Title
On the direct measurement of the total scattering function

Permalink
https://escholarship.org/uc/item/8tv537qh

Author
Preisendorfer, Rudolph W

Publication Date
1959-07-01
On the Direct Measurement of the Total Scattering Function

Rudolph W. Preisendorfer

July 1959
Index Number NS 714-100

SIO REFERENCE 59-41
On the Direct Measurement of the Total Scattering Function

Rudolph W. Preisendorfer

Scripps Institution of Oceanography, University of California
La Jolla, California

INTRODUCTION

Our purpose here is to outline a method of direct measurement of the volume total scattering function Λ. We will be concerned only with the derivation of the mathematical formula behind the method and a few words about the kind of equipment needed for the realization of the method. The general method outlined below will, of course, be applicable to any scattering medium, but perhaps its greatest use will be found in the experimental study of natural hydrosols. A few additional words will help orient the reader and place the present discussion in the appropriate perspective.

The two fundamental inherent optical properties of scattering-absorbing media are (a) the volume scattering function σ, and (b) the volume attenuation function α. The pair (α, σ) is fundamental in the sense that from these two all other attenuation functions, either inherent or apparent, may be found in accordance with certain well-defined rules of computation. However, the pair (α, σ), while being fundamental in the sense just explained, is by no means unique. Thus the pair (α, σ) is also fundamental, where α is the volume absorption function. The connecting
link between these two fundamental pairs of optical functions is provided by the notion of the volume total scattering function \mathcal{A}, defined as:

$$\mathcal{A} = \int \sigma \ dS.$$

For then, by definition $\alpha = \alpha + \mathcal{A}$, so that the pair (α, σ) is known once (α, \mathcal{A}) is, and conversely.

The theory and practice of the direct measurement of α and σ, is now well established. The measurement of α is accomplished by various beam transmittance procedures all of which, at their core, spring from a single analytical relation, the equation of transfer for radiance. The direct measurement of σ is accomplished by specially designed instruments known as nephelometers which mechanically mimic the general definition of σ. Even the volume absorption function α, once an elusive quantity which could be determined only indirectly, now has a direct, simply realizable method of determination either in the field or in the laboratory. We now round out this list by discussing a direct method of determining \mathcal{A}.

THE GENERAL METHOD

The general method of determining \mathcal{A} makes use of the close connection between the volume scattering function σ and the path function $N\mathfrak{X}$ at some point \mathfrak{X} in an arbitrary optical medium \mathfrak{X}:
Recall that $N_{\#}(x, \xi)$ is a radiance per unit length at x in the direction ξ generated by scattered radiances $N(x, \xi')$ at x arriving along the directions ξ'. Here Ω is the collection of all unit vectors (the unit sphere) in \mathbb{E}_3. The practice of measuring $N_{\#}(x, \xi)$ is highly developed both in the atmosphere and the hydrosphere.

Recall that the value $\Delta(x)$ of the volume total scattering function at x is defined as:

$$\Delta(x) = \int_{\Omega} \sigma(x; \xi'; \xi') d\Omega(\xi'),$$

in any isotropic medium. Then returning to (1) and integrating each side over Ω we have:

$$\int_{\Omega} N_{\#}(x, \xi) d\Omega(\xi) = \int_{\Omega} \left[\int_{\Omega} \sigma(x; \xi'; \xi) N(x, \xi') d\Omega(\xi') \right] d\Omega(\xi).$$

The order of integration may be reversed on the right hand side of (3), the result being:

$$\int_{\Omega} N(x, \xi') \left[\int_{\Omega} \sigma(x; \xi'; \xi) d\Omega(\xi) \right] d\Omega(\xi').$$
The inner integral is none other than the value \(A(x) \) of \(A \) at \(x \). Since \(A(x) \) is independent of \(f' \), it may be placed before the outer integral sign of (4), thus:

\[
A(x) \int \mathcal{N}(x, f') \, d\Omega(f') \ .
\]

(5)

The integral term in (5) is none other than the value \(h(x) \) of the scalar irradiance function \(h \) at \(x \); so the right side of (3) becomes:

\[
A(x) \ h(x) .
\]

In analogy to \(h(x) \), we define the left side of (3) as:

\[
h_*(x) = \int \mathcal{N}_*(x, \xi) \, d\Omega(\xi) .
\]

(6)

Combining these results, we have the desired basic formula for the general direct method of determining \(A(x) \):

\[
A(x) = \frac{h_*(x)}{h(x)} .
\]

(7)
Observations

(1) Observe first of all that equation (7) is quite general: No assumption has been made about the angular distribution of the radiance about point \(x \). Furthermore, \(\sigma \) is quite arbitrary in the angular structure at \(x \). The only assumption made, and a quite reasonable one at that, is that of the isotropy of \(X \) at point \(x \), i.e., that \(\sigma(x; \cdot ; \cdot) \) is invariant under a rotation of the local coordinate frame about \(x \); in other words, that

\[
\sigma(x; \xi'; \xi) = \sigma(x; \xi''; \xi'') \quad \text{whenever} \quad \xi' \cdot \xi = \xi'' \cdot \xi''.
\]

(2) Observe the structural symmetry between (7) and the classical formula

\[
\alpha = \frac{N_\star}{N}
\]

for the determination of the volume attenuation function \(\alpha \). In order to obtain the simple form (8), quite a few assumptions about the medium and light field must be made. This is not, however, the case for \(\Delta \).

(3) It is interesting to observe that (8) is associated with summations of \(N \) over all points along a line of fixed direction, while (7) is associated with summations of \(N \) over all directions of lines through a fixed point. In this sense, the concepts \(\alpha \) and \(\Delta \) may be classed as dual concepts with respect to the phase space \(X \times \Xi \).
(4) The measurement of $\Delta (x)$ can be accomplished by rotating a short-path radiance meter which determines $N_\ast (x, \xi)$ about x and integrating $N_\ast (x, \xi)$ (either automatically or manually) over Ξ. The measurement procedures for $h(x)$ are well-known.

TWO SPECIAL METHODS

If one has control over the lighting conditions and the homogeneity of the medium, as may be possible in the laboratory, the basic definition (1) and the general formula (7) yield a large number of particularly simple methods for the determination of Δ. We now briefly consider two such methods.

Cylindrical Medium

Suppose a narrow circular cylindrical tube of length γ is filled uniformly with the scattering material under study. The inner walls of the tube are lighted so that at all points along the axis of the tube, the radiance distribution is angularly uniform of magnitude N. Thus, under the assumptions of an angularly uniform N_j and an homogeneous medium, (1) reduces to

$$N_\ast = N \Delta.$$ (9)
If an observation point is at one end of the tube so that a line of sight may be directed along the axis of symmetry to the other end, which has zero inherent radiance, one would expect to observe a radiance N_r of magnitude

$$N_r = \frac{N_x}{\alpha} \left[1 - e^{-\alpha r} \right] = \frac{N \Delta}{\alpha} \left[1 - e^{-\alpha r} \right]. \quad (10)$$

Suppose the tube is constructed so that r may be varied. Then if αr is small, (10) yields:

$$N_r = N \Delta r. \quad (11)$$

Hence by plotting N_r vs r, one may look for the region of linearity of N_r. The slope of the plot in this region is simply $N \Delta$. If N is known, then Δ is determinable.

By lengthening r, (10) indicates that eventually the readings N_r must level out, the plateau being of magnitude

$$N_r = \frac{N_x}{\alpha} = \frac{N \Delta}{\alpha}. \quad (12)$$
Knowing N_k and N, we may then estimate the ratio $\omega = \Delta / \alpha$, which is the well-known albedo for simple scattering, a quantity which plays an important role in both the theory and application of radiative transfer.

It is clear that if experiments leading to both (11) and (12) have been made, then α and σ are both determinable by this simple scheme.

Spherical Medium

Suppose an integrating sphere of internal radius R is filled uniformly with the scattering material under study. Suppose further that the inherent radiance distribution of the inner surface is uniform and equal magnitude at each point. The sphere is fitted with a small viewing port which allows a radiance tube an unrestricted view along a diametral line from the port, through the center, to a small circular region of inherent radiance zero on the far portion of the inner surface. Let the observed radiance of the circular region be N, and let a scalar irradiance probe record the amount h at the center of the spherical cavity. Then, because of the symmetry of the light field at the center of the cavity, except perhaps for the tiny dark patch and observation port, we would expect N_k to be essentially independent of direction and (for not too dense a medium so that the black patch is clearly visible) very nearly of magnitude $N/2R$. It follows that $h_k = 2\pi N/R$ and that, by means of (7):

$$\omega = \frac{2\pi N}{h R}.$$

(13)
If the medium is made optically dense, so that the black patch is not visible, then the observed N would be very nearly N_{κ}/χ, where N_{κ} is the value of the path function at the center of the sphere. Therefore

$$\Delta = \frac{4\pi N\alpha}{h},$$

(14)

so that under the present circumstances, unless χ is already known, one may determine only:

$$\omega = \frac{\Delta}{\chi} = \frac{4\pi N}{h}.$$

(15)

Several variants of the above methods are immediately realizable. For example, a set of three spheres of diameters one, two, and three units, say, are constructed and, using optically rare media of equal density, plot the quantity $2\pi N/h$. Then, according to (13), if this varies linearly with f, the conditions of equation (13) are satisfied and the slope of the line is none other than the required value of Δ.
REFERENCES

3. Preisendorfer, R. W., The Divergence of the Light Field in Optical Media, SIO Ref. 58-41, University of California, La Jolla, California, (1957).