Recent Work

Title
DESIGN OF CRITICAL DAMPING NETWORKS FOR RELAY COILS

Permalink
https://escholarship.org/uc/item/8rs4039y

Authors
Acker, Robert C.
Struven, Warren C.

Publication Date
1955-04-04
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
DESIGN OF CRITICAL DAMPING NETWORKS FOR RELAY COILS
Robert C. Acker and Warren C. Struven
April 4, 1955

Printed for the U. S. Atomic Energy Commission
DESIGN OF CRITICAL DAMPING NETWORKS FOR RELAY COILS

Robert C. Acker and Warren C. Struven
Radiation Laboratory
University of California
Berkeley, California
April 4, 1955

Frequently in electronic equipment it is necessary to eliminate a voltage transient produced upon interrupting the current in a relay coil or solenoid. The procedure outlined below will, in the ideal case, critically damp the offending coil, making it appear to be a constant resistance at all frequencies. In the practical case it can be expected to give results correct to ten or twenty percent, which is adequate to reduce the voltage surge to a few percent of the normal operating value; errors are due mainly to the change in resistance and inductance of the coil with change in frequency and armature position.

Measure R and L or coil (preferably on 1-kc bridge).

\[
\frac{1}{\omega_0} = \frac{1}{\omega_0} \cdot R = \frac{1}{\omega_0} \cdot \frac{L}{R^2} \quad (1)
\]

Let \(\omega_0 L = R \);
\[\omega_0 = \frac{R}{L}; \]
let \(\frac{1}{\omega_0} C = R \);
then \(C = \frac{1}{\omega_0} R = \frac{L}{R^2} \) \(\cdot (1) \)

\(R_{\text{external}} = R_{\text{internal}} = R \).

Equation (1) has been plotted as a nomograph which may be solved with a straightedge.

Illustrative Examples

- **W. E. 275C Mercury Relay**
 - Both Coils in Series
 - \(R = 4000 \) ohms
 - \(L = 6.4 \) henrys
 - \(\omega_0 = 625 \) rad/sec
 - \(C \approx 0.4 \) \(\mu \)f

- **Allied B06 D42**
 - 112 V dc Relay
 - \(R = 5000 \Omega \)
 - \(L = 9.3 \) to 9.5 henrys
 - \(\omega_0 = 585 \) rad/sec
 - \(C \approx 0.38 \) \(\mu \)f

This work was done under the auspices of the U. S. Atomic Energy Commission. Permission for publication of this information in whole or in part is granted by the author and the University of California Radiation Laboratory operated for the United States Atomic Energy Commission.
Fig. 1. Nomograph for relation between capacity, resistance, and inductance.