Title
A THERMODYNAMIC TREATMENT OF THE ELECTROMOTIVE FORCE OF FUSION

Permalink
https://escholarship.org/uc/item/8tz716hf

Author
Hebert, Alvin J.

Publication Date
1975-11-01
A THERMODYNAMIC TREATMENT OF THE ELECTROMOTIVE FORCE OF FUSION

Alvin J. Hebert

November 1975

Prepared for the U. S. Energy Research and Development Administration under Contract W-7405-ENG-48

For Reference
Not to be taken from this room
DISCLAIMER

This document was prepared as an account of work sponsored by the United States Government. While this document is believed to contain correct information, neither the United States Government nor any agency thereof, nor the Regents of the University of California, nor any of their employees, makes any warranty, express or implied, or assumes any legal responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by its trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof, or the Regents of the University of California. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof or the Regents of the University of California.
A THERMODYNAMIC TREATMENT OF THE ELECTROMOTIVE FORCE OF FUSION*

Alvin J. Hebert

Energy and Environment Division
Lawrence Berkeley Laboratory
University of California
Berkeley, California 94720

*Work done under the auspices of the U. S. Energy Research and Development Administration.
In an earlier letter\(^1\) an electromotive force, (EMF), of fusion was explained as arising from a difference in chemical potentials or Fermi brim energy levels for the electrons between the molten liquid and the forming crystal or surface. It will be shown that this explanation is in accord with both a thermodynamic treatment of the phenomena and an explanation in terms of the Fermi electron distribution.

The Fermi factor, \(f(E)\), is defined as:

\[
f(E) = \frac{N(E) \, dE}{S(E) \, dE} = \frac{1}{e^{(E-E_o)/kT} + 1} \tag{1}
\]

where \(N(E)\,dE\) is the number of electrons per unit volume with total energy between \(E\) and \(E + dE\), \(S(E)\,dE\) is the number of quantum states per unit volume with total energy between \(E\) and \(E + dE\), \(k\) is the Boltzman constant and \(T\) is the temperature in °Kelvin, \(E_o\) is the Fermi brim energy or the Fermi level and is given with reservations related to the mass of the electron as\(^2\)

\[
E_o = \frac{h^2}{8m} \left(\frac{3N}{\pi} \right)^{2/3} \text{ electron volts} \tag{2}
\]

where \(h\) is Planck's constant, \(m\) is the electron mass, and \(N\) is the number of conduction electrons per unit volume. \(E_o\) is given as equal to the electrochemical potential,\(^2\) and it is also equal to the chemical potential, \(u_e\), or the escaping tendency for electrons. A plot of \(f(E)\) versus \(E\) is shown in Fig. 1. It is clear from Fig. 1 and Eq. (2) that

\[
\frac{dE_o}{dT} = 0 \tag{3}
\]

and thus...
\[
\frac{d\mu_e}{dT} = 0 \quad (4)
\]

The difference of chemical potential of electrons between two conductors connected to points at differing chemical potentials \(3(p.463)\) is

\[
\mathcal{F} \varepsilon = -\Delta \mu_e \quad (5)
\]

where \(\varepsilon\) is the electromotive force and \(\mathcal{F}\) is the Faraday equivalent. It follows that

\[
\frac{d\varepsilon}{dT} = 0
\]

which reduces the Gibbs-Helmholtz relationship \(3(p.165)\)

\[
\varepsilon + \frac{\Delta H}{n\mathcal{F}} = T \frac{d\varepsilon}{dT} \quad (7)
\]

where \(\Delta H\) is the change in enthalpy and \(n\) is the number of equivalents passing for the change \(\Delta H\) or \(\Delta \mu_e\) in a closed system, to

\[
\varepsilon = -\frac{\Delta H}{n\mathcal{F}} \quad (8)
\]

This is in agreement with Gibbs' definition of the chemical potential \(3(p.203)\)

\[
dE = TdS - PdV + \sum_i \mu_i dn_i \quad (9)
\]

for constant entropy and volume, where \(E\) is the internal energy, \(P\) is the pressure, \(V\) is the volume, and \(n_i\) is the number of moles of component \(i\); or \(4(p.92)\)

\[
dF = -SdT + VdP + \sum_i \left(\frac{\partial F}{\partial n_i}\right)_{T,P,n_j} dn_i \quad , \quad (10)
\]
where \(F \) is the Gibbs free energy (now usually given as \(G \)), and
\[
(\partial F/\partial n_i)_{T,P,n_j}
\]
is equal to the chemical potential, \(\mu_i \), and the subscripts correspond to constant temperature, constant pressure, and constant number of moles of the other components, \(j \), in the system. Also \(^3(p.203)\)

\[
dH = TdS + VdP + \sum_i \mu_i dn_i
\] \hspace{1cm} (11)

Therefore, from Eqs. (9, 10) and (11),

\[
\mu_i = (\partial F/\partial n_i)_{T,P,n_j} = (\partial H/\partial n_i)_{S,P,n_j} = (\partial E/\partial n_i)_{S,V,n_j}
\] \hspace{1cm} (12)

Also, from a treatment of surface effects \(^3(p.482)\), Eq. (10) may be written

\[
dF = -SdT + VdP + \sigma dA_S + \sum_i \mu_i dn_i
\] \hspace{1cm} (13)

where \(\sigma \) is the surface tension and \(A_S \) is the area, and thus

\[
\mu_i = (\partial F/\partial n_i)_{T,P,A_S,n_j}
\] \hspace{1cm} (14)

where the restriction of constant surface area during electron transfer is met for any shape or surface if the electron moves rapidly enough, or along a short enough path.

The reported experiments are in agreement with Eqs. (3, 4, 5) and (6) with respect to observed constant EMF values and variations in temperature. \(^1\) The observed EMF's correspond closely to reported heat of fusion values, thus supporting Eq. (8), with additional support coming from Eq. (12),
where the chemical potential is defined in terms of the variation of enthalpy with number of electrons at constant entropy, pressure, and other species, and with no restriction on temperature.

The observation of a continuous surface EMF\(^1\) of the same magnitude as the EMF of fusion is in agreement with Eqs. (5), (12) and (14) and indicates that new surface area was being continuously generated at the surface contact electrode. This suggests a convecting system. The equality of EMF of fusion and surface tension or contact EMF is not surprising if one imagines the two situations in terms of a compensation effect, where the equality of the Fermi contact surface brim energies is realized by a flow of electrons and establishment of an electrostatic potential difference so that the values of \(E_0\) and \(\mu_e\) become equal across all contacts at equilibrium. The value of \(\mu_e\) on the crystal side of the contact is then by definition equal to \(\mu_e\) on the atmosphere side of the surface and equal to \(\mu_e\) in the liquid. The electrostatic neutrality of the crystal behind the contact is equivalent to the electrostatic neutrality above the liquid surface. The ability of the molten liquid to establish an electrostatic potential difference is the same whether it is with respect to a crystal of the same material and environment or a surface-atmosphere or vacuum layer interface. This indicates that molten liquid surfaces should give x-ray diffraction patterns equivalent to comparable crystal surfaces at the same temperature. This agrees with diffraction experiments on mercury liquid and crystals.\(^4(p.416)\)

The process of reversible crystal formation or melting is a constant temperature one and therefore no heat may flow and \(\Delta S = 0\). The charge which flows due to the electromotive force of fusion as new surface is formed or as an old surface melts can be used for an amount of work.
n_e \mathcal{F} \varepsilon. If a proper low resistance path is not provided, no work is done and the energy difference will dissipate as i^2 R heat, where i is the current and R is the resistance, as electrostatic neutrality is reestablished. In this case \(\Delta F = 0 \), and

\[
\Delta H = T \Delta S \tag{15}
\]

rather than

\[
\Delta H = -n_e \mathcal{F} \varepsilon . \tag{16}
\]

In conclusion, it is emphasized that the chemical potential is equal to a change in free or Gibbs energy with respect to a change in the number of moles of component, i, at constant temperature and pressure, and this is also equal to the change in enthalpy or internal energy with respect to a change in the number of moles of component, i, holding other variables constant in accord with Eq. (12). A measurement of any one of the equalities in Eq. (12) is a determination of the rest, including the change in work content with respect to the number of moles of component i at constant T, V, and n_j.\(^5\)

Acknowledgments: I thank Leo Brewer, Ian Carmichael, and Harry Bowman for stimulating discussions.
REFERENCES

5. The condition of constant gravitational potential is also assumed for Eqs. (10), (12), and (14).

FIGURE CAPTION

Fig. 1. The Fermi factor as a function of E and T.
LEGAL NOTICE

This report was prepared as an account of work sponsored by the United States Government. Neither the United States nor the United States Energy Research and Development Administration, nor any of their employees, nor any of their contractors, subcontractors, or their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness or usefulness of any information, apparatus, product or process disclosed, or represents that its use would not infringe privately owned rights.