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Comparative genomic analyses leverage the mechanisms of nat-
ural selection to find genes and biochemical pathways related 
to complex traits and processes. Multiple works have used 

these techniques with the genomes of long-lived mammals to shed 
light on the signalling and metabolic networks that might play a role 
in regulating age-related conditions1,2. Similar studies on unrelated 
longevous organisms might unveil novel evolutionary strategies and 
genetic determinants of ageing in different environments. In this 
regard, giant tortoises constitute one of the few groups of vertebrates 
with an exceptional longevity: in excess of 100 years according to 
some estimates.

In this manuscript, we report the genomic sequencing and 
comparative genomic analysis of two long-lived giant tortoises: 
Lonesome George—the last representative of Chelonoidis abingdo-
nii3, endemic to the island of Pinta (Galapagos Islands, Ecuador)—
and an individual of Aldabrachelys gigantea, endemic to the Aldabra 
Atoll and the only extant species of giant tortoises in the Indian 
Ocean4 (Fig. 1a). Unsupervised and supervised comparative analy-
ses of these genomic sequences add new genetic information on the 

evolution of turtles, and provide novel candidate genes that might 
underlie the extraordinary characteristics of giant tortoises, includ-
ing their gigantism and longevity.

Results and discussion
The genome of Lonesome George was sequenced using a combina-
tion of Illumina and PacBio platforms (Supplementary Section 1.1).  
The assembled genome (CheloAbing 1.0) has a genomic size 
of 2.3 gigabases and contains 10,623 scaffolds with an N50 of 
1.27 megabases (Supplementary Section 1.1 and Supplementary 
Tables 1–3). We also sequenced, with the Illumina platform, the 
closely related tortoise A. gigantea at an average read depth of 28× . 
These genomic sequences were aligned to CheloAbing 1.0.

TimeTree database estimations (http://www.timetree.org) indi-
cate that Galapagos and Aldabra giant tortoises shared a last com-
mon ancestor about 40 million years ago, while both diverged from 
the human lineage more than 300 million years ago (Supplementary 
Section 1.4). A preliminary analysis of demographic history using 
the pairwise sequentially Markovian coalescent (PSMC)5 model 
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showed that while the effective population size of C. abingdonii 
has been steadily declining for the past million years, with a slight 
uptick about 90,000 years ago, the population of Aldabra giant  
tortoises experienced substantial fluctuations over this period  
(Fig. 1b). Effective population size reconstructions for C. abingdonii 
lose statistical power at the million-year time frame, probably due to 
complete coalescence. In turn, this suggests that overall diversity in 
these giant tortoises must have been low throughout many genera-
tions. Together, these results prompt us to propose that the popula-
tions of these insular giant tortoises were vulnerable at the time of 
human discovery of the Galapagos Islands, probably elevating their 
extinction risk.

Using homology searches with known gene sets from humans 
and Pelodiscus sinensis (the Chinese soft-shell turtle), along with 
RNA sequencing (RNA-Seq) data from C. abingdonii blood and an 
A. gigantea granuloma, we automatically predicted a primary set of 
27,208 genes from the genome assembly using the MAKER2 algo-
rithm6. We then performed pairwise alignments between each of the 
primary predicted protein sequences and the UniProt databases for 
humans and P. sinensis, whose annotated sequences show relatively 
high quality when compared with data available for other turtles7. 
Using alignments spanning at least 80% of the longest protein and 
showing more than 60% identity, we constructed sets of protein fam-
ilies shared among these species. This preliminary analysis singled 
out several protein families that seem to have undergone moderate 

expansion in a common ancestor of C. abingdonii and A. gigantea. 
Almost all of these expansions were also confirmed in the genome 
of the related, long-lived tortoise Gopherus agassizii (Supplementary 
Section 1.2 and Supplementary Table 4). Most of these genes have 
been linked to exosome formation, suggesting that this process may 
have been important in tortoise evolution.

We also interrogated the predicted gene set for evidence of 
positive selection in giant tortoises. This analysis singled out 
43 genes with evidence of giant-tortoise-specific positive selec-
tion (Supplementary Section 1.2, Supplementary Table 5 and 
Supplementary Fig. 1). This list includes genes with known roles in 
the dynamics of the tubulin cytoskeleton (TUBE1 and TUBG1) and 
intracellular vesicle trafficking (VPS35). Importantly, the analysis of 
genes showing evidence of positive selection also includes AHSG 
and FGF19, whose expression levels have been linked to successful 
ageing in humans8. The role of both factors in metabolism regula-
tion9,10—another hallmark of ageing11,12—suggests that the specific 
changes observed in these proteins may have arisen to accommo-
date the challenges that longevity poses on this system. The list 
of genes with signatures of positive selection also features TDO2, 
whose inhibition has been proposed to protect against age-related 
diseases through regulation of tryptophan-mediated proteostasis13.  
In addition, we found evidence for positive selection affecting 
several genes involved in immune system modulation, such as 
MVK, IRAK1BP1 and IL1R2. Taken together, these results identify  
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Fig. 1 | Geographical and temporal distribution of giant tortoises. a, Satellite view of the Galapagos Islands (top; scale bar: 50 km) and Aldabra Atoll 
(bottom left; scale bar: 10 km), and pictures of C. abingdonii (middle) and A. gigantea (bottom right). Both pictures are from http://eol.jsc.nasa.gov.  
b, Demographic history of giant tortoises, inferred using a hidden Markov model approach as implemented in the PSMC model. The default mutation  
rate (μ) for humans of 2.5 ×  10−8 and an average generation time (g) of 25 years were used in the calculations.
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proteostasis, metabolism regulation and immune response as key 
processes during the evolution of giant tortoises via effects on lon-
gevity and resistance to infection.

Parallel to this automatic analysis, we used manually supervised 
annotation on more than 3,000 genes selected a priori for a series of 
hypothesis-driven studies on development, physiology, immunity, 
metabolism, stress response, cancer susceptibility and longevity 
(Supplementary Section 1.3 and Supplementary Fig. 2). We searched 
for truncating variants, variants affecting known motifs and variants 
whose human counterparts are related to known genetic diseases 
(Supplementary Section 1.3 and Supplementary Table 6). These 
variants were first confirmed with the RNA-Seq data. Then, more 
than 100 of the most interesting variants in terms of putative func-
tional relevance were also validated by PCR amplification followed 
by Sanger sequencing. To this end, we used a panel of genomic 
DNA samples of 11 different species of giant tortoises endemic to 
different islands from the Galapagos Archipelago (Supplementary 
Section 1, Supplementary Table 7 and Supplementary Fig. 3).

The manually supervised annotation of development-related 
genes showed the complete conservation of the Hox gene set among 
giant tortoises, with the exception of HOXC3, which seems to have 
been lost in the radiation of Archelosauria14,15 (Supplementary 
Section 2, Supplementary Table 8 and Supplementary Fig. 4). BMP 
and GDF gene families were also found to be conserved, although 
the duplication event that gave rise to GDF1 and GDF3 in mam-
mals did not occur in turtles, birds and crocodiles. In contrast, we 
found a duplication of the ParaHox gene CDX4 in giant tortoises, 
also present in other reptiles as well as avian reptiles (birds). This 
annotation also showed the duplication of WNT11 in turtles and 
chickens (but not in the lizard Anolis carolinensis), and the specific 
duplication of WNT4 in turtles. Given the roles of these duplicated 
genes and their conservation in most vertebrate species, they could 
prove to be useful candidates to study the morphological develop-
ment of turtles, particularly in relation to shell formation. Of note, 
KDSR—one of the genes possibly under positive selection in giant 
tortoises—has been linked to hyperkeratinization disorders16. Also, 
in this regard, we annotated 30 β -keratins in C. abingdonii, 26 of 
which seem to be functional. These numbers are lower than those 
previously reported for β -keratins in other turtles17. Finally, we did 
not find in C. abingdonii or A. gigantea any functional orthologues 
of genes specifically involved in tooth development (such as ENAM, 
AMEL, AMBN, DSPP, KLK4 and MMP20). This finding confirms 
a pattern in the evolutionary molecular mechanisms for tooth loss, 
which seems to have been followed consistently and independently 
across vertebrates. Taken together, these results offer multiple can-
didates to study developmental traits in tortoises (Supplementary 
Section 2 and Supplementary Figs. 5–8).

In most species, the immune function is an evolutionary driver 
that is under strong selective pressure and has important implica-
tions in ageing and disease18. The specific components and func-
tionality of immune system components in Reptilia, however, 
have not been extensively characterized beyond the major histo-
compatibility complex (MHC)19,20. Our detailed analysis of 891 
genes involved in immune function consistently found duplica-
tions affecting immunity genes in giant tortoises compared with 
mammals (Supplementary Section 3, Supplementary Table 9 and 
Supplementary Figs. 9–13). We found a genomic expansion of 
PRF1 (encoding perforin) in giant tortoises and other turtles, com-
pared with chickens (one copy), A. carolinensis (two copies) and 
most mammals (one copy). Both C. abingdonii and A. gigantea 
possess 12 copies of this gene (validated by Sanger sequencing), 
although three of them have been pseudogenized in C. abingdonii.  
In addition, we detected and validated, by Sanger sequencing, an 
expansion of the chymase locus, containing granzymes, in giant 
tortoises (Supplementary Section 3.1 and Supplementary Fig. 10). 
Both expansions are expected to affect cytotoxic T lymphocyte  

and natural killer functions, which play important roles in defence 
against both pathogens and cancer21,22. Other concurrent expan-
sions involve APOBEC1, CAMP, CHIA and NLRP genes, which 
participate in viral, microbial, fungal and parasite defence, respec-
tively. These results suggest that the innate immune system in  
turtles, and especially in giant tortoises, may play a more relevant 
role than in mammals, consistent with the less important role that 
adaptive immunity seems to play19. We found that class I and II 
MHC genes probably underwent a duplication event in a common 
ancestor between giant tortoises and painted turtles (Chrysemys 
picta bellii). We also annotated 40 class III MHC genes, thus con-
firming the conservation of this cluster in giant tortoises. The 
large number of MHC genes in giant tortoises is consistent with 
the suggestion that ancestors of archosaurs and chelonians did 
not possess a minimal essential MHC as found in the chicken 
genome20 (Supplementary Section 3.3, Supplementary Table 10 and 
Supplementary Figs. 14–16).

Giant tortoises are at the upper end of the size scale for extant 
Chelonii, and have often been used as an example of gigantism23. We 
analysed a series of genes involved in size regulation in vertebrates, 
most notably dogs (Supplementary Section 2, Supplementary 
Table 8 and Supplementary Fig. 6). Our results on genes related to 
growth hormone, the insulin-like growth factor (IGF) system and 
stanniocalcins suggest that these genes are well conserved; there-
fore, additional size determinants may exist in giant tortoises. 
As a complex phenotype, gigantism in tortoises is expected to be 
caused by interactions between different genetic and environmen-
tal factors. An interesting finding in this regard is the presence of 
several gene variants in tortoises (including G. agassizii) probably 
affecting the activities of glucose metabolism genes, such as MIF 
(p.N111C; expected to yield a locked trimer) and GSK3A (p.R272Q 
in the activation loop). Given the roles of these positions in the 
mammalian orthologues of these genes, tortoise-specific changes 
could point to differences in the regulation of glucose intake and 
tolerance (Supplementary Section 4, Supplementary Table 11, and 
Supplementary Figs. 17 and 18). We also found expansions and 
inactivations in other genes involved in energy metabolism. Thus, 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH)—a glyco-
lytic enzyme with a key role in energy production, as well as in DNA 
repair and apoptosis24—is expanded in giant tortoises. Conversely, 
the NLN gene encoding neurolysin is pseudogenized in tortoises. 
The loss of this gene in mice has been related to improved glucose 
uptake and insulin sensitivity25. Taken together, these results led us 
to hypothesize that genomic variants affecting glucose metabolism 
may have been a factor in the development of tortoises.

The analysis of genes related to the stress response has also high-
lighted several putative variants in giant tortoises affecting globins 
and DNA repair factors (Supplementary Section 5, Supplementary 
Tables 12 and 13, and Supplementary Figs. 19–22, 32 and 33). We 
found that, despite living terrestrially, giant tortoises conserve the 
hypoxia-related globin GbX26. Together with coelacanths, turtles, 
including giant tortoises, are the only organisms known to possess 
all eight different types of globins27. Consistent with this, we found 
in both giant tortoise genomes a variant in the transcription fac-
tor TP53 (p.S106E) that has been linked to hypoxia resistance in 
some mammals and fishes28. The presence of the same residue in 
Testudines strongly suggests a process of convergent evolution in 
the adaptation to hypoxia, probably driven by an ancestral aquatic 
environment, which left this footprint in the genomes of terrestrial 
giant tortoises.

An important trait of large, long-lived vertebrates is their need 
for tighter cancer protection mechanisms, as illustrated by Peto’s 
paradox29,30. In turn, this need for additional protection illustrates 
the deep relationship and interdependence between cancer and 
longevity (Fig. 2). Notably, tumours are believed to be very rare in 
turtles31. Therefore, we analysed more than 400 genes classified in 
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a well-established census of cancer genes as oncogenes and tumour 
suppressors32. Although most presented a highly conserved amino 
acid sequence when compared with the sequences of other organ-
isms, we uncovered alterations in several tumourigenesis-related 
genes (Fig. 2a, Supplementary Section 6, Supplementary Table 14 
and Supplementary Figs. 23–29). First, we found that several puta-
tive tumour suppressors are expanded in turtles compared with 
other vertebrates, including duplications in SMAD4, NF2, PML, 
PTPN11 and P2RY8. In addition, the aforementioned expansion 
of PRF1, together with the tortoise-specific duplication of PRDM1, 
suggests that immunosurveillance may be enhanced in turtles. 
Likewise, we found giant-tortoise-specific duplications affecting 
two putative proto-oncogenes—MYCN and SET. Notably, the SET 
complex mediates oxidative stress responses induced by mitochon-
drial damage through the action of PRF1 and GZMA in cytotoxic 
T lymphocyte- and natural killer-mediated cytotoxicity33. Taken 
together, these results suggest that multiple gene copy-number 
alterations may have influenced the mechanisms of spontaneous 
tumour growth. Nevertheless, further studies are needed to evalu-
ate the genomic determinants of putative giant-tortoise-specific 
cancer mechanisms.

Finally, we selected, for manually supervised annotation, 
a set of 500 genes that may be involved in ageing modulation 
(Supplementary Section 7 and Supplementary Table 15). The 
extreme longevity of giant tortoises is expected to involve multiple 
genes affecting different hallmarks of ageing11. We found several 
alterations in the genomes of giant tortoises that may play a direct 

role in six of them, and impinge on other ageing hallmarks and 
processes, such as cancer progression34 (Fig. 2b). First, we identi-
fied changes in three candidate factors (NEIL1, RMI2 and XRCC6) 
related to the maintenance of genome integrity, a primary hallmark 
of ageing11 (Fig. 3a). Thus, we found and validated a duplication 
affecting NEIL1, a key protein involved in the base-excision repair 
process whose expression has been linked to extended lifespans in 
several species35. Likewise, RMI2 is duplicated in tortoises, sug-
gesting an enhanced ability to resolve homologous recombination 
intermediates to limit DNA crossover formation in cells36. In a pre-
liminary exploration of this hypothesis, we overexpressed NEIL1 
and RMI2 in HEK-293T cells and exposed the infected cells to 
a sublethal dosage of H2O2 or ultraviolet light, monitoring DNA 
damage by western blot analysis at 24 and 48 h after treatment. As 
shown in Supplementary Figs. 22, 32 and 33, the expression of both 
genes results in reduced levels of phosphorylated histone H2AX 
and cleaved poly (ADP-ribose) polymerase (PARP), suggesting 
reduced levels of DNA damage37. In turn, this result is consistent 
with the hypothesis that NEIL1 and RMI2 levels may regulate the 
strength of DNA repair mechanisms. Also in relation to DNA 
repair mechanisms, we identified and validated a variant affecting 
XRCC6—encoding a helicase involved in non-homologous end 
joining of double-strand DNA breaks—which may affect a known 
sumoylation site (p.K556R). This lysine is conserved in diverse 
vertebrates but, notably, is changed in giant tortoises, and also in 
the naked mole rat (p.K556N), the longest-lived rodent, which 
suggests a putative process of convergent evolution (Fig. 3b). Since 
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sumoylation is induced following DNA damage and plays a key 
role in DNA repair response and multiple regulatory processes38, 
this variant may reflect selective pressures acting on the regulation 
of the repair of double-strand DNA breaks in long-lived organisms 
(Supplementary Section 5.5).

Regarding telomere attrition—another primary hallmark of  
ageing11—we uncovered in giant tortoises one variant in DCLRE1B 
(p.R498C) potentially affecting its binding interface with telo-
meric repeat binding factor 2 (TERF2) (Fig. 3b and Supplementary 
Section 7.2). This change, together with the aforementioned vari-
ants affecting DNA repair genes that may also impinge on telomere 
dynamics39–41, highlights the relevance of telomere maintenance 
as a regulatory mechanism of longevity in tortoises. Moreover, we 
found changes potentially affecting proteostasis (Fig. 2a). We inde-
pendently found specific expansions of the elongation factor gene 
EEF1A1 in C. abingdonii, A. gigantea and G. agassizii, as described 
with the automatic annotation. Importantly, overexpression of 
EEF1A1 homologues in Drosophila melanogaster has been linked to 
an increased lifespan in this species42.

Over time, nutrient sensing deregulation—another hallmark of 
ageing—can result from alterations in metabolic control mecha-
nisms and signalling pathways12. The aforementioned variant affect-
ing the activation loop of GSK3A (Supplementary Section 4.1),  
which is present in C. abingdonii and all tested tortoises from the 
Galapagos Islands and Aldabra Atoll, as well as their continental 
outgroups, G. agassizii and C. picta bellii, may be involved in the 
maintenance of glucose homoeostasis. Interestingly, the inhibi-
tion of GSK3 can extend lifespan in D. melanogaster43. Likewise, 
the identified alterations in other giant tortoise genes implicated 
in glucose metabolism, such as the aforementioned inactivation of 

NLN, may provide interesting candidates to study nutrient sensing 
in these long-lived species (Supplementary Section 7.4).

Regarding the mitochondrial function, we found two variants  
(p.Q366M and p.M487T) potentially affecting the function of 
ALDH2, a mitochondrial aldehyde dehydrogenase involved in 
alcohol metabolism and lipid peroxidation, among other detoxifi-
cation processes44. Notably, the p.Q366M variant, which may alter 
the NAD-binding site of ALDH2, is exclusively found in Galapagos 
giant tortoises, but not in their continental close relative Chelonoidis 
chilensis, nor in the more distantly related Aldabra or Agassiz’s tor-
toises. Thus, these changes could also alter the detoxification pro-
cess and contribute to pro-longevity mechanisms. Together with the 
above described specific alterations in other genes of giant tortoises, 
such as NLN and GAPDH, which encode enzymes associated with 
mitochondrial functions45,46, these variants may also impinge on 
mitochondrial dysfunction, an antagonistic hallmark of ageing11 
(Supplementary Section 7.5).

We have also found evidence in tortoises of some variants related 
to altered intercellular communication (Supplementary Section 7.6  
and Supplementary Fig. 30), an integrative hallmark of ageing11. 
Thus, we have detected exclusively in C. abingdonii a prema-
ture stop codon affecting ITGA1 (p.R990*), an essential integrin 
involved in cell–matrix and cell–cell interactions. In addition, the 
aforementioned variant affecting MIF is also expected to cause 
the formation of inactivating interchain disulfide bonds, inhibit-
ing intracellular signalling cascades47. Moreover, MIF deficiency 
reduces chronic inflammation in white adipose tissue and expands 
lifespan, especially in response to caloric restriction48,49. Finally, 
we have annotated a specific variant in IGF1R that is expected to 
affect the interaction between this receptor and the IGF1/2 growth 
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factors50. Notably, a homology model of this region in IGF1R in  
C. abingdonii suggests that position 724 is located at the surface of 
the protein, and the presence of an aspartic acid residue changes the 
local electrostatic field (Fig. 4a). The extended lifespan in different 
species correlates with IGF signalling decrease51,52, which suggests 
that this unique change in IGF1R may provide an attractive target to 
study the cellular mechanisms underlying the exceptional lifespan 
of these animals. To explore the functional consequences of differ-
ential IGF1 signalling caused by the p.N724D variant found in the 
IGF1 receptor (IGF1R), we infected HEK-293T cells with pCDH, 
pCDH-IGF1RWT and pCDH-IGF1RN724D plasmids. Cells express-
ing the mutant receptor showed an attenuation of IGF1 signalling, 
compared with those expressing the wild-type protein, measured 
as a significant reduction in the phosphorylation levels of IGF1R 
at 5 min (95% confidence interval of difference: 0.1119–1.5330, 
t =  2.454, P =  0.026) and 10 min (95% confidence interval of dif-
ference: 0.1991–1.6200, t =  2.714, P =  0.0153) after IGF1 treatment 
(Fig. 4b, Supplementary Section 7.6.2 and Supplementary Fig. 31).  
According to a two-way analysis of variance, the exogenous 
IGF1R form accounted for 16.07% of total variation (F1,4 =  20.91, 
P =  0.0102), while time accounted for 44.23% of total variation 
(F3,12 =  6.57, P =  0.0071). Interestingly, we also found in tortoises 
a short deletion in the coding region of IGF2R that results in the  
loss of two amino acids. The fact that IGF2R variants have been 

associated with human longevity53 opens the possibility that the 
variant found in tortoises could also contribute to increasing the 
lifespan of these long-lived animals.

In summary, in this work, we report the preliminary charac-
terization of giant tortoise genomes. We complemented the auto-
matic annotation of genomes from two giant tortoise species with 
a hypothesis-driven strategy using manually supervised annotation 
of a large set of genes. The analysis of the resulting sequences offers 
candidate genes and pathways that may underlie the extraordinary 
characteristics of these iconic species, including their development, 
gigantism and longevity. A better understanding of the processes 
that we have studied may help to further elucidate the biology of 
these species and therefore aid the ongoing efforts to conserve these 
dwindling lineages. Lonesome George—the last representative of 
C. abingdonii, and a renowned emblem of the plight of endangered 
species—left a legacy including a story written in his genome whose 
unveiling has just started.

Methods
Genome sequencing and assembly. We obtained DNA from a blood sample from 
Lonesome George—the last member of C. abingdonii. This DNA was sequenced, 
using the Illumina HiSeq 2000 platform, from a 180-base pair-insert paired-end 
library, a 5-kilobase (kb)-insert mate-pair library and a 20-kb-insert mate-pair 
library. These libraries were assembled with the AllPaths algorithm54 for a draft 
genome containing 64,657 contigs with an N50 of 74 kb. Then, we scaffolded the 
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contigs with SSPACE version 3.0 (ref. 55) using the long-insert mate-pair libraries. 
Finally, we filled the gaps with PBJelly version 15.8.24 (ref. 56) using the reads 
obtained from 18 BioPac cells. This step yielded 10,623 scaffolds with an N50 
of 1.27 megabases, for a final assembly 2.3 gigabases long. Then, we soft-masked 
repeated regions using RepeatMasker (http://www.repeatmasker.org) with a 
database containing chordate repeated elements (included in the software) as 
a reference. Additionally, we assessed the completeness of assembly by their 
estimated gene content, using Benchmarking Universal Single-Copy Orthologs 
(BUSCO version 3.0.0)57, which tested the status of a set of 2,586 vertebrata  
genes from the comprehensive catalogue of orthologues58. We also performed 
RNA-Seq from C. abingdonii blood and A. gigantea granuloma, and aligned  
the resulting reads to the assembled genome using TopHat59 (version 2.0.14). 
Finally, we obtained whole-genome data from A. gigantea with one Illumina  
lane of a 180-base pair paired-end library. The resulting reads were aligned to the  
C. abingdonii genome with BWA60 (version 0.7.5a). Raw reads from C. abingdonii 
were also aligned to the genome for manual curation of the results. All work on 
field samples was conducted at Yale University under Institutional Animal Care and 
Use Committee permit number 2016-10825, Galapagos Park Permit PC-75-16 and 
Convention on International Trade in Endangered Species number 15US209142/9.

Genome annotation. Using the genome assembly of C. abingdonii and the  
RNA-Seq reads from C. abingdonii and A. gigantea, we performed de novo 
annotation with MAKER2. The algorithm was also fed both human and P. sinensis 
reference sequences, and performed two runs in a Microsoft Azure virtual machine 
(Supplementary Table 16). In parallel, we used selected genes from the human 
protein database in Ensembl as a reference to manually predict the corresponding 
homologues in the genome of C. abingdonii using the BATI algorithm (Blast, 
Annotate, Tune, Iterate)61. Briefly, this algorithm allows a user to annotate the 
position and intron/exon boundaries of genes in novel genomes from tblastn 
results. In addition, tblastn results are integrated to search for novel homologues  
in the explored genome. Sequencing data have been deposited at the Sequence 
Read Archive (https://www.ncbi.nlm.nih.gov/sra), with comments showing  
which regions were filled with the BioPac reads and therefore may contain  
frequent errors.

Effective population size changes and diversity. We reconstructed changes in 
the effective population over time using the PSMC model5 in the following way: 
the reads of both individuals were aligned to the reference assembly using bwa 
mem (version 0.7.15-r1140). We then constructed pseudodiploid sequences using 
variant calls generated with SAMtools and BCFtools62, requiring minimal base 
and mapping qualities of 30. We additionally masked out any region with coverage 
below 36 or above 216 for the C. abingdonii sample, and below 8 or above 52 for 
the A. gigantea sample, as a function of their respective genome-wide average 
coverage. The resulting sequences were used to run 100 PSMC bootstrap replicates 
per individual, using the following parameters: -N25 -t15 -r5 -p ‘4 +  25*2 +  4 +  6’. 
The result was averaged and scaled to real time assuming a mutation rate (μ) of 
2.5 ×  10−8 and a generation time (g) of 25 years.

Expansion of gene families. To detect expansion of gene families, we aligned 
pairwise all the predicted proteins from the automatic annotation to the UniProt63 
database of human proteins and the UniProt database of P. sinensis proteins 
using BLAST64 (version 2.6.011). Then, we used in-house Perl scripts to group 
these proteins in one-to-one, one-to-many and many-to-many orthologous 
relationships. Only alignments spanning at least 80% of the longer protein, and 
with more than 60% identities, were considered. Finally, we interrogated the 
resulting database to find families with C. abingdonii-specific expansions and 
curated the results manually. This way, we constructed extended orthology sets 
that may contain more than one sequence per species. These sets recapitulate most 
of the known families, although some of these families appear split according to 
sequence similarity.

Phylogenetic, evolutionary and structural analyses. Next, we assessed evidence 
for signatures of positive selection affecting the predicted set of genes. For this 
purpose, we used databases from the human (Homo sapiens), mouse (Mus 
musculus), dog (Canis lupus familiaris), gecko (Gekko japonicus), green anole 
lizard (A. carolinensis), python snake (Python bivittatus), common garter snake 
(Thamnophis sirtalis), Habu viper (Trimeresurus mucrosquamatus), budgerigar 
(Melopsittacus undulatus), zebra finch (Taeniopygia guttata), flycatcher (Ficedula 
albicollis), duck (Anas platyrhynchos), turkey (Meleagris gallopavo), chicken 
(Gallus gallus), Chinese soft-shell turtle (P. sinensis), green sea turtle (Chelonia 
mydas) and painted turtle (C. picta bellii) to generate pairwise alignments of all 
available genes one by one. To this end, we used BLAST and simple in-house 
Perl scripts (https://github.com/vqf/LG), which allowed us to group the genes 
by identity (focusing only on those presenting one-to-one orthology). We then 
discarded those groups in which there were more than three species missing 
(always excluding those in which C. abingdonii was missing). This way, we 
obtained 1,592 groups of sequences (similar to other studies). We then aligned 
them with PRANK version 150803 using the codon model and analysed the 
alignments with codeml from the PAML package65. To search for genes with 

signatures of positive selection affecting genes specific to C. abingdonii, we 
executed two different branch models—M0, with a single ω0 value (where ω 
represents the ratio of non-synonymous to synonymous substitutions) for all  
the branches (nested), and M2a, with a foreground ω2 value exclusive for  
C. abingdonii and a background ω1 value for all the other branches. As a control, 
the second model was repeated using P. sinensis as the foreground branch.  
Genes with a high ω2 value (> 1) and a low ω1 value (ω1 <  0.2 and ω1 ~ ω0) in  
C. abingdonii, but not in P. sinensis (Supplementary Section 1.2 and 
Supplementary Tables 5 and 17), were then considered to be under positive 
selection. After this, we used the M8 model to assess the individual importance 
of every site in these positively selected genes, obtaining a list of sites of special 
interest in this evolutionary effect. These results were compared with those of 
the Aldabra tortoise through alignments, to evaluate which of these important 
residues were altered (Supplementary Table 18). Homology models were 
performed with SWISS-MODEL66 from the closest template available. The results 
were inspected and rendered with DeepView version 4.0.1. Electric potentials 
were calculated with DeepView using the Poisson–Boltzmann computation 
method. Figures were generated with PovRay (http://povray.org).

Functional analyses . HEK-293T cells were infected with pCDH, pCDH-NEIL1, 
pCDH-RMI2 or pCDH-NEIL1 +  pCDH-RMI2 in the case of repair studies, and 
pCDH, pCDH-IGF1RWT or pCDH-IGF1RN724D in the case of IGF1R analyses. 
For the repair studies, we isolated clones of infected HEK-293T cells with proper 
expression levels of NEIL1 and RMI2. Cells were exposed to ultraviolet light 
(20 J m−2) or H2O2 (500 μ M) 24 and 48 h before being lysed in NP-40 lysis buffer 
containing 50 mM Tris-HCl pH 7.4, 150 mM NaCl, 10 mM EDTA pH 8 and 1% 
NP-40, and supplemented with protease inhibitor cocktail (cOmplete, EDTA-free; 
Roche), as well as phosphatase inhibitors (PhosSTOP; Roche/NaF; Merck). For 
the IGF1R variant analyses, cells were serum starved for 14 h, then treated with 
100 nM IGF1 for 5, 10 and 20 min before lysis in the same buffer. Equal amounts 
of protein were resolved by 8 to 13% sodium dodecyl sulfate polyacrylamide 
gel electrophoresis and transferred to PVDF membranes (GE Healthcare Life 
Sciences). Membranes were blocked for 1 h at room temperature with TBS-T  
(0.1% Tween 20) containing 5% bovine serum albumin. Immunoblotting was 
performed with primary antibodies diluted 1:500 to 1:1000 in TBS-T and 1% bovine 
serum albumin and incubated overnight at 4 °C. The primary antibodies used  
were: anti-phospho-Histone H2AX (Ser139) (EMD Millipore; 05-636, clone 
JBW301, lot 2854120), anti-PARP (Cell Signaling Technology; 9542S, rabbit 
polyclonal, lot 15), anti-FLAG (Cell Signaling Technology; 2368S, rabbit polyclonal, 
lot 12), anti-IGF1R (Abcam; ab182408, clone EPR19322, lot GR312678-8), anti-
IGF1R (p Tyr1161) (Novus Biologicals; NB100-92555, rabbit polyclonal, lot CJ36131), 
anti-β -actin (Sigma–Aldrich, A5441, clone AC-15, lot 014M4759) and anti-α -tubulin 
(Sigma–Aldrich, T6074, clone B-5-1-2, lot 075M4823V). After washing with TBS-T,  
membranes were incubated with secondary antibodies conjugated with IRDye  
680RD (LI-COR Biosciences; 926-68071, polyclonal goat-anti-rabbit, lot  
C41217-03; and 926-32220, polyclonal goat-anti-mouse, lot C00727-03) or  
IRDye 800CW (LI-COR Biosciences; 926-32211, polyclonal goat-anti-rabbit, lot 
C60113-05; and 926-32210, polyclonal goat-anti-mouse, lot C50316-03) for 1 h at 
room temperature. Protein bands were scanned on an Odyssey infrared scanner 
(LI-COR Biosciences). Band intensities were quantified by ImageJ and used to 
calculate the phospho-IGF1R/IGF1R ratio in the case of the IGF1R assay. In each 
replicate, cells were infected independently. For the samples from ultraviolet 
treatment, Flag (RMI2) was detected on the same samples used for the remaining 
western blots shown in this panel, run in parallel on an identical blot. Similarly,  
for the samples from H2O2 treatment, the western blots shown were carried out 
with the same samples run in parallel in three identical blots (one for PARP  
and actin, a second for Flag (NEIL1 and RMI2) and a third for pH2AX). Each 
sample contained one replicate. Statistical comparisons consisted of two-way 
analysis of variance performed using GraphPad Prism 7.0 software. Differences 
were considered statistically significant when P <  0.05. Effect sizes are expressed  
as group sum-of-squares divided by the total sum-of-squares (R2). At each time 
point, both groups were also compared with Fisher’s least significant difference  
test (uncorrected; α =  0.05).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Code availability. The scripts for manual annotation (BATI) can be accessed at 
http://degradome.uniovi.es/downloads.html. Custom scripts used to produce 
multiple alignments for positive selection and copy-number studies are freely 
available at https://github.com/vqf/LG.

Data availability
Data supporting the findings of this study are available within the paper and its 
Supplementary Information. Sequencing data have been deposited at the Sequence 
Read Archive (https://www.ncbi.nlm.nih.gov/sra) with BioProject accession 
number PRJNA416050. The accession number of the assembled genomic sequence 
is PKMU00000000. MAKER2-predicted protein sequences can be downloaded 
from https://github.com/vqf/LG.
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Antibodies used The primary antibodies used were: anti-phospho-Histone H2AX (Ser139) (EMD Millipore, 05-636, clone JBW301, lot 2854120), 
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WB. This purified mAb is highly specific for phospho-Histone H2A.X (Ser139) also known as H2AXS139p. 
 
-PARP Antibody detects endogenous levels of full length PARP1 (116 kDa), as well as the large fragment (89 kDa) of PARP1 
resulting from caspase cleavage. The antibody does not cross-react with related proteins or other PARP isoforms. 
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-Anti-α-tubulin western blot validation: 0.25-0.5 μg/mL using total cell extract of human foreskin fibroblast cell line (FS11). 
Species reactivity: human, Chlamydomonas, African green monkey, chicken, kangaroo rat, bovine, mouse, rat, sea urchin.

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) ATCC

Authentication PCR-based microsatellite characterization was performed at the University of Oviedo.

Mycoplasma contamination Cell lines were not tested for mycoplasma contamination

Commonly misidentified lines
(See ICLAC register)

HEK-293T cells are widely used for infection experiments. The identity of these cells was assessed by PCR-based 
microsatellite characterization

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals The study did not involve laboratory animals.

Wild animals The study did not involve observations but did involve temporary captures of wild animals to extract blood samples.

Field-collected samples All work on field samples was conducted at Yale University under IACUC permit number 2016-10825, Galapagos Park Permit 
PC-75-16 and CITES number 15US209142/9
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