Title
CHARGE INDEPENDENCE IN HYPERON PRODUCTION

Permalink
https://escholarship.org/uc/item/8tm777kg

Authors
Crawford, Frank S.
Douglass, Roger L.
Good, Myron L.
et al.

Publication Date
1959-09-23
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
To be published in Physical Review Letters

UNIVERSITY OF CALIFORNIA
Lawrence Radiation Laboratory
Berkeley, California

Contract No. W-7405-eng-48

CHARGE INDEPENDENCE IN HYPERON PRODUCTION

Frank S. Crawford, Jr., Roger L. Douglass, Myron L. Good
George R. Kalbfleisch, M. Lynn Stevenson, and Harold K. Ticho

September 23, 1959

Printed for the U. S. Atomic Energy Commission
CHARGE INDEPENDENCE IN HYPERON PRODUCTION

Frank S. Crawford, Jr., Roger L. Douglass, Myron L. Good
George R. Kalbfleisch, M. Lynn Stevenson, and Harold K. Ticho

Lawrence Radiation Laboratory
University of California
Berkeley, California

September 23, 1959

If the reactions
\[\pi^+ + p \rightarrow \Sigma^+ + K^+ \text{ (amplitude } f^+), \]
\[\pi^- + p \rightarrow \Sigma^0 + K^0 \text{ (amplitude } f^0), \]
and
\[\pi^- + p \rightarrow \Sigma^- + K^+ \text{ (amplitude } f^-), \]
satisfy charge independence (CI), then the three amplitudes involved are not independent. If one makes the usual isotopic spin assignments of a \((\Sigma^+, \Sigma^0, \Sigma^-)\) triplet and a \((K^+, K^0)\) doublet, then the complex amplitudes \(f^+, f^0, \text{ and } f^-\) are related to the two independent amplitudes \(f_{3/2}\) and \(f_{1/2}\) that correspond to total isotopic spin \(3/2\) and \(1/2\). The relations are
\[f^+ = f_{3/2}, \]
\[f^0 = (\sqrt{2/3})f_{3/2} - (\sqrt{2/3})f_{1/2}, \]
and
\[f^- = (1/3)f_{3/2} + (2/3)f_{1/2}. \]

The linear dependence which then follows,
\[\sqrt{2} f^0 = f^+ - f^- , \]
corresponds to a triangle in the complex plane, and therefore the "triangle inequality"\footnote{Work done under the auspices of the U.S. Atomic Energy Commission.}
\[\sqrt{2} \sigma(\Sigma^0) \leq \sqrt{\sigma(\Sigma^+)} + \sqrt{\sigma(\Sigma^-)} \]
must hold for the differential cross sections \(\sigma(\Sigma)\) at each production angle.

*Now at University of California at Los Angeles, Los Angeles, California.
and for the integrated cross sections. (The two additional inequalities obtained by permutation of Eq. (8) must also hold, but do not concern us. They are not contradicted by any experiments.)

Previous experimental results of Brown et al.² for 1.1-Bev pions incident on a 12-in. propane bubble chamber without magnetic field have indicated a sharp contradiction with Eq. (8) for backwards-produced Σ⁺'s. If substantiated, this observation would imply either that CI does not hold for Reactions (1), (2), and (3), or, alternatively, that the usual isotopic spin assignments are wrong.³

We have measured absolute differential cross sections for Reactions (2) and (3), using 1.09 ± 0.01-Bev (i.e. 1.22-Bev/c) π⁻ incident on the Alvarez 10-in. liquid hydrogen bubble chamber, with an 11-kilogauss magnetic field. Our results differ substantially from those of Brown et al., both as to magnitudes and as to angular dependences. In view of the disagreement it is perhaps unwise to compare our results for Reactions (2) and (3) with those of Brown et al. for Reaction (1) in order to check the triangle inequality Eq. (8). We nevertheless make this comparison, and find that, within the statistics, there is no contradiction with charge independence.

Figure 1 shows our results, and those of Brown et al.,⁴ for Reactions (2) and (3). Our results do not substantiate the strong suppression of forward Σ⁰'s and of backwards Σ⁻'s observed by Brown et al.

Figure 2 shows the experimental results of Brown et al. for σ(Σ⁺), together with the lower limit \(\sigma(Σ⁺)_{LL} \) which we predict from our results for \(\sigma(Σ⁰) \) and \(\sigma(Σ⁻) \), and the inequality (8). Our predicted lower limit is thus given by

\[
\sigma(Σ⁺)_{LL} = \left(\sqrt{2\sigma(Σ⁰)} - \sqrt{\sigma(Σ⁻)} \right)^2.
\] (9)
From Fig. 2 we see that in the backwards quarter of the hyperon solid angle our predicted lower limit exceeds the measured value of $\sigma(\Sigma^+)$ of Brown et al. by 1.6 std dev. This is to be compared to the 4.2-std dev violation of CI first reported by Brown et al. \(^2\) Within the statistics we find that there is no longer any contradiction with CI.

It is perhaps worth noting that if the suppression of backwards Σ^- (relative to our result) observed by Brown et al. is due to the carbon content of propane, then by charge symmetry a similar suppression could perhaps be expected for backwards Σ^+. In that case even the small remaining discrepancy with Eq. (9) would disappear.

From Fig. 2 it is apparent that within the statistics our predicted values for $\sigma(\Sigma^+)_{\text{LL}}$ are, at all production angles, consistent with $\sigma(\Sigma^+)$ as measured by Brown et al. It is thus reasonable to assume that the inequality (8) degenerates into an equality, at all production angles. Under that hypothesis the triangle of Eq. (7) collapses into three parallel segments, or a triangle with zero area. Aside from a common phase factor, f^+, f^0, and f^- may be then taken as real.

Our results for $\sigma(\Sigma^0)$ and $\sigma(\Sigma^-)$ then suffice to determine $f_{3/2}$ and $f_{1/2}$ by means of Eqs. (4) and (5) and (6).

For the total cross sections in Reactions (2) and (3) we find

$$\sigma(\Sigma^0) = 0.39 \pm 0.037 \text{ mb} \quad (10)$$

and

$$\sigma(\Sigma^-) = 0.27 \pm 0.028 \text{ mb}. \quad (11)$$

Correspondingly we find, subject to the assumption of a triangle of zero area, and using only our own data, the amplitudes

$$f_{1/2} = + 3.05 \pm 0.11 \times 10^{-14} \text{ cm} \quad (12)$$

and

$$f_{3/2} = - 1.14 \pm 0.16 \times 10^{-14} \text{ cm} \quad (13)$$
up to an undetermined common phase factor. In terms of intensities, the results (12) and (13) correspond to \((\Sigma^0, K^0)\) production that is 88\% in the \(I = 1/2\) state, and \((\Sigma^-, K^+)\) production that is 96\% in the \(I = 1/2\) state.

The remainder of this letter is concerned with experimental details. The \((\Sigma^-, K^+)\) events were distinguished by the scanner from other "two-prong" events through the characteristic decay of the \(\Sigma^-\). For both total-cross-section and angular-distribution determinations the following "cutoff" criteria are employed. The production event is required to take place inside a restricted fiducial volume in the chamber. The \(\Sigma^-\) decay must occur inside a slightly larger fiducial volume. The \(\Sigma^-\) must travel at least 0.6 cm before it decays. The decay \(\pi^-\) must make a projected angle of at least \(8.0^\circ\) with the direction of the \(\Sigma^-.\) The calculated geometrical detection probability under these criteria remains within the limits 0.50 and 0.56 over the entire angular range. In making the calculation we use our own value for the \(\Sigma^-\) mean life, \(1.45 \times 10^{-10}\) sec. By a second scanning we find that non-cutoff \((\Sigma^-, K^+)\) events are found by the scanner with an efficiency of \(97.2 \pm 1.3\%\). The angular distribution and total cross section for \((\Sigma^-, K^+)\) are based on 96 non-cutoff events.

In the \((\Sigma^0, K^0)\) determination, the same fiducial volumes for production and decay are used as for \((\Sigma^-, K^+)\). To be accepted as "detectable" a \(\Lambda\) or \(K^0\) must travel at least 0.3 cm from the production point and undergo charged decay inside the fiducial volume. In calculating the detection probabilities we use our values for the decay branching ratios, \(^5\)
\[
(K^0 \rightarrow \pi^+ + \pi^-)/(all \ K^0) = 0.339, \quad \text{and} \quad (\Lambda \rightarrow p + \pi^-)/(all \ \Lambda) = 0.627, \quad \text{and our lifetime values} \quad \tau_1^0 = 0.94 \times 10^{-10} \text{ sec, and} \quad \tau_\Lambda = 2.72 \times 10^{-10} \text{ sec. Scanning efficiencies are} \ 97.7 \pm 0.7\% \text{ for single vees (non-cutoff), and} \ 99.4 \pm 0.6\% \text{ for double vees. The total number of non-cutoff} \ (\Sigma^0, K^0) \text{ events is 134, consisting of 30 single} \ K^0 \text{ decays}
(in which the Λ decay is either not observed or is cut off), 75 single Λ decays
(K^0 decay not observed or cut off), and 29 doubles (neither decay cut off). In
determining the shape of the angular distribution the 75 single Λ decays were
not used, since (a) the angular distribution of the Λ's is somewhat washed
out relative to the Σ^0 angular distribution because of the recoil from the 75-Mev
γ ray in the decay $\Sigma^0 \rightarrow \Lambda + \gamma$, and (b) there is a possibility of contamination
from the reaction $\pi^- + p \rightarrow \Lambda + K^0$. That is, because of the recoil from the
γ ray, a complete separation of (Σ^0, K^0) events from (Λ, K^0) events is not
possible for single Λ decays. By examining the double vees, where a complete
separation is obtained, we estimate that $5 \pm 3\%$ of the 75 single Λ decays attributed
to (Σ^0, K^0) production are in fact (Λ, K^0) events, and that an equal number of
single Λ decays from (Σ^0, K^0) have been called (Λ, K^0) events. Thus no
systematic error is introduced into the total cross section by including the single
Λ events. (In the single K^0 decays there is negligible contamination from
(Λ, K^0) production.) In the (Σ^0, K^0) total cross section all 134 events are used.
In the angular distribution (Fig. 1) the shape is determined by the 59 events
involving K^0 decays, and the normalization by all 134 events. The errors are
calculated taking into account the correlation involved in the fact that the 59
counts are included in the total of 134.
REFERENCES

3. For instance, A. Pais, Phys. Rev. 112, 624 (1958), suggests that present experimental evidence does not overwhelmingly require that (K^0, K^\pm) form a doublet in charge space.

4. The results of Brown et al., shown in Figs. (1) and (2), differ slightly from and supersede those given in Ref. 2, and were obtained by private communication from John Vander Velde, (University of Michigan) to Frank Crawford.

LEGENDS

Fig. 1. (Left) Absolute differential cross sections for $\pi^- + p \rightarrow \Sigma^0 + K^0$.
(Right) $\pi^- + p \rightarrow \Sigma^- + K^+$. See text.

Fig. 2. Absolute differential cross section for $\pi^+ + p \rightarrow \Sigma^+ + K^+$. The open circles represent measured values by the Michigan propane-chamber group. The solid circles represent the lower limit allowed by combining the (Σ^0, K^0) and (Σ^-, K^+) production results of the present experiment with the triangle inequality (8) implied by charge independence.
\[\pi^- + p \rightarrow \Sigma^+ + K^+ \]

- \(\bullet\) = Berkeley (predicted lower limit)
- \(\bigcirc\) = Michigan

Graph:
- **Y-axis:** \(\frac{d\sigma}{d\Omega}\) (mb/sterad)
- **X-axis:** \(\cos \theta_{\Sigma^+}\) (c.m.)