Lawrence Berkeley National Laboratory

Recent Work

Title
INFLUENCE OF CORIOLIS COUPLING, PAIRING, AND OCTUPOLE VIBRATION-PARTICLE COUPLING ON \(K = -1 \) EL TRANSITION IN 177Hf

Permalink
https://escholarship.org/uc/item/8rn6k60t

Authors
Bernthal, F.M.
Rasmussen, J.O.

Publication Date
1967-04-01
INFLUENCE OF CORIOLIS COUPLING, PAIRING, AND OCTUPOLE VIBRATION-PARTICLE COUPLING ON $\Delta K = -1$ E1 TRANSITION IN 177Hf
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
INFLUENCE OF CORIOLIS COUPLING, PAIRING, AND OCTUROLE VIBRATION-PARTICLE COUPLING ON ∆K = -1 EL TRANSITION IN 177Hf

F. M. Bernthal and J. O. Rasmussen

April 1967
Influence of Coriolis coupling, pairing, and octupole vibration-particle coupling on $\Delta K = -1$ El transitions in 177Hf*

F. M. Bernthal and J. O. Rasmussen

Lawrence Radiation Laboratory and Department of Chemistry
University of California
Berkeley, California

April 1967

Abstract: A fit of 14 $\Delta K = -1$ El transitions in 177Hf to within 20% of experimentally derived absolute intensities was achieved by considering the principal and Coriolis-mixed El components as three adjustable parameters. Subsequent theoretical calculations using Nilsson wave functions and including the effects of pairing, Coriolis coupling, and octupole vibration-particle coupling yielded a fit to within a factor of two for the 177Hf El intensities. Only one adjustable parameter, the octupole vibration-particle coupling strength, was used in the microscopic calculations. Three new transitions including two new El's have been observed in the decay of 177Lu. Improved El relative intensity measurements are presented for comparison with theory.

*The work supported by the U. S. Atomic Energy Commission.
1. Introduction

The strong influence of Coriolis-admixed components on the $\Delta K = \pm 1$ electric dipole transitions in odd-mass deformed nuclei is now well recognized\(^1\)\(^2\). Several authors have considered the effects of Coriolis mixing in attempting to explain anomalies in experimentally observed branching ratios of El radiation. Although considerable success has been realized in predicting and accounting for El branching ratios that strongly violate Alaga's rules, relatively poor agreement with experiment has resulted from all attempts to explain quantitatively the absolute El transition strengths.

The 16 El transitions arising from the decay of 161-day\(^3\) \(^{177}\)Lu\(^m\) to high spin members in \(^{177}\)Hf provide an exceptionally rigorous experimental test for theoretical study of $\Delta K = 1$ El transitions. As is typical for this class of El transition, the Nilsson hindrance factors $F_N = B_N(\text{El})/B_{\text{exp}}(\text{El})$ for the \(^{177}\)Hf El's vary from near unity in several cases to $\sim 10^3$ in the case of the well-known 321-keV transition between the $9/2^- [624]$ and $7/2^- [514]$ band heads. Such wide variation in El transition rates between the same intrinsic states cannot be explained in terms of simple transition rate theory.

It can now be shown that it is possible within the framework of the unified model to successfully account for the absolute El transition strengths in \(^{177}\)Hf to a relatively small margin of error. The method used in the microscopic calculations involves consideration of Coriolis-mixed El components, pairing reduction, and collective El components arising from octupole vibration-particle coupling. Improved experimental data for the \(^{177}\)Hf El's are presented for comparison with theory.

* We have recently received a copy of the thesis of R. Piepenbring (University of Strassburg) in which the influence of collective octupole components on $\Delta K = 1$ El transitions in odd-A deformed nuclei is discussed using a somewhat different approach from ours, but we have not had time to make a detailed comparison in this article.
2. Deduction of Experimental El Strengths in 177Hf

Because of the wide variation in El strengths in 177Hf, we have expended considerable effort in an attempt to obtain the best possible experimental measurements for the relative El intensities. Singles spectra of the decay of 177Lum have been taken using the anti-Compton Ge(Li) spectrometer at Livermore (7 cm3, resolution 1.1 keV at 122 keV) and a high resolution (0.77 keV at 122 keV) Ge(Li) crystal in our laboratory. In fig. 1 we display a portion of the 177Lum gamma ray spectrum taken on the anti-Compton device. The favorable peak-to-background ratio obtainable has enabled us to identify the 88.4-keV El transition between the spin 19/2 members of the two 177Hf rotational bands. Moreover, the 242.5-keV M1-E2 cascade transition leading from the 21/2 to the 19/2 spin level of the K = 7/2$^-$ band has also been observed with intensity $(0.32 \pm 0.4)\%$ relative to the 105.4-keV line. Figures 2 and 3 show linear plots of the 88.4- and 242.5-keV photopeaks. The high-resolution spectra taken on the 1 cm$^2 \times 9$ mm depletion depth "thin window" Ge(Li) crystal have facilitated the confirmation of the 69.2-keV El transition tentatively assigned earlier4 and have allowed more accurate measurement of relative intensities for several previously reported El's. In fig. 4 we show the linear plot of the 69.2-keV line. Figures 5 and 6 show two particularly interesting regions of the 177Lum spectrum. The 117.2- and 145.8-keV El's seen in ref. 4) as only poorly defined shoulders on the 116.0- and 147.2-keV lines are now resolved. The second partial spectrum shows that the very weak 283.4-keV El is nearly resolved from the 281.8-keV photopeak, and the El doublet at 292 keV now clearly shows the 292.5-keV line to be weaker than the 291.4-keV El. In fig. 7 we display again for reference the now well established decay scheme of 177Lum. With the exception of the three transitions
added from the present work and the slightly altered half-life of 177Lu, the scheme is exactly the same as reported and modified by earlier workers.

Table 1 shows the composite relative intensity data for the 14 El transitions observed to date. Also shown are the derived experimental values of $B(\text{El})$. The lifetime of the 321-keV level has been measured by Berlovich, et al. to be $\tau_{1/2} = (6.9\pm0.3) \times 10^{-10}$ sec. Using this value and the $M2/\text{El}$ mixing ratio 0.18 for the 321-keV El, it is possible from relative intensity measurements to calculate directly the reduced strengths of the three El's leading from the 9/2+[624] band head.

All other values of $B(\text{El})$ have been derived using the rotational model of Bohr and Mottelson, assuming $Q_0 = 6.85$ barns. For all El's except those leading from the 11/2+ member of the $K = 9/2+$ band, crossover $E2$ intensities may be used to deduce $B(\text{El})$ for transitions from a given level. For the El's leading from the 11/2+ level, values of $B(\text{El})$ were derived from the rotational $M1-E2$ transition strength of the 105.4-keV cascade γ ray taking $(1/8^2) = [T_{\gamma}'(M1)]/[T_{\gamma}'(E2)] = 8.7$ by extrapolation to spin 11/2 in fig. 8. In contrast to the similar analysis first performed for 177Hf by Alexander et al. which neglected the effects of Coriolis mixing in the 9/2+[624] band, we have now taken into account the contributions of Coriolis-mixed components to the intraband transition strengths. The wave amplitudes for the Coriolis-mixed components originating from the $i_{13/2}$ shell model state were obtained by Holtz in a matrix diagonalization. The procedure used reproduces the experimentally observed energy levels of the rather strongly perturbed 177Hf 9/2+[624] band to within less than 0.4 keV by varying the effective size of the off-diagonal RPC matrix elements.
3. ^{177}Hf El Transition Strengths in the Unified Model

It has been shown by Grin and Pavlichenkov1) and by Vergnes and Rasmussen2) using analyses equivalent in their conclusions that a simple first order perturbation treatment which regards the principal and Coriolis-mixed ^{177}Hf El matrix elements as two adjustable parameters can explain quite successfully the observed El branching ratios. In fact, the more complete analysis in ref.1) showed the general validity of this treatment in explaining the anomalous branching ratios of $|\Delta K| = 1$ El's in odd-mass deformed nuclei. In fig. 9 we show the results of such a simple treatment applied to the ^{177}Hf El intensities from this work.

As indicated in ref.1), the terms which should be considered up to first order in the analysis of the ^{177}Hf El's are the following: 1) the principal $9/2^+[624] \rightarrow 7/2^-[514]$ component; 2) the Coriolis-admixed $(K=7/2^+) \rightarrow 7/2^-[514]$ components; 3) the $9/2^+[624] \rightarrow (K=9/2^-)$ Coriolis-admixed components. We have obtained an estimate of the wave-function coefficient for the Coriolis-mixed $7/2^+[633]$ component in the $9/2^+[624]$ band from the band-fit matrix diagonalization mentioned earlier. The mixing of $K = 9/2^-$ components into the $7/2^-[514]$ band was estimated by a simple first-order perturbation treatment. Use of the normalized initial and final wave functions and treatment of the El matrix elements as three adjustable parameters yielded a fit to within 20% of the experimental absolute El transition strengths. Figures 10 and 11 show the normalized 3-parameter fit in comparison with the simple 2-parameter treatment and with experiment.

The quality of the fit thus obtained prompted an attempt to account for the observed absolute El strengths within the framework of the unified model.
Recent developments12,13,14 in the theoretical interpretation of the collective octupole vibrational mode in deformed nuclei and its apparent application to the $\Delta K = 0$ class of $E1$ transitions15,16 have suggested a similar important influence on $|\Delta K| = 1$ El's, all of which apparently have relatively large $\Delta K = 0$ Coriolis-mixed components.

In our calculations we have followed the approach of Faessler et al.16 who suggest the vibration-particle coupling Hamiltonian

$$H_{vp} = -\hbar \omega_0 a_3 r^2 Y_3(\theta, \phi)$$

which for $\Delta K = 0$ El transitions mixes the octupole band of the final state with the initial state and vice-versa. The only other quantities needed for the calculation are the octupole zero-point amplitude, $(a_3) = \sqrt{2E_3} / \sqrt{2B_3}$, and the collective $E1$ strength associated with the octupole vibration, $B_{coll}(E1)$. Experimental data on both $B(E3)$ and $B(E1)$ for transitions between the first octupole band ($K=0^{-}$) and ground in even-even nuclei are extremely scarce in the rare-earth region. However, the recent publication of Donner and Greiner13 offers estimates of the collective dipole and octupole strengths in this region. In this work, the $E1$ strength is derived by means of the Dynamic Collective Theory whereby $E1$ transitions of the octupole states are supposed to arise from small admixtures of giant dipole resonance. The pertinent relation given in ref. 13) is

$$\frac{B(E1)}{B_{sp}(E1)} = 5.74 \times 10^{-2} AC_o^2 (I_i 100 | I_f 0)$$

(1)
where \(C_0 \) is the giant dipole wave function admixture coefficient for the
\((K_i=0^-\rightarrow K_f=0^+)\), \(|K_i-J_3|=0\) class of El's.

Adopting the general approach suggested by Faessler et al.\(^{16}\), and assuming
\(E_3=1.2 \) MeV, we have calculated the reduced transition strengths in \(^{177}\)Hf taking
into account pairing reduction, the influence of the Coriolis RPC perturbation,
and the second-order vibration-particle perturbation which mixes the initial and
final states of the \(\Delta K=0 \) El components.

The total initial and final wave functions assumed are of the following
form:

\[
\Psi_{i,f} = \left| \mathbf{I}_{i,f} \right; \frac{q}{2}+[624] \left(\frac{3}{2} \right)-[514] \right; n=0 \right> \\
+ \sum_{\Omega_i(f),\alpha} \mu_i^{\alpha} \left| \mathbf{I}_{i,f} \right; \Omega_i(f) \alpha \right; 0 \right> \\
+ \sum_{\Omega_f(\alpha)} \eta_i^{\alpha} \left| \mathbf{I}_{i,f} \right; \Omega_f(\alpha) \alpha \right; 1 \right>
\]

(2)

where \(n \) is the number of octupole phonons, the \(\Omega \alpha \) represent the significant
Nilsson single particle states \(\Omega[N_n A] \), and the \(\mu \) are the admixture coefficients
for the Coriolis-mixed components. The coefficient \(\eta \) of the octupole vibration-
particle mixing is given, for example, in the case of second-order mixing of the
octupole band of the \(7/2-[514] \) (ground) state into the initial \(9/2+[624] \) band by:
\[\eta_i = -\frac{\hbar^2}{2\gamma} R \left\langle \mathbb{I}_i; \Omega_i = \frac{\gamma}{2} + \beta; n = 0 \right| \mathbb{I}_i; \mathbb{I}_i; \Omega_i = \frac{\gamma}{2} + [6z_2]; n = 0 \right\rangle \]

\[\times \frac{R \left\langle \mathbb{I}_i; \frac{\gamma}{2} - [5z_2]; n = 1 \right| \mathbb{I}_i; \Omega_i = \frac{\gamma}{2} + \beta; n = 0 \right\rangle}{E_{\frac{\gamma}{2} + [6z_2]} - \left[E_{\frac{\gamma}{2} - [5z_2]} + E_3 \right]} \]

The pair reduction factors \(R = (U_1 U_2 + V_1 V_2) \) and \(R = (U_1 U_2 - V_1 V_2) \) refer to the Coriolis and vibration-particle matrix elements, respectively. Normalization of the entire wave function is of course required.

Counting both collective and single-particle components a total of some 35 terms has been considered, of which perhaps 10 are of major significance. These terms include:

1. The principal and large Coriolis-mixed single-particle components which have small \(G(El) \) values in the Nilsson model, e.g., \(9/2^+[624] \rightarrow 7/2^-[514] \), \(7/2^+[633] \rightarrow 7/2^-[514] \); 2) Single-particle components arising from small Coriolis-mixed wave components but with large allowed \(G(El) \) values by the Nilsson selection rules, e.g., \(9/2^+[624] \rightarrow 9/2^-[514] \), \(7/2^+[624] \rightarrow 7/2^-[514] \); 3) The collective octupole El components arising from vibration-particle coupling; these terms dominate for the \(\Delta K = 0 \) components. We are grateful to Profs. Aage Bohr and Ben Mottelson for calling our attention to the possible importance of the terms of type 2) above.

Since the relative phases of the collective El components are not known, we allowed that these be arbitrary. It was found that a single phase of the same
sign as the $7/2^+[633] \to 7/2^-[514]$ single particle component gave the most satisfactory results.

In the microscopic calculations, we have allowed variation of only the single parameter $\langle a_3 \rangle$, the octupole amplitude. Pairing reduction factors have been calculated assuming λ, the chemical potential, to be at or near the energy \tilde{E}_j of the ground state $7/2^-[514]$ Nilsson orbital. Ikegami and Udagawa17 have shown that the pair reduction factors $(U_1U_2-V_1V_2)$ for electric multipole transitions can be estimated from empirical data on the basis of odd-even mass differences and the γ-ray transition energy. Their method is based upon the approximation $E_2 = \Delta$ which implies $\tilde{E}_2 = \lambda$. Assuming this condition is met for the deformed nucleus ^{177}Hf, we have calculated the pair reduction factors R from experimental energy levels where known, and from the single-particle energies given in ref. 19) in all other cases. For the gap parameter Δ we have taken the value 0.60 MeV.

The experimental odd-even mass difference $\Delta_{\exp}^{\text{odd-even}}$ is ~ 0.66 MeV for ^{177}Hf, but Δ is generally expected to be somewhat less than $\Delta_{\exp}^{\text{odd-even}}$. All calculations have assumed deformation $\eta = 5$ for ^{177}Hf. The pertinent Nilsson wave-function coefficients were obtained by a quadratic interpolation between $\eta = 2, 4 \text{ and } 6$ using the Nilsson coefficients in ref. 20). The rotational constant $\hbar^2/2I$ has been taken from adjacent even-even nuclei as ~ 15.4 keV.

Table 2 shows the results of our calculations for ^{177}Hf, together with the values of $B(E1)$ calculated using the simple 3-parameter fit described earlier. Absolute values of $B(E1)$ obtained for the appropriate choice of $\langle a_3 \rangle$ in several cases of interest are displayed. Column 1 (NC) of the microscopic theory shows the results obtained when all assumptions
with regard to Coriolis mixing and pair reduction are taken into account and the calculations are performed within the Nilsson model, but no octupole mixing is assumed. There is clearly little relation between these results and experiment. Columns 2 and 3 (NCO and NCO') show the results for a similar calculation as column 1, but with inclusion of the octupole-particle-coupling influence. In column 2 are given the results for the strict assumption \(\lambda = \tilde{E}_{7/2-[514]} \). This predicts \(R_0 = 0.42 \) for the principal single-particle component \(9/2+[642] \rightarrow 7/2-[514] \). In order to give agreement with experiment for the highly hindered 321-keV El, \(\langle a_3 \rangle \) must be adjusted to 0.170. However, the apparent value \(R_0 \) indicated by the 3-parameter fit of data is \(\sim 0.34 \). In column 3 (NCO'), therefore, we show the results for \(\lambda = 60 \) keV above \(\tilde{E}_{7/2-[514]} \), \(R_0 = 0.34 \) and \(\langle a_3 \rangle = 0.142 \). Clearly, the calculated strength for the highly hindered 321-keV El is extremely sensitive to the choice of \(R_0 \) and to \(\langle a_3 \rangle \). This sensitivity is a consequence of near cancellation between components opposite in phase. In general, however, the remaining transitions are much less sensitive to \(\langle a_3 \rangle \), although the calculated branching ratios are rather easily upset. The values indicated for \(\langle a_3 \rangle \) are in the range 0.1 - 0.2, consistent with the octupole amplitude expected in this region. In column 4 we include a tabulation of results using pair reduction factors obtained by Vergnes and Rasmussen from a solution of the BCS wave functions for \(N = 105 \). The agreement with experiment in this case, though still within an order of magnitude, is much poorer because the orbital energies \(\tilde{E}_{n\alpha} \) differ somewhat from the best values for this particular nucleus and this BCS solution predicts \(R_0 = 0.16 \).

Finally, comment should be made concerning the apparently excellent quality of the fit that was obtained without use of Nilsson wave functions.
simply by adjusting parameters which were assumed proportional to the three
$E1$-matrix elements that contribute in first order Coriolis mixing. It can be
easily shown that the effects on relative $B(E1)$ values due to all first-order
($\Delta K=0$) corrections should be expressible by a single additional parameter if Coriolis
mixing is treated only by first-order perturbation theory, without renormalizing
wave functions. But the interference from $\Delta K = 0$ components is so large in
this case that first-order perturbation treatment of the Coriolis interaction
is inadequate. When normalized Coriolis-mixed wave functions from a full
matrix diagonalization are used, however, the two-parameter theory no longer
gives the linear plot in fig. 10, and much closer agreement with experiment
is obtained. Moreover, the third parameter is now not redundant, and can give
still better fits with experiment.

It is interesting in this regard to compare the values for the three
parameters M_0, M_1 and M_2 used in the experimental fit with the various
contributing terms calculated from theory involving the octupole vibration-particle mixing. The
results of such a comparison are shown in table 3 for calculations assuming
$\lambda \approx 60 \text{ keV}$ above $\varepsilon_{7/2-[514]}$ and $R_0 = 0.34$. Since the parameters M_0, M_1
and M_2 were adjusted to the strengths of the three $E1$'s leading from the
$9/2+[624]$ band head, the calculated values are shown as they apply to one
particular transition, the $9/2+ \rightarrow 9/2- 208 \text{ keV} E1$, for which all first order
Coriolis-mixed components can contribute. The agreement is quite good for
these low spin states, but for large spins the higher order Coriolis-mixed
single-particle components complicate matters somewhat. In fact, in our
calculations these small components are responsible for the increasing discrepancies
between the theoretical and experimental values of $B(E1)$ as high spins are
approached. It should also be noted that there are significant collective
components arising from the particle transitions \(5/2+[642] \rightarrow 5/2-[512]\) and
\(5/2+[642] \rightarrow 5/2-[523]\). Because these contributions are nearly equal and
opposite in phase, they are of consequence only for high spins. The quality
of the 3-parameter fit for high spin states was thus apparently somewhat
fortuitous, and resulted microscopically from a cancellation of several terms
important for large values of the spin-dependent RPC matrix elements.

4. Conclusions

The general applicability of the interpretation of \(|\Delta K| = 1\) El
transitions in terms of Coriolis coupling, pairing, and vibration-particle
coupling remains to be shown, but the results of our calculations for the
nucleus \(^{177}\text{Hf}\) indicate that the theoretical basis for the quantitative
interpretation of El transitions in odd-mass deformed nuclei is established.
More accurate knowledge of the pairing reduction factors and of the collective
strengths \(B(\text{El})\) and \(B(\text{E3})\) in odd-mass nuclei is essential to confirm the
validity of our treatment. In the case of \(^{177}\text{Hf}\), direct experimental measure-
ments of additional El lifetimes would be desirable, though present limita-
tions in electronics make such measurements extremely difficult if not impossible.
5. Acknowledgements

We thank Dr. David Camp of Livermore for his assistance in obtaining spectra with the anti-Compton spectrometer, Mr. M. D. Holtz for making portions of his band-fit calculations available before publication and Dr. J. M. Hollander for many helpful discussions. We are also grateful to Profs. Aage Bohr and Ben Mottelson for their encouragement through stimulating discussions last summer.

This work was supported by the U. S. Atomic Energy Commission, partly through the Lawrence Radiation Laboratory and partly through an off-site contract on the University of California campus.
References

1) Yu. T. Grin and I. M. Pavlichenkov, Nucl. Phys. 65 (1965) 636
3) D. R. Nethaway and B. Mendoza, Lawrence Radiation Laboratory Report
 UCRL-70048 (1966)
 (1967) 337
5) P. Alexander, F. Boehm and E. Kankeleit, Phys. Rev. 133 (1964) B284
6) J. Blok and D. A. Shirley, Phys. Letters 13 (1964) 232
7) E. Bodenstedt, et al., Zeit. für Physik 190 (1966) 60
8) E. E. Berlovich, Yu. K. Gusev, V. V. Il'in and M. K. Nikitin, Soviet
 Physics JETP 43 (1962) 1625
10) B. Eibek, M. C. Olesen and O. Skilbreid, Nucl. Phys. 10 (1959) 294
11) M. D. Holtz, private communication
12) V. G. Soloviev, JINR P-1973 (1966)
13) W. Donner and W. Greiner, Zeit. für Physik 197 (1966) 440
14) A. Faessler and A. Plastino, University of California, Los Angeles, preprint
 (1967)
17) H. Ikegami and T. Udagawa, Phys. Rev. 133 B (1964) 1358
 32 No. 16 (1961). cf. also J. O. Rasmussen and C. W. Ma, Zeitschrift für Physik
 (in press).
 Tech. (1966)
 (1924)
Table 1. Experimental relative intensities and derived reduced transition strengths for 177Hf El's

<table>
<thead>
<tr>
<th>Initial spin</th>
<th>Final spin</th>
<th>E_γ (keV)</th>
<th>Intensitya</th>
<th>B(El) (MeV·fm3) x 105</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/2</td>
<td>7/2</td>
<td>321.3</td>
<td>8.8(5)</td>
<td>0.034(4)</td>
</tr>
<tr>
<td>9/2</td>
<td>9/2</td>
<td>208.3</td>
<td>524(21)</td>
<td>9.2(6)</td>
</tr>
<tr>
<td>9/2</td>
<td>11/2</td>
<td>71.7</td>
<td>7.2(4)</td>
<td>3.1(2)</td>
</tr>
<tr>
<td>11/2</td>
<td>9/2</td>
<td>313.7</td>
<td>10.0(5)</td>
<td>0.66(5)</td>
</tr>
<tr>
<td>11/2</td>
<td>11/2</td>
<td>177.0</td>
<td>27.8(1.2)</td>
<td>10.3(7)</td>
</tr>
<tr>
<td>11/2</td>
<td>13/2</td>
<td>(17.2)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13/2</td>
<td>11/2</td>
<td>305.5</td>
<td>14.2(6)</td>
<td>2.32(13)</td>
</tr>
<tr>
<td>13/2</td>
<td>13/2</td>
<td>145.8</td>
<td>7.7(5)</td>
<td>11.6(9)</td>
</tr>
<tr>
<td>15/2</td>
<td>13/2</td>
<td>299.0</td>
<td>12.6(7)</td>
<td>4.3(3)</td>
</tr>
<tr>
<td>15/2</td>
<td>15/2</td>
<td>117.2</td>
<td>2.0(2)</td>
<td>11.5(1.3)</td>
</tr>
<tr>
<td>17/2</td>
<td>15/2</td>
<td>291.4</td>
<td>8.4(8)</td>
<td>7.0(7)</td>
</tr>
<tr>
<td>17/2</td>
<td>17/2</td>
<td>88.4</td>
<td>0.32(8)</td>
<td>9.4(2.4)</td>
</tr>
<tr>
<td>19/2</td>
<td>17/2</td>
<td>292.5</td>
<td>6.7(7)</td>
<td>8.9(9)</td>
</tr>
<tr>
<td>19/2</td>
<td>19/2</td>
<td>69.2</td>
<td>0.088(30)</td>
<td>8.6(2.9)</td>
</tr>
<tr>
<td>21/2</td>
<td>19/2</td>
<td>283.4</td>
<td>2.9(5)</td>
<td>11.0(2.0)</td>
</tr>
<tr>
<td>21/2</td>
<td>21/2</td>
<td>(41.0)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

aNormalized to 105.4-keV γ ray = 100. For most Ge(Li) detectors with thicker windows than ours, this is an unfortunate choice for normalization, since 105 keV does not fall in the near-exponential region of the efficiency curve. This may account for part of the discrepancy between our measured intensities for the strong lines and those quoted in ref. 4. In general, we measure I_γ about 10% greater than ref. 4 for those strong lines > 200 keV in energy.
Table 2. Theoretical values of \(B(E1) \) for \(^{177}\text{Hf}\)

<table>
<thead>
<tr>
<th>initial spin</th>
<th>final spin</th>
<th>3-parameter fit</th>
<th>microscopic theory</th>
<th>experiment</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>NC(^{a})</td>
<td>NCO(^{b})</td>
<td>NCO(^{c})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.034</td>
<td>3.4</td>
<td>0.031</td>
</tr>
<tr>
<td>9/2</td>
<td>7/2</td>
<td>7.5</td>
<td>0.74</td>
<td>10.0</td>
</tr>
<tr>
<td>9/2</td>
<td>9/2</td>
<td>3.5</td>
<td>0.05</td>
<td>6.5</td>
</tr>
<tr>
<td>11/2</td>
<td>9/2</td>
<td>0.69</td>
<td>2.1</td>
<td>0.69</td>
</tr>
<tr>
<td>11/2</td>
<td>11/2</td>
<td>9.7</td>
<td>0.87</td>
<td>12.4</td>
</tr>
<tr>
<td>11/2</td>
<td>13/2</td>
<td>7.6</td>
<td>0.06</td>
<td>11.5</td>
</tr>
<tr>
<td>13/2</td>
<td>11/2</td>
<td>2.6</td>
<td>1.3</td>
<td>3.5</td>
</tr>
<tr>
<td>13/2</td>
<td>13/2</td>
<td>10.1</td>
<td>0.77</td>
<td>11.9</td>
</tr>
<tr>
<td>15/2</td>
<td>13/2</td>
<td>5.0</td>
<td>0.74</td>
<td>7.0</td>
</tr>
<tr>
<td>15/2</td>
<td>15/2</td>
<td>9.7</td>
<td>0.59</td>
<td>10.4</td>
</tr>
<tr>
<td>17/2</td>
<td>15/2</td>
<td>7.3</td>
<td>0.34</td>
<td>10.7</td>
</tr>
<tr>
<td>17/2</td>
<td>17/2</td>
<td>8.9</td>
<td>0.40</td>
<td>8.6</td>
</tr>
<tr>
<td>19/2</td>
<td>17/2</td>
<td>8.2</td>
<td>0.14</td>
<td>13.6</td>
</tr>
<tr>
<td>19/2</td>
<td>19/2</td>
<td>7.9</td>
<td>0.24</td>
<td>6.8</td>
</tr>
<tr>
<td>21/2</td>
<td>19/2</td>
<td>11.0</td>
<td>0.01</td>
<td>16.3</td>
</tr>
<tr>
<td>21/2</td>
<td>21/2</td>
<td>6.9</td>
<td>0.10</td>
<td>5.1</td>
</tr>
</tbody>
</table>

\(^{a}\) Assumes \(\lambda = \xi_{1/2-514} \), \(\langle \alpha_{2} \rangle = 0 \), and \(R_{0} = (U_{9/2+624}U_{7/2-514}V_{9/2+624}V_{7/2-514})^{0.42} \)

\(^{b}\) \(\lambda = \xi_{1/2-514} \), \(\langle \alpha_{2} \rangle = 0.170 \), \(R_{0} = 0.42 \)

\(^{c}\) \(\lambda = \xi_{1/2-514}+60 \text{ keV}, \langle \alpha_{2} \rangle = 0.142 \), \(R_{0} = 0.34 \)

\(^{d}\) \(\lambda = \xi_{1/2-514}+70 \text{ keV}, \text{ BCS solution}, \langle \alpha_{2} \rangle = 0.142 \), \(R_{0} = 0.16 \)
Table 3. Calculated contributions to the experimental parameters M_0, M_1, and M_2 (for the $I_1=9/2$, $I_f=9/2$ transition)

<table>
<thead>
<tr>
<th>Initial Band</th>
<th>Final Band</th>
<th>Octupole Phonons n_i n_f</th>
<th>Mixing Coeff. ($U_i U_f V_i V_f$)</th>
<th>El Matrix Element b</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/2+[624]</td>
<td>7/2-[514]</td>
<td>0 0</td>
<td>0.96</td>
<td>0.34</td>
<td>1.7×10^{-2}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/2+[633]</td>
<td>7/2-[514]</td>
<td>0 0</td>
<td>0.25</td>
<td>-0.57</td>
<td>-8.3×10^{-3}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-5.1 \times 10^{-2}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-8.9 \times 10^{-2}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/2+[624]</td>
<td>7/2-[514]</td>
<td>0 0</td>
<td>-4.4 \times 10^{-3}</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.7 \times 10^{-3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>3.0 \times 10^{-3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/2+[613]</td>
<td>7/2-[514]</td>
<td>0 0</td>
<td>6.4 \times 10^{-3}</td>
<td>0.64</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8.8 \times 10^{-4}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.5 \times 10^{-3}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sum = 0.96×10^{-2}

Experimental $\sqrt{I_1 (I_1+1) - K_1 (K_1+1) M_1} = 3 \times M_1 = 1.0 \times 10^{-2}$

<table>
<thead>
<tr>
<th>Initial Band</th>
<th>Final Band</th>
<th>Octupole Phonons n_i n_f</th>
<th>Mixing Coeff. ($U_i U_f V_i V_f$)</th>
<th>El Matrix Element b</th>
<th>Product</th>
</tr>
</thead>
<tbody>
<tr>
<td>9/2+[624]</td>
<td>7/2-[505]</td>
<td>0 0</td>
<td>6.3 \times 10^{-2}</td>
<td>0.87</td>
<td>-3.4×10^{-3}</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>7.5 \times 10^{-3}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1.3 \times 10^{-2}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/2-[514]</td>
<td>7/2-[514]</td>
<td>0 0</td>
<td>-3.5 \times 10^{-3}</td>
<td>-0.31</td>
<td>0.54</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-7.9 \times 10^{-4}</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-1.4 \times 10^{-3}</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sum = -0.94×10^{-3}

Experimental $\sqrt{I_f (I_f+1) - K_f (K_f+1) M_2} = 3 \times M_2 = -1.3 \times 10^{-3}$

a Represents the wave function coefficient product for the indicated initial and final particle or particle-phonon states.

b For particle components, $\sqrt{\gamma / \eta} e_{\text{eff}} (\eta / M_\eta)^{1/2} |G(\text{EL})|$; for collective components, derived from eq. (1). We have assumed $e_{\text{eff}} = (Ze/A)$.

UCRL-17504
Figure Captions

Fig. 1. The γ-ray spectrum of 177Lum in the region 170-250 keV showing the location of the 242.5-keV cascade transition.

Fig. 2. Linear plot of the 88.4-keV El γ ray from an anti-Compton spectrum of 177Lum decay. (Scale: ~ 0.080 keV/channel)

Fig. 3. Linear plot of the 242.5-keV γ ray from 177Lum decay. (Scale: 0.080 keV/channel)

Fig. 4. Linear plot of the 69.2-keV El γ ray from 177Lum decay. (Scale: 0.038 keV/channel)

Fig. 5. High resolution γ-ray spectrum of 177Lum in the region 100-150 keV.

Fig. 6. High resolution γ-ray spectrum of 177Lum in the region 275-330 keV.

Fig. 7. The decay scheme of 177Lum from ref. 5 with additions from refs. 4, 6, 7, and the present work.

Fig. 8. Plot of the ML-E2 branching ratio for cascade transitions in the $K = 9/2^+$ band of 177Hf. Derived from crossover-to-cascade ratios of γ ray intensities from decay of 177Lum.

Fig. 9. Diagram of the El branching ratios in 177Hf from the data in Table 1 and the simple 2-parameter theory of refs. 1 and 2.

Fig. 10. The normalized 3-parameter fit of absolute reduced El strengths in 177Hf for the $\Delta I = -1$ class of transition. Derived from the form $B(\text{El}) = \left[M_0 (I_1 \\ 1 \ 9/2 \ -1 \ 1 \ 7/2) + M_1 \sqrt{I_1(I_1+1)-(9/2)(7/2)} (I_1 \ 1 \ 7/2 \ 0 \ 1 \ 7/2) \right. + \left. M_2 \sqrt{I_1(I_1+1)-(7/2)(9/2)} (I_1 \ 1 \ 9/2 \ 0 \ 1 \ 9/2) \right]^2$ with $M_0 = 5.5 \times 10^{-3}$, $M_1 = 3.6 \times 10^{-3}$, and $M_2 = -4.5 \times 10^{-4}$.

Fig. 11. Normalized 3-parameter fit of the reduced El strengths in 177Hf for the $\Delta I = 0$ class of transition.
Fig. 1

\(^{177}\text{Lu} \) partial \(\gamma \)-ray spectrum

(from \(7\text{cm}^3 \text{Ge(Li)} \) anti-Compton device)

Fig. 2

$^{177}\text{Hf} \ 88.4\text{ keV } \gamma\text{-ray}$

Counts x 10^{-4}

Channel number
Fig. 4
$^{177}\text{Lu}^m$ partial γ-ray spectrum
[from 1-cm3 "thin window" Ge(Li) crystal]
177Lum partial γ-ray spectrum
[from 1-cm3 "thin window" Ge(Li) crystal]

Counts per channel

Channel number

Fig. 6
Fig. 7
M1-E2 branching ratios in $K = \frac{9}{2}^+$ band of 177Hf.

- $\frac{1}{2}^+$ assuming Coriolis mixing
- $\frac{3}{2}^+$ for pure $K = \frac{9}{2}^+$ band

Fig. 8
Relative reduced strengths for E1 transitions from $K = \frac{7}{2}^+ \rightarrow K = \frac{7}{2}^-$ band in ^{177}Hf

- Alaga's rule
- Theory including Coriolis mixing
- Experiment

Fig. 9
Fig. 10
\[\frac{1}{\sqrt{\Delta I = 0}} \]

\[\frac{B(E1)}{(I - 1/2, I)} \times 10^3 \]

\[^{177}\text{Lu}^m \rightarrow ^{177}\text{Hf} \] E1 transitions

Fig. 11
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.