Stereotactic Ablative Radiation Therapy Induces Systemic Differences in Peripheral Blood Immunophenotype Dependent on Irradiated Site

https://escholarship.org/uc/item/8tk968p9

International Journal of Radiation Oncology Biology Physics, 101(5)

0360-3016

McGee, HM
Daly, ME
Azghadi, S
et al.

2018-08-01

10.1016/j.ijrobp.2018.04.038

Peer reviewed
Stereotactic Ablative Radiation Therapy Induces Systemic Differences in Peripheral Blood Immunophenotype Dependent on Irradiated Site

Heather M. McGee, MD, PhD, Megan E. Daly, MD, Sohelia Azghadi, MD, Susan L. Stewart, PhD, Leslie Oesterich, MD, Jeffrey Schlom, PhD, Renee Donahue, PhD, Jonathan D. Schoenfeld, MD, Qian Chen, BS, Shyam Rao, MD, PhD, Ruben C. Fragoso, MD, PhD, Richard K. Valicenti, MD, Robert J. Canter, MD, Emmanuel M. Maverakis, PhD, William J. Murphy, PhD, Renee Donahue, PhD, Jonathan D. Schoenfeld, MD, Qian Chen, BS, Shyam Rao, MD, PhD, Ruben C. Fragoso, MD, PhD, Richard K. Valicenti, MD, Robert J. Canter, MD, Emmanuel M. Maverakis, PhD, William J. Murphy, PhD

*Department of Radiation Oncology and †Division of Medical Oncology, Department of Medicine, University of California, Davis, Comprehensive Cancer Center, Davis, California; ‡Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York; †Department of Public Health Sciences, **Laboratory of Cancer Immunology, and ††Department of Dermatology, University of California, Davis, School of Medicine, Davis, California; ‡Laboratory of Cancer Immunology and Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland; †Department of Radiation Oncology, Dana-Farber/Brigham and Women’s Cancer Center, Boston, Massachusetts; and †Department of Radiation Oncology, Harvard Medical School, Boston, Massachusetts

Received Nov 28, 2017, and in revised form Apr 7, 2018. Accepted for publication Apr 16, 2018.

Summary

We performed a prospective study to assess the systemic immune response 1 to

Purpose: Despite the strong interest in combining stereotactic ablative radiation therapy (SAR) with immunotherapy, limited data characterizing the systemic immune response after SAR are available. We hypothesized that the systemic immune response to SAR would differ by irradiated site owing to inherent differences in the microenvironment of various organs.

Conflict of interest: H. McGee reports participation on the advisory board for AstraZeneca. M. Daly reports research funding from EMD Sereno. J. Schoenfeld reports research/clinical trial funding from Merck, Bristol Myers-Squibb, and Regeneron and participation on the advisory board for AstraZenea, Bristol Myers-Squibb, Debiopharm, and Nanobody. A. Monjazeb reports research/clinical trial funding from Transgene, Incyte, Genentech, Merck, and EMD Serono and participation on the advisory board for AstraZeneca.

Supplementary material for this article can be found at www.redjournal.org.

Acknowledgments—We thank Jonathan Van Dyke and Laura Paige Olney for technical assistance and the University of California Davis Laboratory for Cancer Immunology for technical support.
Introduction

Stereotactic ablative radiation therapy (SAR), a technique for delivering ablative doses of conformal radiation therapy (RT) over 1 to 5 fractions, has emerged as a standard treatment option for a variety of solid tumors, both for definitive therapy of localized disease and for local control of metastatic sites (1-7). Recently, considerable interest has ensued for combining RT with immunotherapy to use radiation as an in situ tumor vaccine that enhances the efficacy of immunotherapy (8-12). Although many registered, actively accruing clinical trials have incorporated radiation with immune checkpoint inhibitors (13, 14), it is unclear how to optimize the RT in these trials, because data investigating the immune response to SAR alone are insufficient.

The immunomodulatory effects of RT, in particular, the local immune effects on the tumor microenvironment, have been well-established in preclinical models (8, 15), and include induction of immunogenic cell death (16, 17), release of antigens for T-cell priming (18), improved T-cell homing to tumor sites (19), a shift in the polarization of tumor-associated macrophages (19), and destruction of immunosuppressive stromal cells in the tumor microenvironment (20), among others. The findings from more recent studies have suggested that hypofractionated radiation schedules produce very different biologic effects than traditional conventionally fractionated radiation schedules (21-24). Clinical reports of distant or “abscopal” responses in patients have described systemic immunophenotype changes; however, all these reports were in the setting of combined RT and immunotherapy (25-27). Several small studies have investigated the immune response to SAR for early-stage lung cancer (28, 29). More recently, additional studies have investigated components of the immune response after SAR for hepatocellular carcinoma (30), pancreatic cancer (31), and breast cancer (32). However, to the best of our knowledge, no studies have directly compared changes in systemic immunophenotype and cytokine signatures after SAR without systemic therapy to different irradiated sites. Investigating differences in systemic immunophenotype after SAR according to the irradiated site could be critical for the rational design of future combined SAR plus immunotherapy trials.

Well-defined, inherent differences exist in the immune microenvironment of different organs, from the relatively immunoprivileged brain protected by the blood—brain barrier and the immunoprivileged bone marrow to the immunotolerant lung and liver, which are constantly exposed to antigens (33-35). Because natural killer (NK) cells constitute a large portion of the immunotolerant organs such as the lung and liver, we hypothesized that radiation to these sites might cause unique changes in specific NK cell populations (33, 36). We hypothesized that the systemic immune response to SAR would differ by irradiated site and sought to gain a comprehensive understanding of these differences to refine future clinical trials combining...
RT and immunotherapy. We prospectively collected blood samples before SAR and 1 to 2 weeks after SAR from patients undergoing SAR to the lung, liver, bone, or brain to measure the changes in markers of the systemic immune response, such as cytokine/chemokine signatures and immunophenotype changes in peripheral blood mononucleated cells (PBMCs).

Methods and Materials

Patients

Patients were recruited as part of an institutional review board-approved blood collection protocol at University of California, Davis, designed to assess the systemic immune response after SAR. Patients seen in the radiation oncology clinic in consultation for SAR were recruited by the study team investigators. Eligible patients were scheduled to undergo 1 to 5 fractions of stereotactic body RT (SBRT) or 1 to 10 fractions of hypofractionated conformal RT for cancer of any histologic type and site (including the lung, liver, adrenal, brain, or bone, and other organs) per standard-of-care treatment. Patients aged <18 years and those unable to provide informed consent were ineligible. No specific eligibility criteria regarding concurrent or previous systemic therapy were used. Blood samples were obtained by venipuncture before RT (at consultation, treatment simulation, or the first day of treatment before delivery of the first fraction) and 7 to 14 days after RT. For treatment simulation, or the first day of treatment before previous systemic therapy were used. Blood samples were collected in 10- mL vacutainer blood collection tubes with and without delivery of the first fraction) and 7 to 14 days after RT. For treatment simulation, or the first day of treatment before previous systemic therapy were used. Blood samples were collected in 10- mL vacutainer blood collection tubes with and without EDTA (for PBMCs and serum, respectively; Becton Dickinson). Whole blood was centrifuged at 1400 rpm for 15 minutes at 4°C. Mononuclear cells were isolated using Ficoll-Paque gradient (BD Biosciences). This was centrifuged at 1400 rpm for 5 minutes at room temperature. After red blood cell lysis, the PBMCs were counted for viability and resuspended in freezing medium (50% Iscove’s modified Dulbecco’s medium, 40% fetal bovine serum, and 10% dimethyl sulfoxide) at a concentration of 1 to 10 × 10⁶ cells/mL. The cells were separated into aliquots in cryovials to be frozen at −80°C in the Laboratory for Cancer Immunology, where testing was performed by study personnel.

Blood processing and Storage

Whole blood was centrifuged at 1400 rpm for 15 minutes at room temperature. Serum and plasma were separated into aliquots in cryovials to be frozen at −80°C. Mononuclear cells were isolated using Ficoll-Paque gradient (BD Biosciences). This was centrifuged at 1400 rpm for 5 minutes at room temperature. After red blood cell lysis, the PBMCs were counted for viability and resuspended in freezing medium (50% Iscove’s modified Dulbecco’s medium, 40% fetal bovine serum, and 10% dimethyl sulfoxide) at a concentration of 1 to 10 × 10⁶ cells/mL. The cells were separated into aliquots in cryovials to be frozen at −80°C in the Laboratory for Cancer Immunology, where testing was performed by study personnel.

Luminex analysis

Luminex bead-based assays (BioRad, Hercules, CA) were performed on serum specimens from 37 patients to measure circulating levels of 19 cytokines and 11 chemokines (Appendix E1; available online at www.redjournal.org) according to the manufacturer’s instructions. Most cytokines were assessed using the Cytokine 17-plex assay (M5000031YV); however, cytokine interferon (IFN)-α2 (17IB6010M) was measured using cytokine group II standards (171D6001). Transforming growth factor (TGF)-β isoforms 1, 2, and 3 were measured using the TGF-β1, -2, -3 kit (TGFBNAG-64K-03; EMD Millipore, Billerica, MA). Most of the chemokines were measured using the chemokine standard 171DK0001, and RANTES was measured with the standard 171B5025M. Concentrations were calculated using a 5-parameter standard curve. Serum samples were assayed in duplicate and averaged to calculate the final concentrations.

Flow cytometry

PBMCs were thawed rapidly in a 37°C water bath and diluted into RF10 media (Roswell Park Memorial Institute 1640 medium (Thermo Fischer Scientific) with 10% fetal bovine serum and 1% penicillin/streptomycin (Sigma-Aldrich). Cell number and viability were determined using trypan blue exclusion with a hemocytometer after thawing. The PBMCs from 30 patients were available for flow cytometry analysis. Immunophenotyping of PBMCs was performed using 2 panels of antibodies, 1 panel to characterize the NK cells and 1 to characterize the T cells (37, 38). All fluorochrome-conjugated antibodies (Appendix E2; available online at www.redjournal.org) were from BioLegend (San Diego, CA), unless otherwise indicated. The cells were incubated with antibodies diluted in staining buffer (phosphate-buffered saline containing 1% human serum and 1% penicillin/streptomycin) at 4°C in the dark for 20 minutes. Cells stained with the NK panel were washed, centrifuged, resuspended in staining buffer, and stored at 4°C. Cells stained with the T-cell panel were washed, fixed with Fix/Perm buffer (eBiosciences, San Diego, CA) for 30 minutes at 4°C. After washing, the cells were resuspended in Perm/Wash buffer containing anti-Foxp3 antibody or isotype control for 30 minutes in the dark at room temperature before being washed and resuspended in staining buffer. Phenotype analysis was performed by gating 50,000 to 200,000 cells according to forward scatter/side scatter with a LSR Fortessa flow cytometer using DIVA, version 6, software (BD Biosciences, San Diego, CA). Data were analyzed using FlowJo software (FlowJo LLC, Ashland, OR). The positive and negative cell populations for each marker were determined using fluorescence minus one controls (39), with unstained cells used as a negative control. Instrument settings were verified and adjusted with the mid-peak bead of the 8-peak calibration bead set (Spherotech) before each acquisition session. Compensation beads (BD Biosciences) were used to correct for spectral overlap between channels.

Statistical analysis

Statistical analyses were performed using GraphPad Prism software (GraphPad, La Jolla, CA) and R (R Foundation,
Vienna, Austria). The baseline characteristics between subgroups were compared using \(\chi^2 \) tests and 1-way analysis of variance (ANOVA). The changes for each parameter across the entire cohort were assessed using paired \(t \) tests. To explore the differential response across treatment sites, lung and liver lesions were combined into 1 cohort as parenchymal sites. Differences in immunophenotype changes and cytokine/chemokine response between the parenchymal sites and bone and brain sites were analyzed using 1-way ANOVA with Bonferroni’s post-test for continuous variables to account for multiple comparisons. \(\chi^2 \) tests were used to identify significant variation across subgroups. Data are presented in bar graphs, with vertical bars indicating the mean and lines representing the standard error of the mean. Spearman’s correlation coefficients were computed for changes in each immune cell population with radiation-associated variables, including total dose, dose per fraction, and size in cubic centimeters of the planning target volume (PTV). For all tests, statistical significance was assessed at the \(P \leq .05 \) level (2-sided).

Table 1 Patient characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Parenchymal (lung and liver; (n = 26))</th>
<th>Bone ((n = 9))</th>
<th>Brain ((n = 5))</th>
<th>(P) value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age (y)</td>
<td>Median 71</td>
<td>64</td>
<td>66</td>
<td>.13</td>
</tr>
<tr>
<td></td>
<td>Range 30-86</td>
<td>37-78</td>
<td>48-74</td>
<td></td>
</tr>
<tr>
<td>PTV (cc)</td>
<td>Median 31.3</td>
<td>48.9</td>
<td>0.8</td>
<td>.13</td>
</tr>
<tr>
<td></td>
<td>Range 5.5-277.8</td>
<td>11.5-174.1</td>
<td>0.6-2.1</td>
<td></td>
</tr>
<tr>
<td>Disease stage</td>
<td>I 20</td>
<td>0</td>
<td>0</td>
<td>.17</td>
</tr>
<tr>
<td></td>
<td>II 1</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IV 5</td>
<td>9</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Pack-year smoking</td>
<td>Median 13</td>
<td>0</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Range 0-120</td>
<td>0-30</td>
<td>0-40</td>
<td></td>
</tr>
<tr>
<td>Dose (Gy)</td>
<td>Median 50</td>
<td>24</td>
<td>21</td>
<td><.00001*</td>
</tr>
<tr>
<td></td>
<td>Range 35.5-54</td>
<td>24-27</td>
<td>20-21</td>
<td></td>
</tr>
<tr>
<td>Fractions (n)</td>
<td>Median 5</td>
<td>3</td>
<td>1</td>
<td><.00001*</td>
</tr>
<tr>
<td></td>
<td>Range 3-5</td>
<td>3-3</td>
<td>1-1</td>
<td></td>
</tr>
<tr>
<td>Histologic type</td>
<td>Adenocarcinoma 12 (46)</td>
<td>7 (78)</td>
<td>2 (40)</td>
<td>.46</td>
</tr>
<tr>
<td></td>
<td>Squamous 5 (19)</td>
<td>0 (0)</td>
<td>1 (20)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sarcoma 3 (12)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Undifferentiated/other 3 (12)</td>
<td>2 (22)</td>
<td>2 (40)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Unbiopsied 3 (12)</td>
<td>0 (0)</td>
<td>0 (0)</td>
<td></td>
</tr>
<tr>
<td>Previous systemic therapy (%)</td>
<td>38</td>
<td>78</td>
<td>60</td>
<td>.11</td>
</tr>
<tr>
<td>Cytotoxic chemotherapy</td>
<td>8</td>
<td>0</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Endocrine therapy(^\dagger)</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Immunotherapy(^\dagger)</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>Targeted therapy</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: Pack-years = number of pack-years of smoking cigarettes in the patient’s lifetime; PTV = planning target volume.

* Data presented as median and range, \(n \) (%), or %.

* Statistically significant.

\(^\dagger\) Endocrine therapy for metastatic prostate cancer.
are shown in Table 1. The median age was 68 years (range 37-86), with 23 men (58%) and 17 women (42%). A nonsignificant trend toward older median age and greater pack-year smoking history was noted for patients treated to parenchymal sites compared with those treated to brain or bone. Of the patients treated to parenchymal sites, 41% had received ≥1 previous course of chemotherapy in their lifetime compared with 60% to 66% of patients treated to bone or brain ($P = .35$). No enrolled patients were receiving systemic dose steroids or concurrent infusional chemotherapy or immunotherapy at the time of SBRT. Seven patients were receiving other cancer-directed systemic therapy at the time of SBRT, including androgen deprivation ($n = 1$), endocrine ($n = 2$), tyrosine kinase inhibitor ($n = 3$), or oral capcitabine ($n = 1$) therapy. Twenty-four patients had not received cancer-directed systemic therapy within the previous year. Among the remaining 9 patients who had received systemic therapy within the previous year, the median time from the last systemic therapy was 74 days (range 14-254). The median PTV was 29.4 cm3 (range 5.5-118.1) for parenchymal lesions, 48.9 cm3 (range 11.5-137) for bone lesions, and 0.84 cm3 (range 0.06-2.08) for brain lesions ($P = .13$). The parenchymal group received a median dose of 50 Gy (range 35-54) over 3 to 5 fractions, the bone group received a median dose of 24 Gy (range 24-27) over 3 fractions, and the brain group received a median of 21 Gy (range 20-21) in a single fraction ($P < .001$). However, the groups were similar in terms of the other patient characteristics (Table 1).

Changes in NK cells in the periphery after SAR to parenchymal sites

PBMCs from 31 patients were available for flow cytometry analysis. Surface staining of NK cell markers was used in the gating strategy to identify NK cell subsets (Fig. 1A). A statistically significant decrease was found in the percentage of total NK cells after SAR to the parenchymal sites (20.49 ± 2.36 vs 16.76 ± 2.436; $P = .01$; Fig. 1B; Fig. E1A; available online at www.redjournal.org). In addition, a significant decrease occurred in the percentage of cytotoxic CD56dimCD16$^+$ NK cells after SAR to the parenchymal sites (17.58 ± 2.34 vs 13.17 ± 2.052; $P = .024$; Fig. 1C). No significant change was identified in the percentage of cytokine-producing CD56highCD16$^-$ NK cells in the periphery for any patient cohort. No statistically significant change was found in the percentage of total NK cells, cytotoxic NK cells, or cytokine-producing NK cells

Figure 1. Decrease in the percentage of total and cytotoxic natural killer (NK) cells after stereotactic ablative radiation therapy (RT; SAR) to parenchymal sites but not bone or brain. (A) Gating strategy for identification of NK cell subsets from total lymphocytes in peripheral blood mononuclear cells (PBMCs). (B) Percent of total NK cells in PBMCs after SAR to parenchymal sites, bone, and brain. (C) Percent of cytotoxic NK cells in PBMCs after SAR to parenchymal sites, bone, and brain.
after SAR to the bone or brain (Fig. 1B; Fig. E1B, C; available online at www.redjournal.org). In addition, we identified a statistically significant increase in the percentage of T-cell immunoglobulin-domain—containing molecule-3—positive (TIM3+) NK cells in the peripheral blood after SAR to the parenchymal sites (15.84 ± 3.165 vs 19.65 ± 3.261; \(P = .039 \)) but not after SAR to the bone or brain (Fig. 2). No statistically significant difference was identified in programmed cell death 1 (PD-1) expression on any NK cell subset after SAR (data not shown).

Increase in activated memory CD4+ and CD8+ T cells after SAR to parenchymal sites

Human naive and memory T cells are distinguished by CD45RA and CD45RO reciprocal isoforms (40), and central and effector memory T-cell subsets were identified by the expression of CD45R isoforms and either of the homing molecules, CCR7 or CD62L (41). In the present study, we designated CD45RA−CD62L+ T cells to represent central memory T cells (which home to the lymph nodes) and CD45RA+CD62L− cells to represent effector memory T cells (which perform effector functions in the tissue) (41) (Fig. 3A). A statistically significant increase was found in the percentage of total CD4+ memory T cells in the PBMCs after SAR to the parenchymal sites (29.68 ± 2.65 vs 38.75 ± 3.46; \(P = .026 \); Fig. 3B; Fig. E2A; available online at www.redjournal.org) but not after SAR to the bone or brain (Fig. 3B; Fig. E2B, C; available online at www.redjournal.org).

Our analysis of the effector and central memory CD4+ T-cell compartments focused on the expression of the activation markers, CD25 and inducible co-stimulator (ICOS), on memory T-cell subsets (Fig. 3C, D). We identified an increase in the percentage of activated CD25+ memory T cells after SAR as demonstrated by a marked increase in the percentage of ICOS+CD4+ T cells of total lymphocytes (0.8813 ± 0.19 vs 1.739 ± 0.241; \(P = .0005 \); Fig. 3C) and about a twofold increase in the percentage of activated CD25+CD4+ T cells after SAR (1.414 ± 0.42 vs 2.97 ± 0.60; \(P = .078 \); Fig. 3D). None of these changes were seen after SAR to the bone or brain (Fig. 3C, D). No change in PD-1 expression was seen in the memory CD4+ T-cell population after SAR to any site (Fig. E3; available online at www.redjournal.org). In addition, the percentage of CD25+Foxp3+CD4+ regulatory T cells did not change after SAR to any site (Fig. E4; available online at www.redjournal.org).

Analysis of CD8+ memory T cells showed no difference in the percentage of total CD8+ T cells after SAR (Fig. 4A) but did show a strong trend toward an increase in the percentage of activated CD25+CD8+ memory T cells after SAR to the parenchymal sites (1.388 ± 0.49 vs 3.50 ± 1.10; \(P = .058 \); Fig. 4B). No changes were seen in the CD8+ memory T-cell populations after SAR to the bone or brain.

Effect of total dose, dose per fraction, and PTV on immune cell populations

The total dose was positively associated with the change in the percentage of ICOS+CD4+ memory T cells (Spearman’s correlation coefficient \(r = 0.46 \); \(P = .022 \)) and change in the percentage of CD25+CD8+ memory T cells (\(r = 0.57 \); \(P = .006 \)). The dose per fraction was not associated with any changes in the immune cell populations (Table E1; available online at www.redjournal.org). The PTV size was positively associated with the change in the percentage of ICOS+CD4+ memory T cells (\(r = 0.43 \); \(P = .031 \)) and the change in the percentage of T regulatory cells (\(r = 0.43 \); \(P = .031 \)). In addition, PTV size was associated with the change in the percentage of TIM3+ NK cells (\(r = 0.48 \); \(P = .008 \); Table 1; available online at www.redjournal.org).

Changes in cytokine and chemokines after SAR to parenchymal sites

Serum specimens from 37 patients were evaluable for Luminex analysis. We measured the circulating levels of 19 cytokines and 11 chemokines (Appendix E1; available online at www.redjournal.org). Those cytokines and chemokines with \(>75\% \) of values less than the lowest limit of detection were excluded from the present analysis. Therefore, the final Luminex analysis included 15 evaluable markers (interleukin [IL]-2, IL-4, IL-6, IL-12, TGF-β1, TGF-β2, tumor necrosis factor [TNF]-α, inducible protein 10 (IP-10), RANTES, MIP-1α, MIP-1β, MCP1,
MCP2, and SCYB16). A systemic decrease occurred in TNF-α (23.10 ± 1.97 vs 19.54 ± 1.797; P = .042), and the chemokines IP-10 (459.4 ± 79.76 vs 347.8 ± 44.75; P = .048), MCP1 (14.4 ± 0.96 vs 11.55 ± 1.00; P = .0098), MCP2 (172.5 ± 18.54 vs 138.6 ± 12.43; P = .007), MIP-1α (18.67 ± 1.49 vs 16.33 ± 1.32; P = .024), and RANTES (9028 ± 864.8 vs 6759 ± 485.3; P = .035) after SAR to the parenchymal sites (Fig. 5). Bonferroni’s correction was used to correct for multiple hypothesis testing. No significant cytokine changes were observed after SAR to the bone or brain (Fig. 5). No changes in the pro-inflammatory cytokines IFN-α, IFN-γ, or TGF-β were identified.

Discussion

Owing to widespread interest in combining RT with immunotherapy, numerous actively accruing clinical trials are underway that combine SAR with immune checkpoint inhibitors. The scientific rationale for these clinical trials is based on the findings from preclinical studies suggesting that RT can serve as an *in situ* vaccine to augment the effects of immunotherapy and a few case reports showing impressive clinical responses to such combinations. However, limited preclinical or clinical data are available to guide the selection of the radiation dose, fractionation schedule, and site to optimally synergize with immunotherapy. We initiated the present prospective specimen banking study with a goal of refining our understanding the systemic immune response to SAR monotherapy and how the response differs according to the site irradiated. To the best of our knowledge, no previous studies in patients have directly compared the systemic immune response in patients after SAR to different organs.

A few key studies characterize the immune changes after SAR in the setting of concurrent immunotherapy. Tang et al (42) reported that patients who received liver-directed SAR in conjunction with the CTLA-4 inhibitor ipilimumab had enhanced peripheral T-cell activation (as assessed by expression of ICOS, GITR, and 4-1BB) compared with patients who had undergone lung-directed SAR. Hiniker et al (26) identified an increase in peripheral IL-2—producing CD8+ T cells and central memory T cells after RT in patients who responded to response to CTLA-4 inhibition and SAR. Postow et al (25) reported detailed immunoprofiling of a patient with progressive melanoma on CTLA-4 blockade who subsequently developed a systemic response after palliative RT and noted an increase in ICOS+/CD4+ T cells, NY-ESO-1—specific IFN-γ—producing CD4+ T cells, and HLA-DR+CD14+ monocytes and a decrease in myeloid-derived suppressor cells (25).

In addition, studies have reported the systemic immunophenotype in patients with stage I or II non-small cancer.
cell lung cancer (NSCLC) who received SAR alone. Macheta et al. (28) described the peripheral immune changes that occur after SBRT for stage I NSCLC, showing that SBRT induces lymphopenia and decreased NK cell activity, which they attributed to RT directed to vertebral bone marrow in the SBRT field (28). Trovo et al. (29) characterized cytokine changes after SBRT compared with conventional RT for early-stage NSCLC and found a mean reduction of IL-10 and IL-17 plasma levels. However, they did not consider individual immune cell subsets (29). Rutkowski et al. (43) studied immune cell types after SBRT and observed an increase in the proportion of total CD8+ T cells, total CD4+ T cells, and CD4+ T cells expressing GATA-3, T-bet, or ROR-γT and a decrease in CD4+Foxp3+ regulatory T cells (43). However, their study did not evaluate NK cells (43). All these studies examined the immune phenotype after SBRT to the lung alone. To the best of our knowledge, no studies have directly compared the peripheral immune response after SAR to different organs in the absence of concurrent immunotherapy.

We hypothesized that differences in T-cell and NK-cell activation after RT to different sites might relate to differences in the degree and potency of immunosuppression of the target tissue. Some proof of this phenomenon has been found in preclinical studies, which showed that intracranial melanoma produces more functional exhaustion and impairment of T-cell effector function compared with subcutaneous disease with the same tumor histologic type (44). To address this question, we focused on the unique tissue microenvironments that characterize the brain, bone, lung, and liver. The brain is characterized by the blood–brain barrier, which sequesters lymphocytes during steady state, creating a relatively “immunoprivileged site,” but allows lymphocytes to transverse the cerebral vasculature during pathologic states (45). The bone marrow contains the perivascular hematopoietic stem cell niche, which contains mesenchymal stem cells and is characterized by hypoxia. The bone marrow also contains osteoclasts, involved in bone remodeling (35, 46-48). In contrast, the lung is in constant contact with toxins and pathogens from the environment during respiration, and bronchial epithelial cells interact with innate immune cells, including plasmacytoid dendritic cells, alveolar macrophages, and NK cells, which promote immune tolerance (49). Similarly, the liver is constantly exposed to antigens transported from the colon by the portal vein and, therefore is composed of an abundance of innate immune cells, such as NK cells, γδ T cells, and Kupffer cells, which also contribute to immune tolerance (33). Both the lung and liver develop immune tolerance to most of the antigenic load delivered by air exchange or the portal venous blood supply (33, 50). Given the differences in blood supply, antigenic load, and relative abundance of innate immune cells and lymphocytes between these organs, we hypothesized that SAR delivered to these immunotolerant organs would differ from that of immunopriviliged organs such as the brain.

Owing to the abundance of NK cells in the lung and liver, we hypothesized that these innate immune cells would play a role in the response to SAR in these organs. Although NK cells do not express antigen receptors, they play important roles in viral infections and antitumor immunity by cytotoxic killing or the release of IFN-γ. In humans, 2 populations of NK cells can be distinguished by CD56 expression (51, 52). CD56dim cells that express CD16 (the low-affinity receptor for IgG, FcRγIII) have enhanced cytotoxicity, and CD56hi NK cells that do not express CD16 (CD56hiCD16- cells) are able to secrete large amounts of IFN-γ, granulocyte-macrophage colony-stimulating factor, and TNF-α (53). Our results showed a decrease in both total NK cells and cytotoxic NK cells after SAR to these parenchymal sites. The decrease in NK cells in the peripheral blood after SAR to the parenchymal organs could represent increased homing or migration of NK cells to the irradiated tumor site. Previous work in our laboratory using a patient-derived xenograft model demonstrated a decreased tumor volume and
increased survival of PDX-bearing mice treated with a combination of RT and autologous NK cell-adoptive therapy (54). Tumor irradiation in this model leads to tumor cell upregulation of stress ligands such as NKG2D, which activate NK cells and increase homing and infiltration of tagged NK cells into the tumor (54). These findings suggest that the decrease in systemic NK cells after SAR identified in the present study might be secondary to increased NK cell homing to the tumor site. However, we cannot exclude the possibility that the decrease seen in the peripheral blood of patients in our study might represent a systemic depletion of NK cells from both the irradiated organs and the peripheral blood.

TIM3 was initially identified as a T-helper 1-specific protein involved in regulating T-cell responses; however, the greatest expression of TIM3 was found on human NK cells. We saw an increase in circulating TIM3⁺ NK cells after SAR to the parenchymal sites. Previous studies on TIM3⁺ NK cells focused on their role as exhausted NK cells in several cancers, including melanoma and colorectal cancer (55, 56). Although previous studies have shown that the presence of these cells is associated with worse responses to therapies such as surgery (56), TIM3⁺ NK cells have never been linked to RT. In aggregate, our data have shown that a decrease occurs in NK cells in the periphery after SAR but an increase in the TIM3⁺ NK cell subset. Future studies will examine the mechanism by which SAR induces NK cell exhaustion and whether anti-TIM3 antibodies could be used to reverse NK cell exhaustion after RT.

Given the importance of T cells in the induction of the “abscopal” response, we investigated the role of SAR in the induction of memory T-cell response. We found an increase in CD4⁺ memory T cells after SAR to parenchymal sites, with increased expression of ICOS and CD25 activation markers on these cells. ICOS is a T-cell specific cell surface activation and costimulatory molecule structurally related to CD28 and CTLA-4 that increases the proliferation and survival of activated CD4⁺ effector memory T cells (42). Anti–CTLA-4 therapy (ipilimumab) increases the frequency of CD4⁺ T cells expressing ICOS, and these effector T cells produce IFN-γ (57). This results from the increased signaling through the phosphinositide-3-kinase pathway and an increase in the expression of T-bet (58). An increased frequency of ICOS⁺CD4⁺ T cells has been associated with improved clinical outcomes for anti–CTLA-4 and anti-OX40 immunotherapies (57, 59). Importantly, this population is not induced by anti–programmed cell death ligand 1 (PD-L1) therapy and might represent a distinct mechanistic pathway of antitumor immunity (60).

Fig. 5. Luminex analysis of cytokines and chemokines in the serum of patients treated with stereotactic ablative radiation therapy (SAR) to parenchymal, bone, and brain sites. (A) Tumor necrosis factor-α (TNF-α). (B) Inducible protein-10 (IP-10). (C) MCP-1. (D) MCP-2. (E) MIP-1α. (F) RANTES. (All cytokine and chemokine concentrations given in pg/mL.)
upregulated after SBRT. Therefore, it is possible that activation of ICOS$^+$CD4$^+$ T cells might represent a novel, but synergistic, immune mechanism such that SBRT could enhance PD-L1 checkpoint inhibition.

Unexpectedly, we did not observe any differences in PD-1$^+$ expression on any T-cell subsets and did not observe any difference in Foxp3$^+$ regulatory T cells. This could have been because PD-1 is upregulated on antigen-specific T cells, and we were only able to quantify differences in the entire memory T-cell population rather than the antigen-specific T cells in our patient samples. However, studies have reported that PD-1, PD-L1, and T-regulatory cell markers are decreased after cryopreservation of human PBMCs (61, 62); therefore, it is possible that our negative findings resulted from the limitations of our experimental protocol.

Our Luminex analysis revealed a systemic decrease in TNF-α and a decrease in multiple chemokines such as RANTES (CCL5) and IP-10 (CXCL10). RANTES plays a role in homing and migration of effector and memory T cells and helps sustain CD8 T-cell responses during a systemic chronic viral infection (63); therefore, it is possible that it plays a similar role in the antitumor immunity induced by SAR. IP-10 is IFN-γ-inducible protein 10 and is a chemoattractant for activated memory T cells and NK cells by binding to and activating CXCR3 (64). Therefore, it might play a role in T-cell or NK-cell homing after SAR. The systemic decrease in these cytokines is somewhat unexpected given the inflammatory nature of RT but has been reported in other studies (65). The clinical significance of these decreases and how they relate to the changes that might be occurring in the tumor microenvironment are unclear. Future studies are needed to determine whether this results from the reduced half-life, increased degradation, or lower transcription and translation of these cytokines. Unexpectedly, we did not observe changes in the proinflammatory cytokines IFN-α, IFN-γ, or TGF-β, which have been implicated in immune response to RT in other studies, perhaps because the changes in these cytokines are short lived (22-24, 66).

Our study had several key limitations, most significantly the inherent baseline differences in radiation dose, fractionation, and target volume size used to treat the parenchymal sites compared with the bony metastases and brain metastases owing to the standard of care treatment for each disease site. It is possible the observed differences in immunophenotype resulted from differences in dose and fractionation, rather than differences in the treated site. The Spearman correlation coefficients suggested that greater total doses of ablative RT are associated with an increase in the percentage of activated memory CD4$^+$ and CD8$^+$ T cells. The ablative doses used to irradiate each site are dependent, and higher total doses are typically used clinically for liver and lung tumors than for brain and bone tumors. Therefore, the observed differences in immune cell populations between the sites could have been because the parenchymal lesions were treated to a higher ablative dose than were the bone and brain lesions. We could not analyze the contribution of these 2 variables separately because the study had a limited sample size, and all patients were treated according to the standard of care SAR protocols, which allowed for minimal variation in the dose within each site. An additional limitation was that all our analyses were performed on batched cryopreserved PBMCs, and some data have suggested that some biomarkers might be altered in cryopreserved samples (61, 62).

Conclusions

We have identified changes in systemic immunophenotype after SAR to the lung and liver that we did not observe after SAR to the bone and brain. Our findings suggest SAR might be less immunomodulatory when directed to the bone or brain, possibly because of the immunosuppressive environment in these organs. We could not exclude the possibility that differences in the standard-of-care dose schemas for these organs contributed to the observed differences. The correlation between systemic immunophenotype changes and patient outcomes will be crucial to understanding the clinical relevance of our findings and the potential for any of these changes to serve as biomarkers. Ultimately, our goal is to use this knowledge about the immune response after SAR to different sites to refine ongoing and future clinical studies combining SAR and immunotherapy.

References

