIC SCATTERING OF POLARISED PROTONS BY 40Ar

October 1982
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
The analysing power of ^{40}Ar for polarised protons has been measured at energies of 25.1, 32.5 and 40.7 MeV at laboratory angles between 30° and 158°. The results are fitted with the optical model code SEEK3 and examined for a possible L-dependence of the optical potentials. The results also provide calibration points for a p-^{40}Ar polarimeter.

NUCLEAR REACTIONS $^{40}\text{Ar} (p,p), E=25.1, 32.5$ and 40.7 MeV; measured A_y.

Optical Model analysis, L-dependence.

* Permanent address, Physics Department, 19 Mayis University, Atakum, Samsun, Turkey.

** DAAD Fellow on leave from the Institut für Strahlen- und Kernphysik, Universität Bonn, West Germany.

This manuscript was printed from originals provided by the authors.
1. Introduction.

It has been found1-5 that the standard optical model analyses of the elastic scattering of medium energy protons from15N, 18O, 24Mg, 40Ca and 40Ar run into difficulties in fitting the cross-section at the minimum around 140° c.m. and the enhancements at larger angles. Evidence has been found recently for explicit angular momentum dependence of the proton optical model potential (OMP)6-8. Furthermore, it has been shown5 that inclusion of an L-dependent potential may in fact solve the problems in the optical model analysis of large-angle scattering at low energies.

Examination of the analysing powers predicted9 by the L-independent and L-dependent optical model calculations5 for 40Ar(p,p)40Ar elastic scattering at $E_p = 32.5$ MeV leads to the conclusion that, at large angles, the effect of L-dependence in the OMP is reflected much more on the analysing power than the differential cross-section. Similar observations have been made by Kobos and Mackintosh6 for proton scattering from 16O at 34.1 MeV. Therefore, analysing power as well as cross-section data are needed at various energies in order to arrive at more convincing results regarding the L-dependence of the optical model potential.

The purpose of the present work is to provide analysing power data for 40Ar(p,p)40Ar scattering at 25.1, 32.5 and 40.7 MeV, complementing existing data3 at 30 and 50 MeV, and to examine a possible L-dependence of the optical model potential.

2. The Experiment.

Protons with a polarisation of approximately 82\% were accelerated to the desired energies by the 88\" cyclotron of the Lawrence Berkeley Laboratory.
The target consisted of argon gas contained in a cell at a pressure of 2 atmospheres. Four sets of detector telescopes were used. They were located symmetrically with respect to the incoming beam so that measurements of analysing power were made at two angles simultaneously. Each telescope comprised a 0.5mm passing detector (ΔE) and a stopping detector (E) with a total depletion depth of 8 mm. The ΔE-E systems were used for particle identification. Collimators defined a geometry factor of 3×10^{-6} cm2sr and provided an angular resolution of $\pm 0.5^\circ$ (lab).

The beam polarimeter was downstream from the argon target and consisted of a gaseous 4He target maintained at a pressure of 2 atmospheres. Elastically scattered protons were detected by two detector telescopes symmetrically positioned with respect to the beam direction at 77.5° at 25.1 and 32.5 MeV and at 120° at 40.7 MeV. The energy of the beam at the polarimeter was degraded by aluminium foils to values at which analysing power calibration points exist (24.0, 32.2 and 39.8 MeV, respectively). The beam polarisation was flipped automatically after a fixed charge was accumulated in the Faraday cup (approximately once a second) and the data routed accordingly.

3. Results.

The scattering asymmetry was calculated from the number of counts, corrected for background, in the left and right telescopes for beam spin up and down, LU, RU, LD, RD, from the following relation,

$$\varepsilon(\theta) = \frac{(r-1)}{(r+1)}$$

$$r = \left(\frac{LU \cdot RD}{LD \cdot RU}\right)^{1/2}$$

The proton analysing power $A_y(\theta)$ was then obtained from $A_y(\theta) = \varepsilon(\theta) / P_b$.
where P_b is the beam polarisation. Results are shown in figs. 1-3 as a function of centre of mass angle. The error bars shown are due to counting statistics. Also shown are optical model fits including L-dependence (continuous curve) and predictions from L-dependent fits to differential cross-sections alone at the corresponding energies (dash-double dot curve). Fig. 2 also shows an L-independent fit (dashed curve, parameter set "e" of table 1) and the fit obtained from the latter with the addition of an L-dependent term with a strength of $V_e = 0.35\text{MeV}$ (dotted curve, parameter set 'f' of table 1).

The optical model searches were made with the code SEEK3. The L-dependence included in the calculation is of the form $V_e(-1)^L f(r_e,a_e)$, as used by Votta et al. 13, Chubko 14 and Nasr 15. Here $f(r_e,a_e)$ is of Woods-Saxon form. The optical model parameters are given in Table 1.

The inclusion of an L-dependent term improves the quality of the fit to the data, as can be seen in fig.2 by comparing the L-independent fit (dashed curve) with the L-dependent result (dotted curve). However, the physical significance of such a term is not yet understood, but may be required to allow for residual effects of the Pauli principle not taken into account by the standard optical potential 16. On the other hand, good fits to low energy ^4He data have been obtained without such a term by following a Lorentz-invariant microscopic approach to derive an optical potential 17.

The energy dependence of the strength, V_e, of the L-dependent term used to fit our $^4\text{He}(p,p)^4\text{He}$ elastic scattering differential cross-section data is shown in fig. 4. V_e has its largest negative value near 25 MeV, its largest positive value near 32.5 MeV, and becomes negligible at beam energies above 45 MeV. A similar, but stronger, effect has been observed 15 in $^4\text{He}(p,p)^4\text{He}$ scattering and is shown in fig. 4 for comparison.
Examination of the present $^{40}\text{Ar}(p, p)^{40}\text{Ar}$ data suggests that ^{40}Ar might be useful as a proton polarimeter in the energy range from 25 to 45 MeV. The analysing power from 105° to 125° lab. is large and does not vary rapidly with angle and the cross-section is reasonably large and constant. The figure of merit, $P_{\text{0}}^{1/2}$ is shown in fig. 5. The suggested calibration points are

\[A_y = 0.98 \pm 0.01 \text{ at } E_p = 25.1 \text{ MeV, } \theta_{\text{lab}} = 125^\circ, \]
\[A_y = 0.94 \pm 0.01 \text{ at } E_p = 32.5 \text{ MeV, } \theta_{\text{lab}} = 112^\circ, \]
\[A_y = 0.99 \pm 0.01 \text{ at } E_p = 40.7 \text{ MeV, } \theta_{\text{lab}} = 105^\circ. \]

The possibility that an extreme value of $A_y = 1.0$ exists in this region is being investigated.

This work was performed with the financial support of the Natural Sciences and Engineering Research Council of Canada. We are happy to acknowledge fruitful discussions with Dr. R.C. Johnson. We are grateful to Drs. W.T.H. van Oers and T.N. Nasr for providing us with a copy of the optical model code SEEK3 and for permission to use their $p^{-40}\text{Ca}$ data.

One of us (NTO) would like to thank the Cyclotron Laboratory of the University of Manitoba for hospitality during this work.

This work was also supported by the Director, Office of Energy Research, Office of Basic Energy Sciences, Nuclear Sciences Division of the U.S. Department of Energy under Contract No. DE-AC03-76SF00098.
References

10. E. A. Silverstein, Nucl. Instr. and Meth. 4 (1959) 53
Figure Captions

Fig. 1 The analysing power for $^{40}\text{Ar}(p,p)^{40}\text{Ar}$ elastic scattering at 25.1 MeV. Continuous line - L-dependent fit (parameter set "a"), dash-double dot - L-independent prediction obtained by fitting the cross-section data (parameter set "b").

Fig. 2 The analysing power for $^{40}\text{Ar}(p,p)^{40}\text{Ar}$ at 32.5 MeV. Continuous line - parameter set "c", dash-double dot curve - L-dependent prediction from best fit to the cross-sections (parameter set "d"), dashed line - best fit without L-dependent term (parameter set "e"), dotted line - best fit with L-dependent term (parameter set "f").

Fig. 3 Same as fig. 1, but at $E_p = 40.7$ MeV. Continuous line - parameter set "g", dashed line - parameter set "h".

Fig. 4 Variation of the strength of the L-dependent term as a function of proton energy. Dots - $^{40}\text{Ar}(p,p)^{40}\text{Ar}$, crosses - $^{40}\text{Ca}(p,p)^{40}\text{Ca}$ (ref. 15).

Fig. 5 Variation of a) analysing power, b) figure of merit $P_{\text{f1/2}}$, with θ_{lab} in the region $102^\circ \leq \theta_{\text{lab}} \leq 130^\circ$ for $E_p = 25.1$ MeV (squares) and $E_p = 32.5$ MeV (dots).
Table 1. \(^{40}\text{Ar} (p,p) \)^{40}\text{Ar} Optical Model Parameters

<table>
<thead>
<tr>
<th>Parameter set</th>
<th>25.1</th>
<th>32.5</th>
<th>40.7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy, (MeV)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Angular Region</td>
<td>18.5-165°</td>
<td>18.5-165°</td>
<td>18.5-165°</td>
</tr>
<tr>
<td>(V_o) (MeV)</td>
<td>(51.7263)*</td>
<td>51.1721</td>
<td>(48.3666)</td>
</tr>
<tr>
<td>(r_o) (fm)</td>
<td>1.14</td>
<td>1.14</td>
<td>1.16</td>
</tr>
<tr>
<td>(a_o) (fm)</td>
<td>0.75</td>
<td>0.75</td>
<td>0.75</td>
</tr>
<tr>
<td>(W_v) (MeV)</td>
<td>(1.6134)</td>
<td>(2.086)</td>
<td>(3.2844)</td>
</tr>
<tr>
<td>(W_D) (MeV)</td>
<td>(6.687)</td>
<td>(6.0954)</td>
<td>(5.276)</td>
</tr>
<tr>
<td>(r_w) (fm)</td>
<td>1.30</td>
<td>1.30</td>
<td>1.37</td>
</tr>
<tr>
<td>(a_w) (fm)</td>
<td>0.66</td>
<td>0.66</td>
<td>0.63</td>
</tr>
<tr>
<td>(V_{so}) (MeV)</td>
<td>(5.536)</td>
<td>(3.74)</td>
<td>(5.4332)</td>
</tr>
<tr>
<td>(r_{so}) (fm)</td>
<td>1.01</td>
<td>1.01</td>
<td>1.064</td>
</tr>
<tr>
<td>(a_{so}) (fm)</td>
<td>(0.56)</td>
<td>0.56</td>
<td>0.738</td>
</tr>
<tr>
<td>(V_e) (MeV)</td>
<td>(-0.107)</td>
<td>-0.92</td>
<td>(0.3331)</td>
</tr>
<tr>
<td>(r_e) (fm)</td>
<td>0.9707</td>
<td>0.9707</td>
<td>0.9707</td>
</tr>
<tr>
<td>(a_e) (fm)</td>
<td>0.33</td>
<td>0.33</td>
<td>0.33</td>
</tr>
<tr>
<td>(N_o)</td>
<td>60</td>
<td>60</td>
<td>72</td>
</tr>
<tr>
<td>(N_p)</td>
<td>42</td>
<td>—</td>
<td>43</td>
</tr>
<tr>
<td>(X_o^2/N_o)</td>
<td>46.0</td>
<td>11.75</td>
<td>29.0</td>
</tr>
<tr>
<td>(X_p^2/N_p)</td>
<td>11.7</td>
<td>—</td>
<td>30.3</td>
</tr>
<tr>
<td>(X^2/N)</td>
<td>31.8</td>
<td>11.75</td>
<td>29.5</td>
</tr>
<tr>
<td>(\sigma_r^r) (mb)</td>
<td>1068</td>
<td>1056.8</td>
<td>999.5</td>
</tr>
<tr>
<td>(<r^2>_{OM}^{1/2}) (fm)</td>
<td>4.11</td>
<td>4.11</td>
<td>4.11</td>
</tr>
<tr>
<td>(J/A) (MeV fm³)</td>
<td>438.2</td>
<td>433.5</td>
<td>413.6</td>
</tr>
</tbody>
</table>

* Parentheses show the search parameters \(r_c = 1.25\) fm.
$^{40}\text{Ar} (\bar{p}, p)^{40}\text{Ar}$

$E_p = 25.1 \text{ MeV}$

Fig. 1
Fig. 4
This report was done with support from the Department of Energy. Any conclusions or opinions expressed in this report represent solely those of the author(s) and not necessarily those of The Regents of the University of California, the Lawrence Berkeley Laboratory or the Department of Energy.

Reference to a company or product name does not imply approval or recommendation of the product by the University of California or the U.S. Department of Energy to the exclusion of others that may be suitable.