Title
MAGNETIC HYPERFINE FIELD, NUCLEAR g-FACTOR, AND SPIN-LATTICE RELAXATION FOR 125sb IN IRON FROM NUCLEAR ORIENTATION-NMR

Permalink
https://escholarship.org/uc/item/8sh7492b

Authors
Barclay, J.A.
Brewer, W.D.
Matthias, E.
et al.

Publication Date
1967-08-01
MAGNETIC HYPERFINE FIELD, NUCLEAR g-FACTOR, AND SPIN-LATTICE RELAXATION FOR 125Sb IN IRON FROM NUCLEAR ORIENTATION-NMR

J. A. Barclay, W. D. Brewer, E. Matthias, and D. A. Shirley

August 1967

TWO-WEEK LOAN COPY
This is a Library Circulating Copy which may be borrowed for two weeks. For a personal retention copy, call Tech. Info. Division, Ext. 5545

Berkeley, California
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
MAGNETIC HYPERFINE FIELD, NUCLEAR g-FACTOR, AND SPIN-LATTICE RELAXATION FOR 125Sb IN IRON FROM NUCLEAR ORIENTATION-NMR

J. A. Barclay, W. D. Brewer, E. Matthias, and D. A. Shirley

August 1967
It has recently been demonstrated1,2 that nuclear magnetic resonance (NMR) experiments with radioactive nuclei are feasible if the non-isotropic angular distribution emitted from nuclei in an oriented state is used to detect the resonance. The only measurements so far, however, where performed with 60Co 1,2 and 54Mn 2 - classical cases in nuclear orientation work - and were primarily designed to give experimental confirmation of the method and to point out its tremendous advantages over conventional techniques. As a continuation of these earlier measurements we report here NMR experiments on 2.7-\gamma 125Sb.

In recent years 125Sb has been the subject of several nuclear polarization experiments. The purpose was in all cases to determine the magnetic moment of 125Sb using the values of the internal fields at Sb nuclei in ferromagnetic hosts obtained by other methods. Hess et al3 reported a nuclear moment of (3.55±0.3) nm. assuming an internal field of 200 kG for 125Sb in Fe. However, these authors used NaI(Tl) detectors and were observing a superposition of several γ-rays rather than a single transition. To avoid this difficulty Stone et al4 polarized 125Sb in Fe and observed the anisotropy of the 462 keV γ-rays only, well resolved with Ge(Li) detectors. Their result, (2.72±0.15) nm., agreed well with expected
systematics. These measurements have been continued by the Oxford group and the latest result is reported to be *(2.55±0.10)* nm.

The method of nuclear orientation (NO)-NMR offers a considerably higher degree of accuracy. As pointed out earlier, this accuracy allows one to observe the shift of the resonance as a function of the external polarizing field, *H₀*. Provided that the resonance is observed in domains this functional dependence will be linear, the slope giving the *g*-factor directly and the *H₀*=0 intercept yielding the hyperfine field times the *g*-factor.

In addition, NO-NMR can be employed in a very elegant manner to determine the nuclear spin-lattice relaxation time, *Tₗ*. If *Tₗ* is the lattice temperature and *Tₛ* the nuclear spin temperature, thermal equilibrium, *Tₗ=* *Tₛ*, leads to ordinary static nuclear orientation when *Tₗ* is sufficiently small.

The angular dependence of γ-rays emitted from oriented nuclei can be described by the equation

\[W(0,Tₛ) = \sum_{k \text{ even}} B_k(Tₛ) U_k F_k P_k(\cos θ), \]

where *U_k* and *F_k* are coefficients characteristic of the nuclear decay and *P_k(\cos θ)* are the even Legendre polynomials. *B_k* describes the degree of orientation and is related to the spin temperature according to the relation

\[B_k = \sqrt{2I+1} \sum_{M} (-1)^{I-M} \frac{e^{EM/kTₛ}}{kTₛ} \left(\frac{e^{EM/kTₛ}}{EM} \right)^M \sum_{M} e^{EM/kTₛ} . \]
Under the influence of an rf field at resonant frequency,
\[\nu_r = g \cdot (\vec{H}_{\text{int}} + \vec{H}_{\text{rf}},) \cdot \vec{H} \], transitions between the Zeeman levels are induced and the Boltzmann distribution is disturbed. Consequently \(T_s \) is no longer well-defined. Immediately upon changing \(\nu \) to an off-resonance value or switching off the rf-field entirely, \(T_s \) is again defined by the Boltzmann factor, but \(T_s \neq T_L \). The rate at which \(T_s \) and \(T_L \) equilibrate is approximately characterized by \(T_L \) and described by the relation:

\[
\frac{d}{dt} \left(\frac{1}{T_s} \right) = -\frac{1}{T_L} \left(\frac{1}{T_s} - \frac{1}{T_L} \right) \quad (3)
\]

The sources used in these experiments were prepared by depositing 1-2 \(\mu \)C of \(^{125}\text{Sb} \) onto iron foils and melting the samples to obtain solid solutions of less than 1 part Sb in \(10^4 \) parts Fe. The Fe-Sb alloy melts were then flattened in a rolling mill, with repeated intermediate annealing steps, to produce foils of 6000-10000 \(\AA \) thickness. After final annealing two foils of ca. 9 \(\text{mm}^2 \) size were soldered to a copper fin system using Wood's metal. The copper fins were in good thermal contact with the demagnetization salt, chromium-alum. The salt pill was demagnetized adiabatically from an initial \(H/T \) of ca. 27 kG/deg K to cool the alloy to about 0.0150 K. Accurate temperature measurements were made by observing \(W(0) \) for the 426-keV transition with a 30 cm\(^3\) Ge(Li) detector and comparing it to the anisotropy vs. \(T \) curve obtained using the polarization data from Ref. (4). In a typical run the final temperature measured in this way was 0.0140 K. For the NMR-measurements, however, a 3"x3" NaI(Tl) detector was used (distance -12 cm) to provide greater counting efficiency. We thus obtained for the combined 426-462 keV peak a net effect, \(W(0) - 1 \), of +13\%.

The FeSb alloy was polarized by a superconducting Helmholtz pair capable of producing fields up to 55 kG. \(H_\perp \) was applied perpendicular to \(H_0 \) by an rf coil of approximately Helmholtz configuration. An rf field amplitude of about 10 mG was used throughout the frequency range indicated in Fig. 1. The rf source was a Marconi TF 1066 B/6 FM signal generator. The present measurements were carried out with a 1 kHz internal frequency modulation of ±400 kHz bandwidth. With this arrangement we were able to destroy typically about 25% of the orientation leading to a net resonance effect of approximately 2% along the quantization axis.

The raw data are shown in Fig. 1 for two opposite frequency sweep directions. The sloping background represents the warm-up curve. The anisotropy of the 426-462 keV γ-ray group is positive. From these curves the line width is found to be about 2.0 MHz, representing a tremendous inhomogeneous broadening of the natural linewidth even when the broadening effect of the ±400 kHz FM bandwidth is taken into account. This inhomogeneous broadening characterizes the field distribution in a dilute FeSb alloy.

The frequency sweep in Fig. 1 was slow compared to the relaxation time \(T_1 \), leading to symmetrical resonance curves. Still, in order to eliminate any possible frequency shift in sweep direction, the two curves of Fig. 1 were added together to give the center frequency of the resonance. The added data, shown in Fig. 2, yield \(\nu_R = 132.15 \pm 0.10 \) MHz for \(H_0 = 787 \) G.

The observed resonance must be due to nuclei situated in domains, since only a small fraction of \(^{125}\text{Sb}\) nuclei are situated in walls, even in an incompletely polarized sample. Furthermore, nuclei in walls will
orient randomly since the external fields do not penetrate the walls. Such
random orientation gives rise to only a small anisotropy and could not
account for the observed effect. The unambiguous proof that, in fact, the
domain resonance is measured is the shift of the resonance with varying
external field H_0. In Fig. 3 the observed resonance frequency for various
H_0 is shown. The linear behavior is described by the relation

$$\nu_R = \frac{\mu_N}{h} g \left(H_{hf} \pm H_0 \right).$$

The slope of the line thus gives the g-factor and with the known g-factor
the $H_0=0$ intercept yields H_{hf}. It is important to notice that the sign of
the g-factor cannot be obtained (for symmetry reasons) from this type of
measurement. The sign of the hyperfine field, however, determines the sign
of the slope. From Fig. 3 it is clear that the hyperfine field of 125Sb
in Fe is positive, as measured previously by Samoilov. The data of Fig. 3
are listed in Table I. From a least-squares fit we obtain

$$g \cdot \frac{\mu_N}{h} = 0.570 \pm 0.014 \text{ (MHz kG}^{-1})$$

and

$$g \cdot \frac{\mu_N}{h} \cdot H_{int} = 131.711 \pm 0.032 \text{ (MHz)}.$$

From this the g-factor of 125Sb is found to be

$$|g| = 0.748 \pm 0.018.$$
With spin $7/2$, the magnetic moment is
\[|\mu| = 2.62 \pm 0.06 \text{ nm}, \]
in excellent agreement with the latest
value reported by Stone.\(^5\) We note that this agreement is possible only
if the spin is $7/2$, and this constitutes a spin determination for \(^{125}\text{Sb}\).
This result is a basic consequence\(^1\) of the fact that the two methods,
NMR and nuclear orientation, measure g_H and μ_H, respectively.

The internal field value is
\[H_{\text{int}} = +231 \pm 6 \text{ kG}, \]
slightly larger than the field reported by Samoilov,\(^7\) but in excellent
agreement with NMR results of Kontani and Itoh,\(^8\) who found $+230$ kG.

Finally the spin-lattice relaxation time for \(^{125}\text{Sb}\) in iron was
measured as described elsewhere,\(^2\) and a least-squares fit was made to

\[W(0) \approx A + B e^{-t/T_1}, \]

which is the first-order solution of Eqs. 1-3. We found $T_1 = 145 \pm 20$ sec
at 0.015°K, or $T_1 T = 2.2$ sec $^\circ$K. This large value indicates that neither
the orbital relaxation mechanism\(^9\) nor additional relaxation due to localized
moments\(^2\) is present. The positive hyperfine field on Sb in Fe is thought
to arise from the s band, which is consistent with this large $T_1 T$.
Footnote and References

*This work performed under the auspices of the U. S. Atomic Energy Commission.

5. N. J. Stone, private communication.

Table I. Resonance frequency for various values of the polarizing field.

<table>
<thead>
<tr>
<th>H_0 (gauss)</th>
<th>v_R (MHz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>787</td>
<td>132.15 ± 0.20</td>
</tr>
<tr>
<td>1560</td>
<td>132.60 ± 0.20</td>
</tr>
<tr>
<td>4000</td>
<td>134.05 ± 0.20</td>
</tr>
<tr>
<td>6000</td>
<td>135.05 ± 0.20</td>
</tr>
</tbody>
</table>
Figure Captions

Fig. 1. Nuclear orientation NMR for 125Sb in Fe. The data represent $W(0^\circ)$ for the combined 426-462 keV gamma group which shows a positive net anisotropy. The frequency was swept in opposite directions in the left and right part of the figure, causing the opposite slopes in the warm-up curve.

Fig. 2. Resonance for 125Sb in Fe. The data points represent the sum of the frequency scans shown in Fig. 1. The center of the resonance appears at $v_R = 132.15 \pm 0.10$ MHz.

Fig. 3. Shift of the resonance frequency with external polarizing field. The linear behavior proves that domain resonances were observed. These data determine unambiguously g, H_{hf} and the sign of H_{hf}.
125Sb in Fe
EM ± 400 KHz
$H_0 = 787$ G

Swept up
Swept down

Frequency (MHz)

Counting rate ($x10^5$)

Fig. 1
Fig. 2

^{125}Sb in Fe

$H_0 = 787$ G

$F M \pm 400$ kc

Counting rate ($x 10^5$)

Frequency (MHz)
Fig. 3

Resonance frequency (MHz)

External polarizing field (kG)

$^{125}\text{Sb in Fe}$
This report was prepared as an account of Government sponsored work. Neither the United States, nor the Commission, nor any person acting on behalf of the Commission:

A. Makes any warranty or representation, expressed or implied, with respect to the accuracy, completeness, or usefulness of the information contained in this report, or that the use of any information, apparatus, method, or process disclosed in this report may not infringe privately owned rights; or

B. Assumes any liabilities with respect to the use of, or for damages resulting from the use of any information, apparatus, method, or process disclosed in this report.

As used in the above, "person acting on behalf of the Commission" includes any employee or contractor of the Commission, or employee of such contractor, to the extent that such employee or contractor of the Commission, or employee of such contractor prepares, disseminates, or provides access to, any information pursuant to his employment or contract with the Commission, or his employment with such contractor.