UC Irvine
UC Irvine Previously Published Works

Title
GLYCA TED HEMOGLOB IN LEVELS AND MORTALITY IN A LARGE US COHORT OF INCIDENT
DIABETIC HEMODIALYSIS PATIENTS

Permalink
https://escholarship.org/uc/item/8sb8p6m9

Authors
Rhee, C
Kim, S
Mehrotra, R
et al.

Publication Date
2015-05-01

DOI
10.1093/ndt/gfv183.27

License
CC BY 4.0

Peer reviewed
GLYCATED HEMOGLOBIN LEVELS AND MORTALITY IN A LARGE US COHORT OF INCIDENT DIABETIC HEMODIALYSIS PATIENTS

Connie Rhee1, Steven Kim2, Rajnish Mehrotra3, Daniel Gillen2, Steven Brunelli4, Csaba Kovesdy5, Gregory Brent6 and Kamyar Kalantar-Zadeh1

1University of California Irvine, Medicine, Orange, CA, 2University of California Irvine, Statistics, Orange, CA, 3Harborview Medical Center, Medicine, Seattle, WA, 4DaVita Clinical Research, Nephrology, Minneapolis, MN, 5University of Tennessee Health Sciences Center, Medicine, Memphis, TN, 6David Geffen School of Medicine at University of California Los Angeles, Medicine, Los Angeles, CA

Introduction and Aims: In the general population, contemporary randomized controlled trial (RCT) data (i.e., ACCORD) have shown that intensive glycemic control is associated with higher risk for adverse outcomes in diabetic patients with high cardiovascular (CV) risk, contrary to earlier RCTs (i.e., DCCT/EDIC and UKPDS). While observational data suggest that lower glycated hemoglobin (HbA1c) levels are associated with higher mortality in prevalent hemodialysis (HD) patients, this has not been consistently observed. Given their high underlying CV risk, we hypothesized that lower HbA1c levels are independently associated with higher death risk in a large cohort of incident diabetic HD patients.

Methods: We studied a 5-year cohort (1/2007-12/2011) of adult incident HD patients with diabetes from a large US dialysis organization with one or more HbA1c measurements during the first 91-days from start of maintenance dialysis. To determine the short-term and long-term impact of HbA1c upon outcomes, we examined the association between time-dependent HbA1c and baseline HbA1c with mortality risk, respectively. Hazard ratios were estimated using baseline and time-dependent Cox models (unadjusted, case-mix adjusted, and case-mix+laboratory adjusted).

Results: Among 63,607 patients meeting eligibility criteria, the mean±SD HbA1c level was 6.5±1.3%, and 37% of patients had HbA1c levels <6%. In time-dependent analyses assessing the short-term impact of HbA1c upon outcomes, we found a graded inverse association between HbA1c levels less than 7% and higher death risk: adjusted HRs (aHRs) (95%CI) 1.07 (1.02-1.12), 1.16 (1.10-1.21), and 1.61 (1.52-1.71) for HbA1c 6–<7, 5–<6, and <5%, respectively. In baseline analyses assessing the long-term impact of HbA1c, values <7% were associated with lower death risk in the case-mix+laboratory analyses: aHRs (95%CI) 0.95 (0.91-0.99), 0.91 (0.88-0.95), and 0.92 (0.86-0.98) for HbA1c 6–<7, 5–<6, and <5%, respectively (Figure 1B).

Conclusions: Lower time-dependent HbA1c levels (<7%) were associated with higher mortality, suggesting that tighter glycemic control carries short-term risk in incident HD patients with diabetes. However, baseline HbA1c levels <7% were associated with lower mortality, suggesting that tighter glycemic control may have long-term benefits. Further studies are needed to confirm findings, and to explore pharmacotherapeutic strategies that optimize survival in diabetic HD patients.

© The Author 2015. Published by Oxford University Press on behalf of ERA-EDTA. All rights reserved.

remained significant for HbA1c levels <5% (Figure 1A). However, in baseline analyses assessing the long-term risk of HbA1c, values <7% were associated with lower death risk in the case-mix+laboratory analyses: aHRs (95%CI) 0.95 (0.91-0.99), 0.91 (0.88-0.95), and 0.92 (0.86-0.98) for HbA1c 6–<7, 5–<6, and <5%, respectively (Figure 1B).